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ABSTRACT

PURPOSE Improved survival prediction and risk stratification in non–small-cell lung
cancer (NSCLC) would lead to better prognosis counseling, adjuvant therapy
selection, and clinical trial design.We propose the persistent homology (PHOM)
score, the radiomic quantification of solid tumor topology, as a solution.

MATERIALS
AND METHODS

Patients diagnosed with stage I or II NSCLC primarily treated with stereotactic
body radiation therapy (SBRT) were selected (N 5 554). The PHOM score was
calculated for each patient’s pretreatment computed tomography scan (October
2008-November 2019). PHOM score, age, sex, stage, Karnofsky Performance
Status, Charlson Comorbidity Index, and post-SBRT chemotherapy were pre-
dictors in the Cox proportional hazards models for OS and cancer-specific
survival. Patients were split into high– and low–PHOM score groups and
compared using Kaplan-Meier curves for overall survival (OS) and cumulative
incidence curves for cause-specific death. Finally, we generated a validated
nomogram to predict OS,which is publicly available at Eashwarsoma.Shinyapps.

RESULTS PHOM score was a significant predictor for OS (hazard ratio [HR], 1.17; 95% CI,
1.07 to 1.28) and was the only significant predictor for cancer-specific survival
(1.31; 95% CI, 1.11 to 1.56) in the multivariable Cox model. The median survival
for the high-PHOM group was 29.2 months (95% CI, 23.6 to 34.3), which was
significantly worse compared with the low-PHOMgroup (45.4months; 95%CI,
40.1 to 51.8; P < .001). The high-PHOM group had a significantly greater chance
of cancer-specific death at post-treatment month 65 (0.244; 95% CI, 0.192 to
0.296) compared with the low-PHOM group (0.171; 95% CI, 0.123 to 0.218;
P 5 .029).

CONCLUSION The PHOMscore is associatedwith cancer-specific survival and predictive of OS.
Our developed nomogram can be used to inform clinical prognosis and assist in
making post-SBRT treatment considerations.

INTRODUCTION

Approximately 230,000 cases of lung cancer are diagnosed,
and 135,000 patients die from lung cancer each year in the
United States.1 Proportionally, 85% of all lung cancer cases
are non–small-cell lung cancer (NSCLC).2 Primary therapy
has traditionally been surgical resection; however, stereo-
tactic body radiation therapy (SBRT) is now an option for
patients with inoperable tumors.3 For all cancers, clinical
prognostication is essential for therapy selection. This is
especially important in lung cancer, for which 5-year

survival is highly variable in NSCLC ranging fromnearly 70%
for patients with stage I disease down to 10% for patients
with metastatic disease.4 Although early stage has an overall
positive prognosis, approximately 30% of patients do not
survive at 5 years. This indicates a need to develop better
risk-stratifying metrics.

Risk calculators are clinical decision support tools that
quantify prognosis. They typically use histopathologic and
clinical covariates to predict outcomes. Risk calculators in-
corporating molecular and clinical information have been

ACCOMPANYING CONTENT

Data Supplement

Accepted May 4, 2023

Published June 27, 2023

JCO Clin Cancer Inform

7:e2200173

© 2023 by American Society of

Clinical Oncology

ascopubs.org/journal/cci | 1

https://orcid.org/0000-0001-8806-6992
https://orcid.org/0000-0003-0503-9580
https://orcid.org/0009-0001-7573-0214
https://orcid.org/0000-0003-4661-8212
https://orcid.org/0000-0002-6276-1505
https://orcid.org/0000-0002-1458-0064
https://orcid.org/0000-0002-0978-3406
https://orcid.org/0000-0001-5968-6738
https://orcid.org/0000-0002-3840-4161
https://orcid.org/0000-0003-2971-7673
https://doi.org/10.1200/CCI.22.00173
https://ascopubs.org/doi/suppl/10.1200/CCI.22.00173
http://ascopubs.org/journal/cci


developed for lung cancer.5 Although clinical data are easily
obtained, obtaining molecular data outside of tertiary
medical centers is often challenging. By contrast, imaging
data are far more accessible. Radiomics—the science of
extracting and analyzing features from imaging data—has
been increasingly used to predict clinical outcomes in
cancer.6 Although radiomics already offers a wide toolset for

image analysis, we propose a valuable extension with per-
sistent homology (PHOM).

