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abstract

PURPOSE Selinexor is the first selective inhibitor of nuclear export to be approved for the treatment of relapsed or
refractory multiple myeloma (MM). Currently, there are no known genomic biomarkers or assays to help select
MM patients at higher likelihood of response to selinexor. Here, we aimed to characterize the transcriptomic
correlates of response to selinexor-based therapy.

METHODSWe performed RNA sequencing on CD138+ cells from the bone marrow of 100 patients with MMwho
participated in the BOSTON study, followed by differential gene expression and pathway analysis. Using the
differentially expressed genes, we used cox proportional hazard models to identify a gene signature predictive of
response to selinexor, followed by validation in external cohorts.

RESULTS The three-gene signature predicts response to selinexor-based therapy in patients with MM in the
BOSTON cohort. Then, we validated this gene signature in 64 patients from the STORM cohort of triple-class
refractory MM and additionally in an external cohort of 35 patients treated in a real-world setting outside of
clinical trials. We found that the signature tracks with both depth and duration of response, and it also validates in
a different tumor type using a cohort of pretreatment tumors from patients with recurrent glioblastoma. Fur-
thermore, the genes involved in the signature, WNT10A, DUSP1, and ETV7, reveal a potential mechanism
through upregulated interferon-mediated apoptotic signaling that may prime tumors to respond to selinexor-
based therapy.

CONCLUSION In this study, we present a present a novel, three-gene expression signature that predicts selinexor
response in MM. This signature has important clinical relevance as it could identify patients with cancer who are
most likely to benefit from treatment with selinexor-based therapy.

JCO Precis Oncol 6:e2200147. © 2022 by American Society of Clinical Oncology

INTRODUCTION

Selinexor is the first selective inhibitor of nuclear export
(SINE) approved for the treatment of relapsed or re-
fractory multiple myeloma (MM).1 This approval is well
supported by recent clinical trial data, most notably
including the STORM and BOSTON studies. In the
STORM phase II clinical trial, oral selinexor and
dexamethasone were administered twice weekly in
patients with triple-class refractory MM, with 26% of
patients exhibiting a partial response (PR) or better
and a median progression-free survival (PFS) of 3.7
months.1,2 The phase III BOSTON trial compared the
efficacy of once weekly selinexor in combination with
once weekly bortezomib and dexamethasone (Vd) with
standard twice weekly Vd in patients with previously
treated MM and found an overall response rate (ORR)
of 76.4% and a median PFS of 13.9 months for pa-
tients receiving the novel treatment regimen, com-
pared with 9.5 months for those receiving the standard
treatment.1

Mechanistically, selinexor binds to the karyopherin
exportin 1 (XPO1), which is responsible for shuttling
more than 200 oncogenic and tumor suppressor
proteins and mRNA transcripts to the cytoplasm.3 This
inhibition of nuclear export, the sequestration of tumor
suppressor proteins in the nucleus, and the prevention
of oncogene mRNA translation into oncoproteins ul-
timately induces cancer cell death while permitting the
survival of nonmalignant cells.4-6 Selinexor has a
unique adverse event (AE) profile because of its novel
mechanism of action, and AEs are common, with
severe AE reported in 52% of patients in the BOSTON
trial and 80% of patients in the STORM trial.1,2

Identifying biomarkers that help predict treatment
responses and toxicity is essential for targeted
selinexor-based therapeutic intervention.

Systematic approaches to biomarker discovery for
selinexor response that leverage next-generation se-
quencing are generally lacking in the literature. Al-
though MM cells tend to overexpress XPO1 compared
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with normal plasma cells, XPO1 alterations have not cor-
related significantly with response to treatment with SINE
compounds with the exception of a few in-vitro studies.3-5,7

The STORM study presented a brief transcriptomic analysis
that identified a potential four-gene signature on the basis
of imputed protein activity.2 A few candidate biomarkers
identified through bioinformatics analyses have also been
reported in conference proceedings.8,9 However, limita-
tions of these studies include small sample sizes and lack of
validation with external cohorts of selinexor-treated
patients.

