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abstract

PURPOSEMolecular factors predicting relapse in early-stage non–small-cell lung cancer (ES-NSCLC) are poorly
understood, especially in inoperable patients receiving radiotherapy (RT). In this study, we compared the
genomic profiles of inoperable and operable ES-NSCLC.

MATERIALS AND METHODS This retrospective study included 53 patients with nonsquamous ES-NSCLC (stage I-II)
treated at a single institution (University of Chicago) with surgery (ie, operable; n = 30) or RT (ie, inoperable; n = 23)
who underwent tumor genomic profiling. A second cohort of ES-NSCLC treated with RT (Stanford, n = 39) was
included to power clinical analyses. Prognostic gene alterations were identified and correlated with clinical
variables. The primary clinical end point was the correlation of prognostic genes with the cumulative incidence of
relapse, disease-free survival, and overall survival (OS) in a pooled RT cohort from the two institutions (N = 62).

RESULTS Although the surgery cohort exhibited lower rates of relapse, the RT cohort was highly enriched for
somatic STK11 mutations (43% v 6.7%). Receiving supplemental oxygen (odds ratio [OR] = 5.5), 20+ pack-
years of tobacco smoking (OR = 6.1), and Black race (OR = 4.3) were associated with increased frequency of
STK11 mutations. In the pooled RT cohort (N = 62), STK11 mutation was strongly associated with inferior
oncologic outcomes: 2-year incidence of relapse was 62% versus 20% and 2-year OS was 52% versus 85%,
remaining independently prognostic on multivariable analyses (relapse: subdistribution hazard ratio = 4.0, P =
.0041; disease-free survival: hazard ratio, 6.8, P = .0002; OS: hazard ratio, 6.0, P = .022). STK11mutations were
predominantly associated with distant failure, rather than local.

CONCLUSION In this cohort of ES-NSCLC, STK11 inactivation was associated with poor oncologic outcomes after
RT and demonstrated a novel association with clinical hypoxia, which may underlie its correlation with medical
inoperability. Further validation in larger cohorts and investigation of effective adjuvant systemic therapies may
be warranted.

JCO Precis Oncol 7:e2200273. © 2023 by American Society of Clinical Oncology

INTRODUCTION

Lung cancer is the most common cause of cancer-
related death.1 Although most patients with non–small-
cell lung cancer (NSCLC) were diagnosed with ad-
vanced disease in past decades, the recent imple-
mentation of risk-stratified, low-dose screening
computed tomography on a population-wide level has
resulted in more patients being diagnosed with early-
stage disease amenable to curative local therapies.2,3

Medically fit patients are most commonly treated with
surgical tumor resection, whereas those deemed
medically inoperable generally undergo stereotactic
body radiotherapy (SBRT).4

Although both surgical resection and SBRT provide an
excellent likelihood for local tumor control, up to a
quarter of patients experience distant metastatic fail-
ure, which generally results in death.5-8 To date,

clinical and molecular factors that predict relapse are
poorly understood, and the role of additional therapies
remains uncertain.9 Adjuvant cytotoxic chemother-
apies with cisplatin-based regimens do not offer clear
benefit for stage I tumors (≤ 4 cm in size) and may
even lead to a worse overall survival (OS) for stage IA
disease.10 The addition of immunotherapy and tar-
geted therapies (for tumors with actionable mutations)
improves disease-free survival (DFS) in early-stage
resected NSCLC.11-14 Comprehensive genomic profil-
ing may help identify tumors susceptible to specific
systemic therapies; however, existing studies have
been primarily limited to surgically resected
tumors.15,16 Comparable studies in inoperable patients
receiving definitive SBRT are lacking.

In this study, we characterized the genomic landscape
of early-stage NSCLC (stage I and II) and present a
comparative, next-generation sequencing (NGS)
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analysis of patients receiving surgery and patients receiving
radiotherapy (RT). We identified gene variants associated
with relapse and correlated prognostic genes with various
clinical factors. Importantly, we propose that prognostic
genes with differential prevalence in the surgery and RT
groups may be correlated with underlying clinical features
associated with operability.

MATERIALS AND METHODS

Study Design and Patients

The results for this retrospective cohort study were reported
following the Reporting Recommendations for Tumor
Marker Prognostic Studies guidelines.17 Comparative an-
alyses of molecular profiles were performed in 53 patients
diagnosed with early-stage (stage I and II, node-negative)
nonsquamous NSCLC and treated at our institution (Uni-
versity of Chicago Medical Center, Chicago, IL) with either
surgery (n = 30) or hypofractionated/stereotactic body RT
(n = 23) who underwent NGS on primary tumor tissue
between 2015 and 2020. NGS was performed using
OncoPlus, a validated 1212-gene proprietary hybrid cap-
ture genomic sequencing assay (Data Supplement).18

Analyses were restricted to nonsquamous histologies be-
cause patients with squamous histologies did not routinely
undergo molecular profiling during the study period. De-
mographic and clinical data were recorded with review of
the electronic medical record. This study was reviewed and
approved by the institutional review board. Because of the
study’s retrospective nature, a waiver for informed consent
was provided.