Persistent homology quantifies the global topology, or
overall structure, of big data.7 Its high-level approach
provides the benefit of discriminating signal from noise.
Oncology already features structure analysis similar in spirit

CONTEXT

Key Objective
To validate a new topology-inspired radiomics metric (persistent homology [PHOM] score) for prediction of overall survival
(OS) and risk stratification of patients with early-stage non–small-cell lung cancer treated with stereotactic body radiation
therapy.

Knowledge Generated
Validated nomogram predicts OS using the PHOM score in conjunction with clinical variables. We demonstrate that the
PHOM score provides unique information for OS prediction and can risk stratify across clinical subgroups.

Relevance
The nomogram tool can inform patients and providers about an individual’s prognosis and can assist in making personal
and medical decisions. Clinical trialists may find interest in risk stratification in trialing new therapies, and oncologists may
use risk stratification provided by the PHOM score to assess the need of adjuvant therapy.

803 patients with
NSCLC and
pretreatment
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554 patients included in the study
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48 greater than stage II
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FIG 1. Conceptual overview of translating utility of PHOM score. (A) Eight hundred three patients were in
our database with imaging and clinical data for NSCLC treated primarily with SBRT. Two hundred forty-
nine patients were excluded on the basis of their stage or treatment history. (B) The PHOM score is
algorithmically calculated from a tumor segmented by a clinician. Note that this particular cross-section
demonstrates a large tumor greater than stage II but was selected for visualization purposes. Only stage II
tumors and below were selected for analysis. (C) We envision the PHOM score to have utility in prog-
nostication, therapy selection, and risk stratification. NSCLC, non–small-cell lung cancer; PHOM, per-
sistent homology; SBRT, stereotactic body radiation therapy.
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to PHOM. Glandular shape analysis through Gleason scoring
is used to grade prostate cancer severity.8

We hypothesize that malignant and benign tissues exhibit
distinct topology on clinical imaging. Malignant tumors
are typically diffusely spread and heterogeneous in
composition and may possess necrotic cavities. By con-
trast, benign tumors are well-circumscribed and likely to
be homogeneous in appearance.9 Persistent homology
quantifies these observations to permit their use in pre-
dictive models. Of note, PHOM has already been intro-
duced to radiomics in the study of glioblastoma and liver
cancer.10,11

Within lung cancer, PHOM has shown promise in pre-
dictive modeling via a metric named the PHOM score.12 In
our previous study, we demonstrated that the PHOM score
is associated with overall survival (OS) in patients with
NSCLC treated with surgery or radiation. In this study, we
use the advantage of using our institutional data to curate
a cohort with greater resolution of clinical details. We
selected patients treated with SBRT since their tumor
margins on imaging are contoured for treatment pur-
poses. The primary aim of this study was to assess our
hypothesis that the PHOM score can predict OS in patients
with NSCLC treated with SBRT. The secondary aim was to
create clinical risk groups using the PHOM score. Here, we
validate the PHOM score using a large prospectively col-
lected, IRB-approved data set from our institution in-
cluding 554 patients treated with SBRT for primary lung
cancers from 2008 to 2019. We combine our PHOM score
with clinical covariates to develop a prognostic nomogram
that predicts duration of OS post-SBRT. This prognostic
tool would assist providers and their patients in making
both personal and medical decisions. We also demonstrate
the PHOM score’s ability to stratify patients into risk
groups. Risk stratification would assist adjuvant therapy
selection at the individual patient level and clinical trial
design at a more global level.