Here, we analyzed RNA sequencing data from 256 patients
from multiple studies of selinexor-based therapy to char-
acterize the transcriptomic correlates of response to seli-
nexor. We discovered a novel three-gene signature
predicting response to selinexor using RNA-seq data from
the BOSTON study and validated it on data from the
STORM clinical trial and on an additional independent
cohort of patients treated with selinexor at the Mount Sinai
Hospital in real-world conditions outside of a clinical trial.
The three-gene signature is biologically interpretable and
opens a path for evaluating a response mechanism in
future studies. More importantly, this signature has the
potential to identify patients most likely to benefit from
selinexor-based therapy, ultimately reducing toxicities and
improving outcomes.

METHODS

Patient Selection and RNA Sequencing
BOSTON and STORM. CD138+ cells were purified from bone
marrow aspirates obtained from 100 patients who partic-
ipated in the BOSTON study and 64 patients who partic-
ipated in the STORM study. RNA extraction was performed
using the Qiagen Allprep RNA mini kit, and library prep-
aration was performed with the TruSeq Stranded mRNA
(non–formalin-fixed paraffin-embedded compatible) kit.
For samples with low RNA quality, the Smart-Seq V4 Ultra
Low Input Nextera XT kit was used. Total RNA sequencing

was performed with 100 bp reads using an Illumina HiSeq
2500 instrument.

MSSM. The 35 patients were physician-referred as part of
the MM banking protocol approved by the Mount Sinai
Institutional Review Board. Written informed consent was
obtained from each patient. CD138+ cells were isolated
from bone marrow aspirates obtained before the start of
selinexor-based therapy, and RNA isolation and se-
quencing were performed as previously described.10

MMRF-CoMMpass. Gene-level counts for 767 RNA-seq
samples from the MMRF-CoMMpass data set were
downloaded from dbGaP (accession #phs00748).

KING. Gene-level read counts were obtained from pre-
treatment tumors from 57 patients with recurrent glio-
blastoma that were enrolled in the phase II KING study.11

Bioinformatics processing. Raw reads were aligned to the
GRCh38 human reference genome using STAR.12 Gene-
level counts, obtained through featureCounts, were filtered
to remove immunoglobulin and ribosomal transcripts and
to remove genes whose counts across all samples had zero
variance.13,14 Counts were converted to Log2CPM, nor-
malized with voom, and corrected for batch effects or
covariates identified through variancePartition analysis
using the sva ComBat package.14-16

Differential Expression
Differential expression (DE) genes were identified in the
BOSTON selinexor, bortezomib, and dexamethasone (XVd)
and the Vd arm separately using DESeq2.17 Within each
arm, DE genes relative to responders versus nonresponders
were generated across a total of nine response cutoffs on
the basis of PFS, ORR, or a combination of both. For each
response comparison, genes were designated as DE in
selinexor responders if they were significantly DE in the XVd
arm (PAdj , .05) and were not significantly DE in the
corresponding comparison within the Vd arm (P . .05).
DESeq2 analysis was performed on unfiltered raw counts
per tool requirements.17 Gene set enrichment analysis

CONTEXT
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Although the mechanism of action for selinexor is well characterized, there are currently no known biomarkers to guide patient

selection for selinexor-based therapy. This study aims to characterize transcriptomic correlates of response to selinexor-
based therapy in multiple myeloma.
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(GSEA) was applied to the selinexor-specific DESeq2 re-
sults in the XVd arm using MSigDB Hallmark pathway
definitions using the fGSEA package.18,19