To further power the association of prognostic gene variants
with clinical factors and oncologic outcomes, primary an-
alyses included a cohort of patients (n = 39) receiving RT
with curative intent for early-stage nonsquamous NSCLC at
Stanford Cancer Center (Stanford, CA).19 In the Stanford
cohort, mutation status was available for five genes (KRAS,
TP53, STK11, CDKN2A, and EGFR). For correlation of

gene variants with clinical factors, a total pooled cohort of all
patients was analyzed (N = 92). For correlation of gene
variants with clinical outcomes in the RT group, analyses
were limited to the pooled cohort of patients receiving RT at
University of Chicago and Stanford (N = 62). Using a pooled
cohort augmented external validity of our findings through
avoiding bias from subsets of the population specific to a
given medical center. Bidirectional institutional review board
approval was obtained to share data between institutions.

Genomic Analyses

Processing of sequencing reads and determination of tu-
mor mutational burden and programmed death-ligand 1
expression is described in the Data Supplement.18,20-22 To
screen potentially prognostic variants, pathogenic muta-
tions in each gene were correlated with time to relapse
(Data Supplement). To correct for multiple comparisons,
q-values were computed using the Benjamini-Hochberg
method with the goal of keeping the false discovery rate
(FDR) , 0.05. Of the genes with q-value , 0.05, only one
gene (STK11) met our threshold of . 10% pathogenic
mutation prevalence for correlation with clinical outcomes.
STK11 mutations analyzed in this study were predicted to
be pathogenic, inactivating mutations.

Clinical Outcomes and Statistical Analyses

Because there was a significant imbalance in the prevalence
of STK11 mutations in the RT and surgery groups, it was
hypothesized that somatic STK11mutations were correlated
with underlying clinical features associated with operability.
To investigate the association of various demographic and
clinical variables with the presence of STK11 mutations in
the sequenced tumors, univariable logistic regression was
performed in the total pooled cohort (N = 92) including sex,
age, race and ethnicity, Eastern Cooperative Oncology
Group (ECOG) performance status, body mass index, dia-
betes mellitus status, supplemental oxygen, pack-years of
tobacco smoking, forced expiratory volume in 1 second

CONTEXT

Key Objective
To examine the prognostic significance of genomic alterations in early-stage (stage I to II) non–small-cell lung cancer, in-

cluding a novel cohort of patients receiving definitive radiotherapy.
Knowledge Generated
STK11 mutations were more prevalent in patients receiving definitive radiotherapy, compared with those receiving surgery.

Increased frequencies of STK11mutations were observed in patients receiving supplemental oxygen, with 20+ pack-years
of tobacco smoking history, or of Black race. In a unique cohort of patients receiving definitive RT, STK11 inactivation was
associated with rapid distant (rather than local) recurrence and worse overall survival.

Relevance
Since STK11 inactivation may be associated with resistance to immune checkpoint blockade, investigation of effective

adjuvant systemic therapies may be warranted in this setting. Furthermore, the novel association with chronic hypoxia
suggests that hypoxia may apply a selective pressure that promotes inactivation of STK11, such that medically inoperable
patients are more prone to develop STK11-mutant tumors.
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(FEV1; % predicted), diffusing capacity of the lung for
carbon monoxide (DCLO; % predicted), and stage. Details
regarding rationale for covariate inclusion are described in
the Data Supplement.23-28 Multivariable logistic regression
was performed using backward selection (P , .10). The
FEV1%predicted (not assessed in 18 patients) and DLCO%
predicted (not assessed in 31 patients) were excluded from
multivariable analyses, and only univariable analyses were
reported because they were not assessed in all patients.

The primary clinical analyses included the association of
STK11 mutations with time to relapse, DFS, and OS in the
pooled inoperable cohort receiving RT (N = 62). Primary
clinical analyses were limited to the pooled RT cohort
because STK11mutations were only present in two patients
receiving surgery. All relapses were classified as local, lo-
bar, regional (hilar or mediastinal lymph nodes), or distant
(including contralateral lung and outside of the thorax).
Time to relapse was analyzed using the cumulative

TABLE 1. Patient Characteristics in University of Chicago Cohort by Treatment Type
Total Surgery RT

PN = 53 n = 30 n = 23

Sex 1.00

Female 37 (70%) 21 (70%) 16 (70%)

Male 16 (30%) 9 (30%) 7 (30%)

Age, years, mean (SD) 70 (10) 69 (12) 73 (8) .17

Race .10

Non-Black 28 (53%) 19 (63%) 9 (39%)

Black 25 (47%) 11 (37%) 14 (61%)

ECOG .036

0 18 (34%) 14 (47%) 4 (17%)

1 26 (49%) 14 (47%) 12 (52%)

2 8 (15%) 2 (7%) 6 (26%)

3 1 (2%) 0 (0%) 1 (4%)

FEV1, liters, mean (SD) 1.82 (0.57) 2.05 (0.54) 1.45 (0.40) , .001

Supplemental O2 , .001

No 45 (85%) 30 (100%) 15 (65%)