MATERIALS AND METHODS

Source of Data and Participants

We developed a data pipeline that calculated the PHOM score
of computed tomography (CT) tumor scans to create vali-
dated survival regressionmodels. Methodology to generate a
PHOM score using tumor CT scans is described in our pre-
vious work.12 Only patients with early-stage (I or II) biopsy-
proven primary NSCLC with no treatment history were
eligible for this study. We used a single-institution pro-
spectively collected data set of 803 patients receiving SBRT
with pretreatment patient scans (scan dates ranging October
2008-November 2019) with corresponding clinical data.
Clinical data including dates of diagnosis, last follow-up, and
treatment were obtained from Epic chart review. Patients
had uniform free-breathing CT parameters with a slice
thickness of 3 mm.

After excluding 249 patients with metastatic disease, nodal
disease, and additional primary tumors and patients who
received pretreatment, 554 patients met inclusion criteria
(Fig 1A) All patients received SBRT as their primary treat-
ment for local control.

Model Development

Each patient’s primary lung tumor had been segmented by a
radiation oncologist. For each CT scan, we used the seg-
mentation coordinates to crop scan to only include tumor
tissue. The PHOM score was calculated from this data object
(Fig 1B). As previously described, this metric reflects the
number of disconnected foci of pixels with similar grayscale
values in the segmented tumor object.12

We demonstrate the PHOM score’s potential clinical utility
through a Cox proportional hazards model and nomogram
(Fig 1C). PHOM score, age, sex, Karnofsky Performance
Status (KPS), Charlson Comorbidity Index (CCI), overall
stage, and postradiation chemotherapy were included as
covariates in a Cox proportional hazards model for OS and
cancer-specific survival.

The multivariable Cox proportional hazards model for OS
formed the basis of a nomogram to predict 1-, 2-, 5-, and
8-year survival. The nomogram preserves the underlying
relationship between the coefficients in the multivariable
Cox proportional hazards model and merely maps these
coefficients to easily interpretable point values. Predicted
median survival was calculated as a weighted sum of the
individual survival predictions. This model was validated
using bootstrap resampling of the original patient cohort.
This validation method creates new Cox models by drawing
patients from the original cohort with replacement (boot-
strap sample). The performance of the bootstrap sample and
original cohort against the bootstrap model is subtracted.
This is repeated 1,000 times, and all the differences are
averaged. This value is subtracted from the performance of
the original model against the original cohort creating an
optimism-corrected estimate. Alignment of the plotted
optimism-corrected estimate with the plotted performance
of the model on the original cohort is an indication of in-
ternal validity and lack of overfitting (Data Supplement
[Fig 4]). Internal validation by bootstrap resampling has
been shown to have stable performance estimates and low
bias compared with other methods.13

To assess the relative contribution of each covariate to
prediction ability of the OSmultivariable Coxmodel, the drop
in C index was calculated by omitting each covariate one at a
time from the fullmodel. The C index has been routinely used
to evaluate the discriminating ability of a survival model.14

Risk Groups

The model development was the primary analysis of this
study. Secondary analysis aimed to understand whether
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PHOM score might have potential to create risk groups. This
cohort was divided into two groups by the median PHOM
score of the entire cohort (PHOM 5 –0.0372). Kaplan-Meier
curves were drawn to compare OS between the two groups,
and log-rank statistics were used to compare the survival
trends. Cumulative incidence curves were drawn to compare
the cause of death between these two groups.

This analysis was repeated with optimized tertiles. Tertiles
were calculated by selecting the two PHOM score cutoff
values that resulted in the maximal chi-square value of the
Kaplan-Meier curve. The low-risk group (n 5 211) was de-
fined as below –0.460, medium-risk group (n 5 172) as
between–0.460 and 0.668, and high-risk group (n5 171) as
above 0.668. Both Kaplan-Meier curves and cumulative
incidence curves were drawn for these three groups.
Benjamini-Hochberg correction was used to correct for
multiple comparisons for Kaplan-Meier pairwise compari-
sons. Post hoc Kaplan-Meier curves were drawn in a similar
method to assess PHOM risk stratification in clinical sub-
groupings by KPS, CCI, and overall stage.