Survival Analysis
Each DE gene set identified through the nine comparisons
was split into upregulated and downregulated subsets on
the basis of log fold change (logFC) in the XVd Arm,
resulting in 17 candidate gene signatures for further
analysis (nine upregulated and eight downregulated).
Gene Set Variation Analysis (GSVA) scores were calcu-
lated for all samples for the 17 candidate gene signatures
from the covariate-normalized expression matrix.20 For
each candidate gene signature, a univariate Cox pro-
portional hazard model was generated in the BOSTON
XVd arm. The gene signature with the best model per-
formance in the discovery cohort was selected by ranking
the highest Somer’s Dxy after repeated four-fold cross-
validation (no.repeats = 1,000). It was also evaluated with a
Cox proportional hazards model in the Vd arm as a
negative control to ensure that performance was specific
to selinexor. A permutation test was performed to evaluate
whether the selected gene signature is more significant via
log-rank Kaplan-Meier testing than a GSVA score com-
posed of three randomly selected genes.

All validation tests were executed by first performing
feature-specific quantile normalization of the expression
matrix with the distribution of expression in the BOSTON
data set, followed by calculation of a GSVA score for the
gene signature.20,21 Survival was tested between groups
that had low expression versus high expression, using a
cutoff of zero, with a log-rank test and Cox regression
performed with the same procedures used for the discovery
cohort.

Statistical Analysis
All statistical analyses were performed using R. Regression
models, including Cox proportional hazard models and
ordinal regressions, were performed using the rms
package.22 All other statistical comparisons were per-
formed using a Wilcoxon-Mann-Whitney test unless oth-
erwise noted.

RESULTS

Patient Characteristics and Transcriptomic Profiling of

Selinexor-Treated MM Tumors: BOSTON

We performed RNA-seq on CD138+ bone marrow plasma
cells from 100 patients who participated in the BOSTON
study, and their clinical and demographic characteristics
are detailed in Table 1. The ORR in the XVd arm, defined as
PR or better, was 75.47%, compared with an ORR of
65.95% in the Vd arm. These observations suggest that the
addition of selinexor to a regimen of Vd in MM offers a
clinical benefit over Vd alone and are consistent with the
findings of previous studies, including the main BOSTON
trial.1

We leveraged RNA sequencing on CD138+-selected cells
from two external cohorts: patients with MM treated with
selinexor-dexamethasone who participated in the STORM
trial (n = 64) and patients with MM treated post-US Food
and Drug Administration approval at Mount Sinai Hospital
outside of any clinical trial setting (MSSM cohort, n = 35).2

Patients in the STORM cohort had failed at least five prior
lines of therapy and had an ORR of 28.1% (18 patients,
Table 1).2 Patients in the MSSM cohort had an ORR of
28.5% (10 patients) for selinexor-based therapy, which was
often administered in combination with a variety of other
agents (Table 1). In this cohort, the most common com-
bination drug strategy in addition to the selinexor backbone
was carfilzomib and dexamethasone, which were used in
seven (20%) patients. We did not find any significant
predictors of response to selinexor from clinical, demo-
graphic, or cytogenetic markers.

Differential Expression Analysis Identifies Genes

Associated With Selinexor Response

The strategy used for DE analysis is summarized in
Figure 1A. To identify genes whose expression is associated
with longer PFS or better depth of response to selinexor, we
performed a series of DE comparisons across nine unique
different PFS or depth of response (defined according to
International Myeloma Working Group [IMWG] criteria)
thresholds in both the XVd and Vd arms (Appendix Fig A1,
Appendix Table A1).23 Across all response thresholds,
there were a total of 107 unique significant DE genes
between better and worse responders in the XVd arm (27
upregulated and 70 downregulated, P Adj, 0.05) and 560
unique DE genes in the Vd arm (398 upregulated and 162
downregulated, P Adj , 0.05). To identify genes whose
association with PFS or IMWG response category was
selinexor-specific, we retained genes that were significant
in the XVd arm but not in the Vd arm for each corresponding
cutoff for further analysis. There was a moderate overlap
(up to 31%) across genes identified through the different
comparisons, with six of 24 (25.0%) uniquely down-
regulated genes and 12 of 33 (36.26%) uniquely upre-
gulated genes overlapping across at least two different
cutoffs.