Yes 8 (15%) 0 (0%) 8 (35%)

Smoking status .093

Never smoking 5 (9%) 3 (10%) 2 (9%)

Current smoking 11 (21%) 3 (10%) 8 (35%)

Former smoking 37 (70%) 24 (80%) 13 (57%)

Tobacco pack-years, mean (SD) 26 (23) 20 (17) 35 (27) .013

20+ pack-years of tobacco smoking history .57

No 19 (36%) 12 (40%) 7 (30%)

Yes 34 (64%) 18 (60%) 16 (70%)

Stage .27

IA1 5 (9%) 3 (10%) 2 (9%)

IA2 18 (34%) 7 (23%) 11 (48%)

IA3 8 (15%) 7 (23%) 1 (4%)

IB 8 (15%) 4 (13%) 4 (17%)

IIA 2 (4%) 1 (3%) 1 (4%)

IIB 12 (23%) 8 (27%) 4 (17%)

Stage I v II .55

I 39 (74%) 21 (70%) 18 (78%)

II 14 (26%) 9 (30%) 5 (22%)

NOTE. P values are calculated on the basis of Fisher’s exact tests for categorical variables and two-sample t tests for continuous variables.
ECOG, Eastern Cooperative Oncology Group; FEV1, forced expiratory volume in 1 second, RT, radiotherapy.
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incidence function (with death as a competing risk) using
the Fine-Gray model for univariable and multivariable an-
alyses. DFS and OS were analyzed using the Kaplan-Meier
method and the log-rank P values were reported (P , .05
deemed statistically significant). To account for demo-
graphic and clinical covariates, multivariable Cox propor-
tional hazards models were computed. Detailed definition
of clinical end points and statistical analyses are described
in the Data Supplement.29,30

RESULTS

Patient Characteristics and Outcomes by Treatment Type

From September 21, 2015, to April 13, 2020, 53 patients
with nonsquamous early-stage non–small-cell lung cancer
were treated definitively with either hypofractionated/
stereotactic body RT (n = 23) or surgery (n = 30) and
underwent NGS of tumor tissue at University of Chicago
(median follow-up, 23.6 mo). Details regarding staging
workup and RT regimens are described in the Data
Supplement.31 All surgical patients underwent mediastinal
lymph node dissection. Overall, patients receiving RT
exhibited adverse clinical features associated with worse
OS, including worse performance status, lower FEV1, in-
creased utilization of supplemental oxygen, and greater
pack-years of tobacco smoking (Table 1).

Compared with patients who underwent surgery, patients
receiving RT exhibited increased relapse, primarily driven
by high rates of distant relapse as opposed to local failure
(Fig 1). At 2 years, the cumulative incidence of relapse was
16.6% (95% CI, 5.1% to 33.9%) for surgery and 39.1%
(95% CI, 19.9% to 58.0%) for RT, respectively (Fine-Gray
P = .070). The 2-year cumulative incidence of local failure
was 0% for surgery and 4.8% for RT, while the 2-year
distant failure was 8.6% and 26.1%, respectively. At
2 years, the OS was 93.1% (95% CI, 75.1% to 98.2%) for

surgery and 65.9% (95% CI, 41.1% to 82.2%) for RT (log-
rank P = .22). Despite favorable local control in the RT
group, the risk of distant relapse was significantly higher
than expected, compared with our institutional surgical
cohort and published outcomes for operable patients re-
ceiving SBRT.29 In this context, we investigated whether
there were biological differences in early-stage NSCLC
between operable patients receiving surgery and inoper-
able patients receiving RT that could explain the differ-
ences in disease relapse.

Genomic Landscape of Early-Stage NSCLC by

Treatment Type

The genomic landscape of early-stage NSCLC in the Uni-
versity of Chicago cohort (N = 53) is summarized in Figure 2.
Pathogenic variants were detected in 60 genes andweremost
commonly present in KRAS (62%), TP53 (42%), STK11
(23%), CDKN2A (19%), and EGFR (15%). To screen for
prognostic variants in the combined University of Chicago
cohort, the freedom from relapse was analyzed via the
Kaplan-Meier method for each of the 60 variants. Variants
were considered potentially prognostic if their log-rank
q-values were , 0.05 (ie, FDR , 0.05). These are listed
in theData Supplement. Of five potentially prognostic variants,
only STK11 variants were present with sufficient frequency
(n = 12, 23%) for further clinical analyses. STK11 also
remained prognostic when screening variants by cumulative
incidence of relapse with death as a competing risk
(q = 0.035). Notably, STK11 mutations were present in only
2 (6.7%) patients receiving surgery and 10 (43%) patients
receiving RT. STK11/KRAS comutations were present in
7 (13%), 1 (3.3%), and 6 (26%) patients in the overall,
surgery, and RT cohorts, respectively. Neither tumor muta-
tional burden nor programmeddeath-ligand1 TPS variedwith
STK11 status (Data Supplement). In summary, with com-
prehensive molecular profiling of early-stage NSCLC, STK11
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FIG 1. Clinical outcomes in the University of Chicago cohort in the medically inoperable group (patients receiving RT) and medically
operable group (patients receiving surgery): (A) freedom from relapse and (B) overall survival. RT, radiotherapy.
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variants were associated with relapse and were present in
approximately one quarter of patients, but almost exclusively
limited to medically inoperable patients.