Data Availability

All data were processed and analyzed using R (v3.6.1) and
Python (v3.7.6).15-17 Anonymized datamay be requested from
the authors. Code with explanation for this data pipeline can
be found at GitHub.18

RESULTS

Patient Characteristics

The patients in this study were generally able-bodied indi-
viduals with early-stage NSCLC and a moderate number of
comorbidities. Table 1 shows a descriptive overview of the
patient population. All patients had stage I or II primary NSCLC
(none had nodal disease). No patients in this cohort had
treatment before SBRT, but 26 patients (4.7%) had some form
of post-SBRT chemotherapy. The KPS in this study ranged
from 50 to 100. Most patients had baseline independent
functional status corresponding to the KPS of 80 (215 patients)
and 90-100 (168 patients). Using an a/b ratio of 10, the mean
dose received over treatment course was 100.54 Gy (standard
deviation [SD], 25.24 Gy) equivalent dose in 2-Gy fractions.
Eighty-nine patients had minimal comorbidity corresponding
to a CCI of 2-4. Most patients had additional commodities with
scores ranging from 5 to 8. Sixty patients had severe comor-
bidity (CCI > 8). One hundred fifteen (20.8%) patients died of
cancer, and 323 (58.3%) patients died of other causes. One
hundred sixteen patients (20.9%) were alive at last follow-up,
and the median follow-up time for those alive was approxi-
mately 4.7 years (SD, 2.14 years).

Survival Models

PHOM score was a significant predictor of both OS (hazard
ratio [HR], 1.17; 95% CI, 1.07 to 1.28; P < .001) and cancer-

specific survival (HR, 1.31; 95% CI, 1.11 to 1.56; P 5 .0014) in
their respective multivariable Cox models. Table 2 lists the
exact hazard ratios for all Cox models, and the Data Sup-
plement ([Fig 1]) shows a forest plot visualization of the data.
The Data Supplement ([Table 1]) shows the associated
P values. For OS, the KPS of 90-100 was associated with
improved survival (HR, 0.46; 95% CI, 0.32 to 0.67; P < .001)
and increased comorbidity was associated with poor OS
(HR, 2.54; 95% CI, 1.69 to 3.80; P < .001).

TABLE 1. Patient Characteristics of the Study Cohort

Label Overall

No. 554

Age, years, mean (SD) 74.35 (9.15)

Sex, mean (SD)

Male 263 (47.5)

Female 291 (52.5)

Race, No. (%)

Black 79 (14.3)

White 459 (82.9)

Others 16 (2.9)

Years smoked, mean (SD) 52.25 (33.89)

EQD2, mean (SD) 100.54 (25.24)

Post-SBRT therapy, No. (%)

No 528 (95.3)

Yes 26 (4.7)

Overall stage, No. (%)

IA 363 (65.5)

IB 121 (21.8)

IIA 44 (7.9)

IIB 26 (4.7)

KPS, No. (%)

50-60 44 (7.9)

70 127 (22.9)

80 215 (38.8)

90-100 168 (30.3)

CCI, No. (%)

2-4 89 (16.2)

5 125 (22.7)

6 114 (20.7)

7 99 (18.0)

8 64 (11.6)

9-14 60 (10.9)

Follow-up time, mean (SD) 56.4 (25.7)