A Three-Gene Signature Predicts Selinexor Response

Next, we identified a gene expression signature for seli-
nexor response. Each DE gene set identified through the
nine unique comparisons was split into upregulated and
downregulated subsets on the basis of logFC in the XVd
arm, resulting in 17 candidate gene signatures for further
analysis (nine upregulated and eight downregulated). We
performed GSVA on the normalized, batch-corrected ex-
pression matrix to calculate a unique score for each of the
17 candidate gene signatures and selected the best per-
forming model in the BOSTON cohort on the basis of a
ranking procedure (Fig 2A, see Methods).
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The best-performing signature comprised WNT10A, DUSP1,
and ETV7. It correlated with PFS (Spearman Rho = 0.46,
P = .0007) and was upregulated in XVd patients with
PFS≥ 120 days. The signature was predictive when using a
proportional hazard model (P Adj = 0.047, hazard ratio
[HR] = 0.36 [95% CI, 0.14 to 0.84]; log-rank P = .017,
Fig 2A). To further ensure that the predictive effect of the
signature was not due to random variations, we also performed
a permutation test and found that the signature was more
predictive than a GSVA score composed of three ran-
domly selected genes (10,000 permutations, P = .03). In
patients who achieved a response of PR or better, higher
signature expression was significantly associated with a
longer duration of response (DOR), defined as the
number of days from IMWG PR to progression (Appendix
Fig A2A). Finally, an ordinal regression found that higher
signature expression was significantly associated with

deeper IMWG response category (P = .0247, R2 = 0.095,
Spearman Rho = 0.317, Fig 3A), suggesting that the
signature is associated with both duration and depth of
response.

The same analysis was applied to the Vd arm as a negative
control under the rationale that a signature specific to
selinexor response would not accurately distinguish be-
tween long or short PFS in cohorts treated with
non–selinexor-based therapy. Signature expression did not
correlate with PFS or DOR in the Vd arm, as shown in
Figure 2B and Appendix Figure A2B.

The Three-Gene Signature Is Validated in

External Cohorts

STORM. A log-rank test comparing signature expression
higher or lower than the cutoff of zero in the STORM data
set also validated the finding from BOSTON that higher

TABLE 1. Cohort Clinical Characteristics

Characteristic

BOSTON: Discovery/Training Cohort
STORM: Validation

Cohort
Total (n = 64)

MSSM: “Real-World”
Validation Cohort
Total (n = 35)

XVd
Total (n = 53)

Vd (negative control)
Total (n = 47)

Median age, years 67 67 63 55

Sex, No. (%)

Female 21 (39.6) 25 (53.2) 32 (50.0) 15 (42.9)

Male 32 (60.4) 22 (46.8) 32 (50.0) 20 (57.1)

Stage at baseline, No. (%)

I 25 (47.2) 21 (44.7) 11 (17.2) Baseline stage not available for this cohort

II 17 (32.1) 20 (42.5) 41 (64.1)

III 11 (20.7) 6 (12.7) 12 (18.7)

Prior lines of therapy 1-3 1-3 4-16 (median = 7) 1-18 (median = 7)

ECOG PS, No. (%)

0 16 (30.2) 13 (27.7) 18 (28.1) Baseline ECOG PS not available for this cohort

1 29 (54.7) 28 (59.6) 38 (59.4)

2 8 (15.1) 6 (12.7) 7 (10.9)

Best response, No. (%)

PD 1 (1.9) 4 (8.5) 5 (7.8) 10 (28.5)

SD 6 (11.3) 9 (19.1) 30 (46.9) 13 (37.1)

MR 6 (11.3) 3 (6.4) 11 (17.2) 2 (5.7)

PR 16 (30.2) 17 (36.2) 12 (18.7) 4 (11.4)