Clinical Features Associated With STK11 Variants

The associations of various demographic and clinical factors
with STK11 variants were investigated in the combined
University of Chicago and Stanford cohorts. Univariable
associations are displayed in the Data Supplement, dem-
onstrating that treatment with RT, treatment at University of
Chicago, Black race, ECOG . 1, FEV1 % predicted, sup-
plemental oxygen, and 20+ pack-years of tobacco smoking
history were associated with increased frequency of STK11
mutations (Data Supplement). Multivariable logistic regres-
sion for presence of an STK11mutation was performed with
backward selection (P, .1), including sex, age, Black race,

ECOG . 1, diabetes mellitus status, body mass index,
supplemental oxygen receipt, 20+ pack-years of tobacco
smoking history, and stage. The final model is displayed in
Table 2. Supplemental oxygen (odds ratio [OR] 5.5,
P = .027), 20+ pack-years of tobacco smoking history
(OR 6.1, P = .03), and Black race (OR 4.3, P = .024) were all
associated with increased frequency of STK11 variants in the
corresponding tumors. Finally, these clinical markers of
hypoxia and demographic factors did not appear to be
correlated with each other (Data Supplement).

STK11 Mutation Associated With Relapse in Patients

Receiving RT

We analyzed the impact of STK11 mutations on oncologic
outcomes in the pooled cohort of patients receiving RT from
University of Chicago (n = 23) and Stanford (n = 39),
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FIG 2. Genomic landscape of early-stage NSCLC in the medically inoperable group (patients receiving RT) and medically operable group (patients
receiving surgery). (A) OncoPrint demonstrating top 15 recurrently altered genes in each group. All gene alterations are reported (including non-
pathogenic variants); however, frequencies to the left of the plot represent pathogenic alteration prevalence. (B) Frequencies of most common gene
alterations in each cohort, counting only pathogenic variants. ECOG, Eastern Cooperative Oncology Group; PD-L1, programmed death-ligand 1; TMB,
tumor mutation burden. (continued on following page)
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comprising 62 total patients (median follow-up, 18.9 mo).
Analysis was limited to the RT cohort because only two
patients in the surgery cohort exhibited STK11 mutations.
Overall, STK11 mutations were more common in the
University of Chicago cohort (43% v 8%, P = .002). Other
demographic and clinical variables for each cohort were
summarized in the Data Supplement.

In the pooled RT cohort, STK11 variants were strongly
associated with time to relapse, DFS, and OS (Fig 3). The
2-year cumulative incidence of relapse was 20.0% (95%
CI, 9.3% to 33.7%) for STK11 wild-type and 61.5% (95%
CI, 30.8% to 81.8%) for STK11-mutant tumors (Fine-Gray
P = .004). Likewise, the 2-year DFS was 71.2% (95% CI,
53.5% to 83.2%) for STK11 wild-type and 30.8% (95% CI,
9.5% to 55.4%) for STK11-mutant tumors (log-rank
P = .0003). The 2-year OS was 85.4% (95% CI, 67.7% to
93.8%) for STK11 wild-type and 52.2% (95% CI, 18.9% to
77.6%) for STK11-mutant (log-rank P = .006). Within the
individual institutional cohorts, STK11 variants remained
associated with relapse (Data Supplement). When ana-
lyzing each of the factors associated with STK11mutations
(ie, supplemental oxygen status, 20+ pack-years of tobacco

smoking history, and Black race) by mutation status,
STK11 mutations remained associated with significantly
worse time to relapse, although statistical comparisons
were not feasible because of small subgroup sample sizes
(Data Supplement).

Multivariable regression analyses were performed to eval-
uate the effect of STK11 variants while controlling for
multiple covariates, using a Fine-Gray model for time to
relapse and Cox models for DFS and OS. Finalized models
after backward selection (P , .1) are displayed in Table 3,
while the full models are shown in the Data Supplement.
STK11 variants exhibited a subdistribution hazard ratio
(SHR) of 4.0 (95% CI, 1.5 to 10.2; P = .0041) for time to
relapse. STK11 variants demonstrated a hazard ratio (HR)
of 6.8 (95% CI, 2.5 to 18.3; P = .0002) for DFS, and an HR
of 6.0 (95% CI, 1.3 to 27.8; P = .022) for OS. Thus, STK11
mutations remained strongly associated with increased
relapse and decreased survival on multivariable analyses.