NOTE. Patients in this cohort had early-stage tumors, were generally
healthy (high KPS), and had a moderate number of comorbidities (CCI:
5-8). Five hundred fifty-four patients were present in the cohort. Follow-
up time describes the mean number of months between treatment and
most recent follow-up appointment for patients who were alive.
Abbreviations: CCI, Charlson Comorbidity Index; EQD2, equivalent dose
in 2-Gy fractions, calculated using an a/b ratio of 10; KPS, Karnofsky
Performance Status; SBRT, stereotactic body radiation therapy; SD,
standard deviation.
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We drew nomograms, which are user-friendly visual tools
that represent the underlying survival regression models.
Nomograms were calibrated for 1-, 2-, 5-, and 8-year OS as
shown in the Data Supplement ([Fig 5]). The model was
internally validated using bootstrap resampling, and cali-
bration curves are shown in the Data Supplement ([Fig 4]).
The apparent and optimism bias–corrected curves showed
relatively strong alignment, with the ideal curve indicating
that ourmodel is internally valid and not overfitted. TheData
Supplement ([Table 2]) demonstrates the relative contri-
bution of each covariate to the predictive ability of the
multivariable Cox model with a relative drop in C index. The
Data Supplement ([Fig 3]) shows the proportion chi square
contributed by each variable in the multivariable Cox model.
Both analyses revealed that PHOM score, KPS, and CCI were
the most important variables in the model and that each of
these variables contributed unique information to the pre-
dictive ability of our model.

Each covariate from the multivariable Cox proportional
hazards model is associated with a certain point value, and
summing the point values for a given patient’s parameter
generates a score that can be used to assign 1-, 2-, 5-, and
8-year OS chance. The weighted sum of these survival
chances gives the predicted median survival. An online in-
teractive version of this nomogram is available at
Eashwarsoma.Shinyapps.19 We provide the exact risk point
values associatedwith each clinical variable in this nomogram
as a supplemental CSV file: Predictors_Points_Survival.csv.

Risk Stratification

The PHOM score produced well-defined risk categories for
OS and cancer death incidencewhen stratified bymedian and
optimized cutoff values. Figure 2A shows that patients with
PHOM scores below the cohortmedian had amedian survival
of 45.4 months (95% CI, 40.1 to 51.8), which was signifi-
cantly higher compared with patients in the high–PHOM
score group (median, 29.2 months; 95% CI, 23.6 to 34.3;
P < .001). Figure 2B shows survival differences predicted by
optimized PHOM score cutoffs. The median survival for the
high-PHOM risk group was 25.7 months (95% CI, 20.9 to
31.0). The median survival for the medium- and low-risk
groups was 34.8 months (95% CI, 30.0 to 44.9) and
47.0 months (95% CI, 40.9 to 58.1), respectively. These
groups had significant differences in OS (P < .001); however,
the P value is somewhat moot as the cutoffs were calculated
by optimizing the chi-square value of the Kaplan-Meier
curve. We applied these cutoffs to clinical groups stratified
by KPS, CCI, or overall stage as shown in the Data Supple-
ment ([Fig 2]). This post hoc analysis demonstrated that
higher PHOM risk score cutoffs were still associated with
poorer survival in all clinical strata except for patients in
stage IB, IIA, and IIB where the trend was similar but did not
reach statistical significance.

Figure 3A compares cause-specific death between PHOM
score groups divided by cohort median. Having an above
median PHOM score was associated with a 0.244 (95% CI,

TABLE 2. Cox Proportional Hazards Model for OS and CSC

Variable OS, UV HR OS, MV HR CSC, UV HR CSC, MV HR

PHOM score 1.21 (1.13 to 1.30) 1.17 (1.07 to 1.28) 1.35 (1.19 to 1.54) 1.31 (1.11 to 1.56)

Age at diagnosis 1.01 (1.00 to 1.02) 1.00 (0.99 to 1.02) 1.00 (0.98 to 1.02) 0.99 (0.97 to 1.02)

Male sex 1.19 (0.99 to 1.44) 1.27 (1.05 to 1.55) 1.01 (0.70 to 1.46) 0.98 (0.67 to 1.45)

KPS 5 70 0.78 (0.54 to 1.13) 0.76 (0.52 to 1.10) 0.81 (0.38 to 1.75) 0.85 (0.39 to 1.86)