VGPR 19 (35.8) 10 (21.3) 4 (6.2) 6 (17.1)

CR 2 (3.8) 3 (6.4) 0 (0.0) 0 (0.0)

sCR 3 (5.6) 1 (2.1) 2 (3.1) 0 (0.0)

ORR 40 (75.5) 30 (66.0) 18 (28.1) 10 (28.5)

Median PFS, days 177 210 62 66

Mean PFS, days 258 243 91 107

Abbreviations: CR, complete response; ECOGPS, Eastern Cooperative Oncology Group performance status; MR,minor response; ORR, overall
response rate; PD, progressive disease; PFS, progression-free survival; PR, partial response; sCR, stringent complete response; SD, stable
disease; Vd, bortezomib and dexamethasone; VGPR, very good partial response; XVd, selinexor, bortezomib, and dexamethasone.
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signature expression is associated with PFS (log-rank
P = .039; N = 64). We found that the linear association with

PFS and the signature performed nominally well, despite

not reaching statistical significance (P = .056, HR = 0.621
[95% CI, 0.483 to 0.389], Fig 2C). The poorer signature
performance in a Cox regression may be explained by lower
PFS as patients in the STORM cohort were triple-class
refractory with more advanced disease to begin with. Or-
dinal regression analysis validated the association between

signature expression and depth of response in the STORM
cohort (P = .0068, R2 = 0.114, Spearman Rho = 0.328,
Fig 3B).

MSSM. Using Cox regression, we found that higher ex-
pression of the three-gene signature was significantly as-
sociated with survival (P = .0145, HR = 0.41 [95% CI,
–0.467 to 0.551]). This result was also replicated via
log-rank testing (P = .0023, Fig 2D). Furthermore, we
found a statistically significant correlation between the

B

WNT10A

ETV7
DUSP1

-2.5 0.0 2.5 5.0

0

2

4

6

-Log(Adj P)

Lo
gF

C

BOSTON XVd: PFS ≥ 120 days

A
Discovery cohort Negative control Signature identification

BOSTON XVd

(n = 53)

DE

responders v
nonresponders

DE genes for XVd

BOSTON Vd

(n = 47)

DE

responders v
nonresponders

DE genes for Vd

Cox PH

Survival models

Signature

selection

WNT10A

DUSP1

ETV7

External validation

STORM

(n = 64)

MSSM

(n = 35)

MMRF

[negative control]

(n = 767)

DE genes
specific to selinexor responders

Across nine cutoffs for response on the basis of
PFS and depth of response
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signature expression and PFS via Spearman correlation

(Rho = 0.4, P = .01). Higher expression of the signature was
also significantly associated with a better IMWG response
category via ordinal regression (P = .0473, R2 = 0.113,
Spearman Rho = 0.341, Fig 3C).

MMRF-CoMMpass. We additionally used the MMRF-
CoMMpass data set (n = 767) as a negative control and
found that the signature was not predictive of PFS in patients
who were treated with non–selinexor-based, standard-of-care

therapies. The signature did not show a significant asso-
ciation with PFS via Cox regression (P = .14, HR = 0.89
[95% CI, 0.73 to 1.04]) or log-rank testing (P = .32, Fig 2E).
Taken together, these results suggest that the signature is
specific to selinexor treatment response and does not re-
flect overall prognosis.

KING study in recurrent glioblastoma. Finally, we sought to
test whether the signature would be predictive in cohorts of
patients with other cancer types treated with selinexor from
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MM. (A) Kaplan-Meier curve of
low versus high expression of the
three-gene Gene Set Variation
Analysis signature in the XVd
arm of the BOSTON cohort
shows a significant association
with longer PFS in patients with
upregulation of the signature.
(B) Using the Vd arm as a
negative control, the three-gene
signature is not associated with
PFS. (C) Three-gene signature
validates in the STORMcohort of
patients with triple-class refrac-
tory MM who received selinexor
as a single-agent treatment. (D)
The signature also validates in
35 patients who received seli-
nexor in a retrospective cohort at
MSSM that is not part of a
clinical trial and is a more het-
erogeneous patient population
reflective of real-world treatment
settings. (E) Signature does
not validate in non-selinexor,
standard-of-care–treatedMMRF-
CoMMpass samples. HR, haz-
ard ratio; PFS, progression-free
survival; PH, proportional haz-
ard; MM, multiple myeloma; Vd,
bortezomib anddexamethasone;
XVd, selinexor, bortezomib, and
dexamethasone.