Furthermore, STK11 mutations were predominantly asso-
ciated with a distant pattern of failure, rather than local
failure (Data Supplement). At 2 years, the cumulative
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incidence of distant metastasis was 12.1% for STK11 wild-
type and 40.4% STK11-mutant tumors (Fine-Gray
P = .030). By contrast, the 2-year cumulative incidence of

local failure was 5.3% for STK11 wild-type and 9.3% for
STK11-mutant (Fine-Gray P = .68). In the STK11-mutant
group, the single local failure presented with concomitant
regional nodal failure as well. There was no association
between RT dose and local failure in the pooled RT cohort
(Data Supplement). Taken together, in a pooled inoperable
cohort receiving definitive RT, STK11 mutations distin-
guished a biologically aggressive subset of early-stage
NSCLC that was associated with significantly worse OS,
DFS, and cumulative incidence of relapse, with the primary
mode of failure being distant recurrence.

DISCUSSION

In this study, the genomic landscapes of early-stage NSCLC
(stage I to II) treated with surgery and RT were compared.
Compared with the surgery cohort, patients undergoing RT
demonstrated unique enrichment for STK11 mutations
(43% v 6.7%) that defines a poor prognostic subgroup
associated with rapid distant progression. Somatic STK11
mutations are more prevalent in patients on supplemental

TABLE 2. Multivariable Logistic Regression After Backward Selection
(P , .1) for Presence of STK11 Variants in the Profiled Tumors

Presence of STK11 Variants

Variable
Hazard

Ratio (95% CI) P
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Yes 5.5 (1.2 to 24.7) .027

Tobacco pack-years . 20

No Reference

Yes 6.1 (1.2 to 31.6) .031
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No Reference

Yes 4.3 (1.2 to 15.5) .024
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FIG 3. Clinical outcomes in the pooled University of Chicago and Stanford medically inoperable cohort by STK11 mutation status: (A) freedom
from relapse, (B) disease-free survival, and (C) overall survival.
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oxygen, reporting 20+ pack-years of tobacco smoking
history, and identifying as Black race. The association of
STK11 mutations with clinical hypoxia raises the novel
hypothesis that the underlying clinical factors associated
with medical inoperability may promote the emergence of
STK11 mutations.

STK11 (also known as LKB1) encodes a serine/threonine-
protein kinase with potent and pleiotropic tumor suppressor
functions.25 STK11 is one of the most frequently mutated
genes in lung adenocarcinoma, and STK11/KRAS comuta-
tions in particular define a subset of advanced lung adeno-
carcinomas exhibiting resistance to immune checkpoint
blockade.32-34 Although these prior studies have characterized
STK11mutations in either advanced/locally advanced or early-
stage operable disease, this study uniquely characterizes its
frequency and significance in early-stage disease receivingRT.

In the response to cellular stress, STK11 plays a key role in
activating the cGAS/STING pathway, an essential mediator
of antitumor immunity. Therefore, mutational inactivation of

STK11 promotes an immune evasive phenotype.35,36 Re-
cent literature demonstrates the importance of immune
evasion in early NSCLC carcinogenesis and immune-
mediated pruning in the evolution of lung cancer metasta-
sis, which suggests that immune-related mechanisms may
explain the adverse outcome in STK11-mutant NSCLC.37,38

Although effective therapies can be difficult to develop for
loss-of-function mutations in tumor suppressor genes,
multiple drugs with preclinical efficacy have been identified
and may warrant further study in clinical trials.25 These in-
clude biguanides (eg, metformin), mTOR inhibitors (eg,
rapamycin), and combinatorial regimens targeting mTOR,
PI3K, andMEK.39-41 Finally, since STK11/KRAS comutations
promote resistance to immunotherapy, the durable clinical
benefit observed for sotorasib for KRAS p.G12C-mutant
tumors (including thosewith STK11 comutations) represents
a promising therapeutic approach.42

A key finding of our analysis is that STK11 mutations are
associated with the use of supplemental oxygen (OR 5.5),
20+ pack-years of tobacco smoking history (OR 6.1), and
Black race (OR 4.3). The strong association with clinical
markers of hypoxia may point to distinct biological mecha-
nisms underlying NSCLC in these cohorts. Recent studies
highlight the role of hypoxia in promoting an immunosup-
pressive microenvironment through the induction of M2
macrophage polarization-related genes and the recruitment
of myeloid-derived suppressor cells.43 Concomitantly, there
is increasing appreciation of the role of STK11 in the cellular
response to hypoxia. Preclinical data have shown that STK11
inactivation promotes metabolic reprogramming via HIF-1a,
which is the key transcriptional regulator of the cellular re-
sponse to hypoxia.44 Furthermore, the severity of underlying
lung disease is correlated with the expression of HIF-1a in
the non-neoplastic lung tissue of patients with lung cancer.
Taken together, these data suggest that chronic hypoxiamay
apply a selective pressure that promotes inactivation of
STK11, such that medically inoperable patients are more
prone to develop STK11-mutant tumors.

The causes of racial disparities in lung cancer outcomes are
certainly multifactorial, heavily influenced by inequities in
access to screening, receipt of guideline-concordant
treatment, and structural racism.45-48 It is possible, how-
ever, that an elevated frequency of STK11-mutant tumors
in Black patients contributes to these disparate lung cancer
outcomes. We observed a significant association between
Black race and somatic STK11 mutations. This result is
consistent with published whole-exome data demonstrat-
ing that STK11mutations are more frequent in tumors from
African Americans (25% for adenocarcinoma and 8% for
squamous cell carcinoma) relative to tumors from Euro-
pean Americans (13% and 1%, respectively).27 This as-
sociation appears to be functionally relevant, since
relapse rates in Black versus non-Black patients are not
significantly different after accounting for STK11 status
(Data Supplement).