KPS 5 80 0.63 (0.45 to 0.89) 0.63 (0.44 to 0.90) 0.72 (0.35 to 1.47) 0.81 (0.39 to 1.69)

KPS 5 90-100 0.47 (0.33 to 0.67) 0.46 (0.32 to 0.67) 0.62 (0.30 to 1.30) 0.65 (0.30 to 1.40)

CCI 5 5 1.59 (1.14 to 2.22) 1.41 (0.99 to 2.00) 1.30 (0.71 to 2.36) 1.22 (0.65 to 2.28)

CCI 5 6 1.30 (0.93 to 1.83) 1.21 (0.86 to 1.72) 1.27 (0.71 to 2.29) 1.45 (0.78 to 2.69)

CCI 5 7 1.75 (1.24 to 2.48) 1.77 (1.23 to 2.56) 1.20 (0.63 to 2.29) 1.51 (0.76 to 3.03)

CCI 5 8 2.00 (1.37 to 2.92) 2.03 (1.36 to 3.02) 1.17 (0.55 to 2.47) 1.34 (0.61 to 2.97)

CCI 5 9-14 2.70 (1.83 to 3.98) 2.54 (1.69 to 3.80) 1.42 (0.64 to 3.19) 1.72 (0.74 to 3.99)

Postradiation chemotherapy 0.96 (0.63 to 1.48) 1.01 (0.64 to 1.58) 1.90 (1.02 to 3.54) 1.65 (0.84 to 3.22)

Stage Ib 1.46 (1.17 to 1.84) 1.23 (0.94 to 1.61) 1.45 (0.92 to 2.30) 0.96 (0.56 to 1.65)

Stage IIa 1.85 (1.30 to 2.64) 1.28 (0.85 to 1.92) 2.60 (1.43 to 4.73) 1.47 (0.73 to 2.96)

Stage IIb 1.80 (1.16 to 2.78) 1.33 (0.84 to 2.11) 2.28 (1.05 to 4.98) 1.45 (0.62 to 3.38)

NOTE. The PHOM score was a significant covariate for survival even after controlling for clinical variables. KPS and CCI were significant covariates
for OS but not in CSC. Values are given as hazard ratio (95% CI). KPS is compared against KPS 5 50-60. CCI is compared against the CCI of 2-4.
Stage covariates are compared against stage Ia. Bold values are statistically significant with P < .05. P values for this table are included in the Data
Supplement (Table 1).
Abbreviations: CCI, Charlson Comorbidity Index; CSC, cancer-specific survival; HR, hazard ratio; KPS, Karnofsky Performance Status; MV,
multivariable; OS, overall survival; PHOM, persistent homology; UV, univariable.
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0.192 to 0.296) chance of cancer-specific death bymonth 65,
which was significantly higher compared with the below
median PHOM score chance of death of 0.171 (95% CI, 0.123
to 0.218; P5 .029). However, for other causes of death, a high
versus low PHOM score corresponded to a nonsignificant
0.582 (95%CI, 0.521 to 0.642) versus 0.499 (95%CI, 0.436 to
0.563) chance of death by month 65. Figure 3B compares
cause-specific death among PHOM score groups divided by
optimized PHOM score risk groups. For low-, medium-, and
high-risk PHOM score groups, the chance of cancer death by
month 65 was 0.146 (95% CI, 0.0950 to 0.197), 0.194 (95%
CI, 0.133 to 0.255), and 0.296 (95% CI, 0.224 to 0.366),
respectively (P 5 .0013). For low-, medium-, and high-risk
PHOM score groups, the chance of death from other causes
by month 65 was 0.474 (95% CI, 0.401 to 0.546), 0.612 (95%
CI, 0.535 to 0.689), and 0.551 (95% CI, 0.474 to 0.629),
respectively.