6 © 2022 by American Society of Clinical Oncology

Restrepo et al



other cancer types. To test this hypothesis, we obtained
RNA-seq of tumor samples from 57 patients with recurrent
glioblastoma who were treated with selinexor monotherapy
as part of the phase II KING trial (ClinicalTrials.gov iden-
tifier: NCT01986348).11 Overall, we found that patients with
higher expression of the signature experienced improved
PFS, although statistical significance was not achieved (log-
rank P = .078, Cox proportional hazard P = .0734, HR =
0.549, Appendix Fig A3A). However, patients who achieved
a response of PR or better had significantly higher signature
expression (Wilcoxon P = .0034, Appendix Fig A3B).

Gene Set Enrichment Analysis Reveals

Response-Associated Activation in WNT, Apoptosis, and

MAPK Signaling Pathways

We next identified pathways associated with response
to Selinexor in the BOSTON XVd cohort using GSEA on
the MSigDB Hallmark gene sets.18 Notably, we found

downregulation of MYC targets, as well as upregulation of
KRAS, apoptotic, and interferon signaling among signifi-
cantly enriched pathways in XVd responders (Appendix
Fig A4).

DISCUSSION

Selinexor is approved as a second-line therapy for MM, and
its efficacy is well supported by clinical trials. However,
there are currently no known biomarkers to guide the se-
lection of patients whose tumors are more sensitive to
selinexor-based therapy. Furthermore, although the
mechanism of action is well characterized for selinexor,
little is known about the correlates of response or resistance
to selinexor-based therapy. Here, we describe the tran-
scriptomic characteristics of patients who responded to
selinexor therapy. Furthermore, we report the discovery of a
robustly validated three-gene signature that is predictive of
response to selinexor-based therapy in MM.
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There is little literature to date on patient populations de-
scribing correlates to response in the context of selinexor
therapy. Some studies have shown candidate biomarker
activity in microRNAs as regulators of XPO1 and its targets,
and certain mutations in XPO1 and XPO5 as prognostic
markers for survival, but they have not been correlated to
SINE drug sensitivity.7,24-27 Few studies have explored
biomarkers in selinexor therapy, and fewer have validated
their findings in external cohorts. One notable study found a
signature on the basis of imputed activity comprising four
master regulator proteins, IRF3, ARL2BP, ZBTB17, and
ATRX.2 The signature we report lacks overlap with this
signature because of differences in methodology. Specif-
ically, the prior study relied on protein activity inferred from
a network model originally trained in acute myeloid leu-
kemia and does not directly correlate with RNA
expression.2 Additional factors that may explain lower-than-
expected overlap among the DE genes determined at
different cutoffs include high interpatient heterogeneity,
relatively lower sample sizes, and lack of negative controls.
However, since our signature uses gene expression di-
rectly, it is more interpretable and easier to implement than
previously cited signatures.2