TABLE 3. Multivariable Fine-Gray Model After Backward Selection
(P , .1) for Time to Relapse (Death Modeled as Competing Risk) and
Cox Proportional HazardsModels After Backward Selection (P, .1) for
DFS and OS

Time to Relapse

Variable Subdistribution Hazard Ratio (95% CI) P

STK11 status

Wild-type Reference

Mutation 4.0 (1.5 to 10.2) .0041

DFS

Variable Hazard Ratio (95% CI) P

STK11 status

Wild-type Reference

Mutation 6.8 (2.5 to 18.3) .0002

Black race

No Reference

Yes 0.40 (0.14 to 1.1) .084

OS

Variable Hazard Ratio (95% CI) P

STK11 status

Wild-type Reference

Mutation 6.0 (1.3 to 27.8) .022

Institution

University of Chicago Reference

Stanford 0.21 (0.05 to 0.92) .039

Black race

No Reference

Yes 0.19 (0.04 to 1.0) .050

Abbreviations: DFS, disease-free survival; OS, overall survival.
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The identification of a poor prognostic subgroup in early-
stage inoperable NSCLC defined by STK11 mutations
highlights a subset of patients who may benefit from addi-
tional systemic therapies. Despite decades of investigation
into predictive biomarkers of recurrence in early-stage,
operable NSCLC, including promising epigenetic markers,
patient selection for adjuvant chemotherapy remains largely
determined on the basis of tumor size.49,50 Immunotherapy is
poised to become standard of care for resectable lung
cancer, with adjuvant atezolizumab (IMpower010),
neoadjuvant nivolumab (CheckMate 816), and adjuvant
pembrolizumab (PEARLS/KEYNOTE-091) improving DFS/
event-free survival.11-13 Adjuvant osimertinib improved DFS
for resected EGFR-mutant NSCLC in ADAURA.14 For pa-
tients receiving SBRT, ongoing trials, such as PACIFIC-4
(ClinicalTrials.gov identifier: NCT03833154), are investi-
gating the benefit of adjuvant immune checkpoint blockade
(eg, durvalumab). The identification of STK11mutations as a
poor prognostic factor is especially important in this context,
considering the association with immunotherapy resistance
in the metastatic setting.34 Further studies are warranted to
determine the level of benefit for patients with STK11 mu-
tations in the early-stage setting.

The unique enrichment of STK11mutations in the RT cohort
and the association of STK11 mutations with features that
correlate with medical inoperability (eg, supplemental oxy-
gen, pack-years of tobacco smoking history, and FEV1 %
predicted) may contribute to the variation in distant failure
rates and oncologic outcomes observed after SBRT. Trials of
medically inoperable patients, including Radiation Therapy
Oncology Group (RTOG) 0236, RTOG 0813, and RTOG
0915, exhibit distant metastasis rates of approximately 20%-
40%, despite all trials requiring staging positron emission
tomography.6,51,52 By contrast, distant metastases occurred
in 3%-12% in trials of medically operable patients (ie, RTOG
0618, pooled analysis of STARS and ROSEL, and revised
STARS).29,53,54 Comparisons across trials are difficult, es-
pecially with possible differences in invasive nodal staging,
but differential underlying frequencies of STK11 mutations
may have partially contributed to these outcomes.

STK11 mutations were primarily associated with a distant
pattern of failure, as opposed to local, and probably do not
predict a decrease in the therapeutic efficacy of RT.

However, it is worth acknowledging that diagnosing local
failure after lung SBRT can be challenging radiographically,
because of post-treatment changes and resultant
fibrosis.55,56 In a retrospective analysis of stage III patients,
STK11 mutations were associated with increased locore-
gional recurrence, with in vitro experiments suggesting that
STK11-mediated radioresistance was KEAP1/NRF2-
dependent.57 KEAP1/NFE2L2 mutations have previously
been associated with high rates of local recurrence after
RT but not surgery.19 Unfortunately, KEAP1 mutations
were not profiled by our OncoPlus panel in the University
of Chicago cohort. Murine models further support that
STK11/LKB1-deficient tumors demonstrate more frequent
metastases.58 We hypothesize that STK11 mutations por-
tend early metastatic dissemination and distant relapse.

Limitations of this study include its retrospective design and
the small fraction of early-stage patients who undergo tu-
mor molecular profiling, even at high-volume cancer
centers. To address this, a pooled RT cohort was analyzed
across two institutions, University of Chicago and Stanford.
Although STK11 mutations were highly prognostic even in
multivariable analyses and efforts were made to include
various clinical covariates that influence the risk of relapse,
unmeasured confounding variables, including those re-
lated to possible differences in patient selection between
institutions, may have contributed to the poor oncologic
outcomes observed in patients with STK11 mutations. Fi-
nally, because of limited sample size, it was not possible to
analyze the prognostic significance of STK11 mutations in
the surgical cohort (n = 2) and the significance of STK11/
KRAS comutations in the pooled RT cohort (n = 7).
Nonetheless, STK11/KRAS comutations were numerically
associated with increased risk of relapse in the pooled RT
cohort (57.1% v 25.6% at 2 years).