DISCUSSION

Our novel topologically inspired radiomics variable predicts
survival and risk stratifies patients with NSCLC. To our
knowledge, there is currently no similar topology-based
imaging metric that has demonstrated survival prediction
in patients with NSCLC. Stratifying PHOM score by the

cohort median reveals worse OS and cancer-specific sur-
vival in the high–PHOM score group. PHOM score was also
the only significant predictor in the multivariable cancer-
specific Cox model. In addition, it differentiated cancer-
specific death from death by other causes, suggesting that
the PHOM score is truly measuring cancer severity (Figs 2
and 3).

Interestingly, our post hoc analysis in the Data Supplement
([Fig 2]) revealed that PHOM score continued to stratify
survival across all clinical subgroupings of KPS and CCI.
This is expected as PHOM score is a measure of the tumor
itself, whereas KPS and CCI are measures of overall
health. Stage did not contribute to predicting survival in
the multivariable models, possibly because of high local
control rates when early-stage tumors are treated with
SBRT.20 However, in the Data Supplement ([Fig 2G]), the
PHOM score identified high-risk patients within the
Stage IA group. Although Stage IA patients are thought to
be at low risk overall, approximately 30% of patients with
this stage do not survive over a 5-year interval.21 We need
better risk stratification, and we offer the PHOM score
tertiles as a possibility. Risk-stratifying early-stage
NSCLC cancers can signal a need for adjuvant systemic
therapy and assist clinical trialists in creating treatment
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FIG 2. Kaplan-Meier OS by PHOM score. Stratifying the cohort by median PHOM score groups and optimized cutoffs produced well-demarcated
survival curves. (A) The median survival for the high-PHOM group was 29.2 months (95% CI, 23.6 to 34.3). The median survival for the low-PHOM
group was significantly higher at 45.4 months (95% CI, 40.1 to 51.8; P < .001). (B) The median survival for the high-PHOM risk group was
25.7 months (95% CI, 20.9 to 31.0). This was significantly less than that for both the medium- (P 5 .020) and low-risk PHOM score groups
(P < .001). The median survival for the medium-risk group was 34.8 months (95% CI, 29.9 to 44.9). This was significantly less than that of the low-
risk PHOM score group (P < .001). The median survival for the low-risk group was 47.0 months (95% CI, 40.9 to 58.1). However, it is important
to note that these P values are somewhat moot since the tertiles were calculated to maximize the chi-square value of the KM curve. KM,
Kaplan-Meier; OS, overall survival; PHOM, persistent homology.
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groups on the basis of risk. However, further study is
needed as this was a post hoc analysis. Although stages
IB, IIA, and IIB had similar trends when grouping by
PHOM risk scores, they did not reach statistical
significance.

The PHOM score’s greatest strength is its ability to predict
OS. The C-index demonstrates the predictive ability of a
model. When omitting variables one at a time from the
model, we found that KPS had the greatest drop in C-index
score and CCI and PHOM score resulted in similar C-index
drops. This reflects the importance and unique information
that each covariate brings to the model (Data Supplement
[Table 2]). The calibration plot demonstrates strong internal
validity of our nomogram’s predictive ability (Data Sup-
plement [Fig 4]).

To our knowledge, this is the first article that uses PHOM to
predict OS in NSCLC. Our previous work was limited to
demonstrating statistical association with OS and did not
include important covariates such as KPS and CCI because
of limitations in available data.12 We speculate our metric
measures underlying structural tissue heterogeneity.