The signature we report here is composed of three
upregulated genes, ETV7, WNT10A, and DUSP1, that
precisely and accurately predicts both depth and DOR to
selinexor-based therapy in patients with MM. Further-
more, we present robust external validation and negative
controls. This is the first robustly validated signature for
selinexor response to date. Given the high rate of AEs in
selinexor-based therapy, the discovery of a predictive
gene signature holds tremendous potential for
biomarker-guided selection of candidates for selinexor-
based therapy that are more likely to respond. Since the
signature was validated in multiple heterogeneous pa-
tient cohorts, including selinexor-dexamethasone
monotherapy (STORM), and in various combination
drug scenarios outside of clinical trials (MSSM), it is both
flexible and applicable to a wide variety of real-world
scenarios where selinexor may be administered in
combination with other drugs. One limitation of the
signature is that because it relies on a GSVA score, its
accuracy is dependent on a cohort with multiple sam-
ples and prediction improves with greater sample sizes.
However, since it is composed of only three genes, it also
holds potential for fast and simple implementation in

clinical settings, potentially via quantitative polymerase
chain reaction–based assay development strategies or
in combination with ex-vivo drug sensitivity assays.

The three genes comprising this signature, however, are
not well characterized in the context of MM or the XPO1
mechanism of action. ETV7 is a transcription factor with
oncogenic properties that has been described in the
context of mammalian target of rapamycin signaling and as
an interferon-stimulated gene.28-31 DUSP1 negatively reg-
ulates mitogen-activated protein kinase signaling via the
dephosphorylation of extracellular-regulated kinase, which
can subsequently phosphorylate ETV7.28,32 WNT10A par-
ticipates in Wnt signaling, which is mediated by galectin-3,
a known XPO1 target.3 All these processes converge on
p38-mediated mammalian target of rapamycin signaling
and are ultimately regulated by XPO1 targets.3,30,32,33

Further mechanistic studies are necessary to understand
the biological role of these genes in the context of XPO1
inhibition.

Interferon signaling is responsible for the antiviral immune
response and has antiproliferative properties. It has been
shown to play an important role in apoptotic signaling in
MM, mostly through IRF4, MYC, and BCL6.34-36 Here, we
found a strong enrichment for upregulated interferon sig-
naling and genes involved in interferon signaling in patients
who responded to XVd therapy. We also found a corre-
sponding enrichment of dysregulated MYC and apoptotic
signaling. Interferon signaling has been found to modulate
response to XPO1 inhibition by eltanexor to treat viral
infection.37 Additionally, ETV7 has been identified as an
interferon-stimulated gene.31 On the basis of these results
and existing literature, we hypothesize that there may be a
rationale for further evaluating the role of interferon sig-
naling in MM selinexor response.

In conclusion, we report a novel gene expression signature
for response to selinexor-based therapy in patients with
MM. We have validated our findings in several external
transcriptomic data sets of patients with MM treated with
selinexor-based regimens. Ongoing in vitro and mecha-
nistic studies will help determine whether they are caus-
ative of response or simply a correlative readout of some
other selinexor response mechanism. This signature has
important clinical significance as it could identify patients
most likely to benefit from treatment with selinexor-based
therapy, especially in earlier lines of therapy.
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APPENDIX

TABLE A1. Differential Expression–Based Signature Definitions

Comparison Name Responder Definition

XVd Arm:
No. of

Responders

XVd Arm:
No. of

Nonresponders

Vd Arm:
No. of

Responders

Vd Arm:
No. of

Nonresponders

PFS90 PFS ≥ 90 days 43 10 34 13

PFS120 PFS ≥ 120 days 33 20 33 14

PFS200 PFS ≥ 200 days 23 30 25 22

PFS300 PFS ≥ 300 days 18 35 16 31

PR Best response ≥ PR 40 13 31 16

VGPR Best response ≥ VGPR 24 29 14 33

PR_PFS120 Best response ≥ PR and
PFS ≥ 120 days

31 22 29 18

VGPR_PFS120 Best response ≥ VGPR and
PFS ≥ 120 days

23 30 14 33

VGPR_PFS300 Best response ≥ VGPR and
PFS ≥ 300 days

17 36 10 37

Abbreviations: PFS, progression-free survival; PR, partial response; Vd, bortezomib and dexamethasone; VGPR, very good partial response;
XVd, selinexor, bortezomib, and dexamethasone.
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