In conclusion, in the growing setting of early-stage, med-
ically inoperable NSCLC receiving RT, to our knowledge, we
present the first evidence for a prognostic and potentially
targetable biomarker in the form of STK11 inactivation.
Although prospective, multicenter validation is warranted, if
the importance of STK11 inactivation in predicting poor
outcomes in patients with early-stage NSCLC is confirmed,
clinical trials of evolving adjuvant therapies targeting rele-
vant pathways would be of significant interest.
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FIG A1. (A) Freedom from relapse in patients receiving supplemental oxygen or not, stratified by STK11 mutation status. (B) Freedom from
relapse in patients with 20+ pack-years smoking history or not, stratified by STK11 mutation status. (C) Freedom from relapse in patients of
Black race or not, stratified by STK11 mutation status. O2(–): not receiving supplemental oxygen. O2(+): receiving supplemental oxygen. ≥ 20
PY(+): 20+ pack-years smoking history. ≥ 20 PY(–): less than 20 pack-years smoking history. STK11(–): STK11 wild-type. STK11(+): STK11-
mutant.
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FIG A2. Patterns of progression in the pooled University of Chicago and Stanford medically inoperable cohort by STK11 mutation status: (A)
freedom from local failure and (B) freedom from distant metastasis.

TABLE A1. Genes Associated With Freedom From Relapse Using
Kaplan-Meier Method (FDR , 0.05)
Gene Symbol q-Value Variant Frequency (%)

STK11 0.0497 22.6

CTNNB1 0.006 3.8

PBRM1 0.009 3.8

GRIN2A , 0.001 1.9

RUNX1 0.004 1.9

FDR, false discovery rate.
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TABLE A2. Univariable Associations Between Various Demographic and Clinical Factors and the Presence of STK11 Variants in the Profiled
Tumors

Total STK11 Wild-Type STK11-Mutant

PN = 92 n = 77 n = 15

Treatment modality .13

Surgery 30 (33%) 28 (36%) 2 (13%)

RT 62 (67%) 49 (64%) 13 (87%)

Institution .085

University of Chicago 53 (58%) 41 (53%) 12 (80%)

Stanford 39 (42%) 36 (47%) 3 (20%)

Sex .57

Female 52 (57%) 42 (55%) 10 (67%)

Male 40 (43%) 35 (45%) 5 (33%)

Age, years, mean (SD) 73 (10) 73 (10) 73 (9) .88

Race .028

Non-Black 66 (72%) 59 (77%) 7 (47%)

Black 26 (28%) 18 (23%) 8 (53%)

ECOG . 1 .099

No 71 (77%) 62 (81%) 9 (60%)

Yes 21 (23%) 15 (19%) 6 (40%)

Diabetes mellitus .19

No 68 (74%) 59 (77%) 9 (60%)

Yes 24 (26%) 18 (23%) 6 (40%)

BMI, mean (SD) 27 (6) 27 (6) 27 (6) .87

FEV1, % predicted, mean
(SD)a

84 (26) 86 (26) 72 (23) .074

DLCO, % predicted, mean
(SD)b

78 (27) 78 (27) 74 (28) .64

Supplemental O2 .015

No 81 (88%) 71 (92%) 10 (67%)

Yes 11 (12%) 6 (8%) 5 (33%)

Smoking status .098

Never smoking 17 (18%) 17 (22%) 0 (0%)

Current smoking 13 (14%) 10 (13%) 3 (20%)

Former smoking 62 (67%) 50 (65%) 12 (80%)

20+ pack-years of tobacco
smoking history

.021

No 38 (41%) 36 (47%) 2 (13%)

Yes 54 (59%) 41 (53%) 13 (87%)

Stage I v II 1.00

I 73 (79%) 61 (79%) 12 (80%)

II 19 (21%) 16 (21%) 3 (20%)

NOTE. P values represent univariable logistic regression.
BMI, body mass index; DLCO, diffusing capacity of the lung for carbon monoxide; ECOG, Eastern Cooperative Oncology Group; FEV1, forced

expiratory volume in 1 second; RT, radiotherapy.
aFEV1 % predicted was not assessed for 18 patients.
bDLCO % predicted was not assessed for 31 patients.
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TABLE A3. Patient Characteristics for Pooled University of Chicago and Stanford
Cohort of Early-Stage NSCLC Receiving Definitive RT

Total UCMC Stanford

PN = 62 n = 23 n = 39

STK11 mutation status .002

STK11 wild-type 49 (79%) 13 (57%) 36 (92%)

STK11-mutant 13 (21%) 10 (43%) 3 (8%)

Sex .034

Female 31 (50%) 16 (70%) 15 (38%)

Male 31 (50%) 7 (30%) 24 (62%)