Increased tissue heterogeneity may indicate aggressive
tumor growth providing an explanation of why ourmetric
correlates well with cancer-specific survival and predicts
OS. Direct pathology data and tumor marker data were
not available in this study but should be assessed in
future studies to define the biologic significance of the
PHOM score. Our new imaging PHOM metric adds to the
other metrics that have been developed for glioblastoma
and breast and prostate cancer clinical outcomes
research.8,10,22

Persistent homology has opened up a new suite of tools for
image analysis. We have shown that the PHOM score
predicts survival in NSCLC even after controlling for clinical
metrics. How the PHOM score could interact with tradi-
tional radiomic measures remains to be answered. In ad-
dition, the PHOM score could be incorporated with
nonimaging data. Genomic models such as the genomically
adjusted radiation dose predict individualized response to
different radiation doses as demonstrated in a meta-
analysis.23,24 We foresee future clinical models that incor-
porate genomic, imaging, and other data modalities to
more precisely guide therapy.
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FIG 3. Cumulative incidence of death by specific cause. Stratifying the cohort by median–PHOM score groups and optimized cutoffs
produced well-demarcated cumulative incidence curves for cancer-specific death but not death because of other causes. (A) Having a
high median PHOM score was associated with a 0.244 (95% CI, 0.192 to 0.296) chance of cancer-specific death by month 65. A low
median PHOM score was associated with a significantly less chance of death by month 65 at 0.171 (95% CI, 0.123 to 0.218; P 5 .029).
However, for other causes of death, a high versus low PHOM score corresponds to a nonsignificant 0.582 (95% CI, 0.521 to 0.642) versus
0.499 (95% CI, 0.436 to 0.563) chance of death by month 65. (B) For low-, medium-, and high-risk PHOM score groups, the chance of
cancer death by month 65 was 0.146 (95% CI, 0.0950 to 0.197), 0.194 (95% CI, 0.133 to 0.255), and 0.296 (95% CI, 0.224 to 0.366),
respectively. For low-, medium-, and high-risk PHOMscore groups, the chance of death from other causes bymonth 65was 0.474 (95%CI,
0.401 to 0.546), 0.612 (95% CI, 0.535 to 0.689), and 0.551 (95% CI, 0.474 to 0.629), respectively. Similarly, the difference among incidence
of death at month 65 was significant when assessing cancer death (P5 .0013) but not other deaths. One hundred fifteen patients in this
cohort died of cancer, of which 80 were due to nodal and distal progression and the remaining 35 were due to new primary, local, or lobar
progression. The P values are moot similar to the Kaplan-Meier risk stratification analysis since we maximized over the chi-square value
of the KM curve. KM, Kaplan-Meier; PHOM, persistent homology.
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Although our results are promising for NSCLC, some limi-
tations must be considered. Our nomogram is only validated
for patients with early-stage NSCLC who receive SBRT therapy
as primary treatment. Although we do not see a reason for
this metric to not work for surgical patients, we cannot
formally say that our nomogram is validated for this
population. All the patients in this cohort received care at a
tertiary health care center and sometimes became candi-
dates for SBRT because of comorbidities contraindicating
surgery. As such, they are more likely to be sicker than the
average patient with early-stage NSCLC, which is reflected
in our OS rates being less than the typicalmedian survival of
over 5 years.25 CT standards vary among institution, so it is
not clear whether sources of imaging variance have an
impact on PHOM score. However, our previous work
assessed scans with varied parameters different from this
institution’s parameters and was still successful, sug-
gesting a potential resilience of this score to this particular
confounder.12

We could not generate a cancer-specific survival curve be-
cause of poor calibration curves. We believe this to be a result
of the limited number of cancer-specific deaths—likely
because of successful treatment of early-stage tumors. For
completeness, we include these attempted curves in the Data
Supplement ([Fig 6]).

In conclusion, publicizing this nomogram, recruiting multi-
institutional data, and conducting prospective studies could
address these limitations in future studies. In addition, future
work could analyze how the PHOM score interacts with tra-
ditional radiomics. The widespread imaging capability of
modern hospitals makes imaging metrics such as the PHOM
score practical for use in patient care. In cohort studies or
randomized controlled trials, the PHOM score could be used to
risk stratify patients to investigate who might benefit from
adjuvant therapy. In the long term,weenvision the creationof a
risk calculator that extracts themost useful features of imaging
data to both prognosticate and guide clinical decisions.
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