Age, years, mean (SD) 75 (9) 73 (8) 77 (9) .067

Race , .001

Non-Black 47 (76%) 9 (39%) 38 (97%)

Black 15 (24%) 14 (61%) 1 (3%)

ECOG 1.00

0 12 (19%) 4 (17%) 8 (21%)

1 31 (50%) 12 (52%) 19 (49%)

2 16 (26%) 6 (26%) 10 (26%)

3 2 (3%) 1 (4%) 1 (3%)

4 1 (2%) 0 (0%) 1 (3%)

FEV1, liters, mean (SD) 1.50 (0.43) 1.45 (0.40) 1.58 (0.49) .41

Supplemental O2 .013

No 51 (82%) 15 (65%) 36 (92%)

Yes 11 (18%) 8 (35%) 3 (8%)

Smoking status .004

Never smoking 14 (23%) 2 (9%) 12 (31%)

Current smoking 10 (16%) 8 (35%) 2 (5%)

Former smoking 38 (61%) 13 (57%) 25 (64%)

Tobacco pack-years,
mean (SD)

32 (33) 35 (27) 31 (36) .59

20+ pack-years of tobacco
smoking history

.19

No 26 (42%) 7 (30%) 19 (49%)

Yes 36 (58%) 16 (70%) 20 (51%)

Stage .072

IA1 4 (6%) 2 (9%) 2 (5%)

IA2 27 (44%) 11 (48%) 16 (41%)

IA3 12 (19%) 1 (4%) 11 (28%)

IB 9 (15%) 4 (17%) 5 (13%)

IIA 5 (8%) 1 (4%) 4 (10%)

IIB 5 (8%) 4 (17%) 1 (3%)

Stage I v II .48

I 52 (84%) 18 (78%) 34 (87%)

II 10 (16%) 5 (22%) 5 (13%)

NOTE. P values are calculated on the basis of Fisher’s exact tests for categorical
variables and two-sample t tests for continuous variables.
ECOG, Eastern Cooperative Oncology Group; FEV1, forced expiratory volume in 1

second.
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TABLE A4. Full Multivariable Fine-Gray Model for Time to Relapse
(Death Modeled as Competing Risk) and Full Multivariable Cox
Proportional Hazards Models for DFS and OS

Time To Relapse

Variable
Subdistribution Hazard Ratio

(95% CI) P

STK11 status

Wild-type Reference

Mutation 5.0 (1.7 to 14.9) .004

Institution

University of Chicago Reference

Stanford 0.87 (0.23 to 3.3) .84

Age (years) 1.00 (0.94 to 1.07) .97

Stage

I Reference

II 0.71 (0.13 to 3.9) .69

Sex

Male Reference

Female 0.88 (0.30 to 2.6) .82

ECOG . 1

No Reference

Yes 1.8 (0.70 to 4.5) .21

Black race

No Reference

Yes 0.43 (0.08 to 2.3) .32

Supplemental O2

No Reference

Yes 1.0 (0.29 to 3.6) .98

Tobacco pack-years . 20

No Reference

Yes 0.86 (0.33 to 2.3) .76

DFS

Variable
Hazard

Ratio (95% CI) P

STK11 status

Wild-type Reference

Mutation 6.1 (2.1 to 17.9) .0010

Institution

University of Chicago Reference

Stanford 0.24 (0.07 to 0.84) .025

Age (years) 0.95 (0.89 to 1.01) .13

Stage

I Reference

II 0.45 (0.10 to 2.1) .31

Sex

Male Reference

Female 0.76 (0.30 to 1.9) .56

(Continued in next column)

TABLE A4. Full Multivariable Fine-Gray Model for Time to Relapse
(Death Modeled as Competing Risk) and Full Multivariable Cox
Proportional Hazards Models for DFS and OS (Continued)

DFS

Variable
Hazard

Ratio (95% CI) P

ECOG . 1

No Reference

Yes 2.6 (0.92 to 7.1) .071

Black race

No Reference

Yes 0.12 (0.03 to 0.54) .0058

Supplemental O2

No Reference

Yes 0.31 (0.10 to 1.0) .054

Tobacco pack-years . 20

No Reference

Yes 0.98 (0.38 to 2.5) .96

OS

Variable
Hazard

Ratio (95% CI) P

STK11 status

Wild-type Reference

Mutation 4.2 (0.79 to 22.7) .093

Institution

University of Chicago Reference

Stanford 0.22 (0.04 to 1.3) .097

Age (years) 0.97 (0.87 to 1.1) .63

Stage

I Reference

II 1.7 (0.29 to 10.2) .56

Sex

Male Reference

Female 1.1 (0.25 to 4.6) .92

ECOG . 1

No Reference

Yes 2.6 (0.52 to 13.4) .24

Black race

No Reference

Yes 0.13 (0.01 to 1.4) .095

Supplemental O2

No Reference

Yes 0.77 (0.17 to 3.4) .73

Tobacco pack-years . 20

No Reference

Yes 2.2 (0.38 to 13.2) .38

Abbreviations: DFS, disease-free survival; OS, overall survival.
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