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Abstract

The aim of this study was to establish the role of thymic stromal lymphopoietin (TSLP) in 

the intra-amniotic host response of women with spontaneous preterm labor (sPTL) and birth. 

Amniotic fluid and chorioamniotic membranes (CAM) were collected from women with sPTL 

who delivered at term (n=30) or preterm without intra-amniotic inflammation (n=34), with 

sterile intra-amniotic inflammation (SIAI, n=27), or with intra-amniotic infection (IAI, n=17). 

Amnion epithelial cells (AEC), Ureaplasma parvum, and Sneathia spp. were also utilized. The 

expression of TSLP, TSLPR, and IL-7Rα was evaluated in amniotic fluid or CAM by RT-qPCR 

and/or immunoassays. AEC co-cultured with Ureaplasma parvum or Sneathia spp. were evaluated 

for TSLP expression by immunofluorescence and/or RT-qPCR. Our data show that TSLP was 

elevated in amniotic fluid of women with SIAI or IAI and expressed by the CAM. TSLPR and 

IL-7Rα had detectable gene and protein expression in the CAM; yet, CRLF2 was specifically 

elevated with IAI. While TSLP localized to all layers of the CAM and increased with SIAI or IAI, 

TSLPR and IL-7Rα were minimal and became most apparent with IAI. Co-culture experiments 

indicated that Ureaplasma parvum and Sneathia spp. differentially upregulated TSLP expression in 

AEC. Together, these findings indicate that TSLP is a central component of the intra-amniotic host 

response during sPTL.
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1. INTRODUCTION

Preterm birth, defined as delivery before 37 weeks of gestation, is the leading cause of 

perinatal morbidity and mortality worldwide [1, 2]. The global burden of preterm birth is 

increasing, with its rates rising in most countries including the United States [1, 2]. In 2021, 

the preterm birth rate in the United States rose to 10.48%, the highest since 2007 [3], with 

an associated annual healthcare cost of $26.2 billion dollars [4]. Nearly two-thirds of all 

preterm births are preceded by spontaneous preterm labor [5, 6], a syndrome of multiple 

pathological processes [6]. Among the putative causes, intra-amniotic inflammation is the 

most well-established link to preterm birth [5–8]. Such intra-amniotic inflammation can 

occur in two distinct contexts: the first occurs as the result of microbial invasion of the 

amniotic cavity, referred to as intra-amniotic infection (IAI), while the second occurs in the 

absence of microbes and is linked to elevated concentrations of endogenous danger signals 

or alarmins, a condition known as sterile intra-amniotic inflammation (SIAI) [5–12]. The 

most frequently identified bacteria in amniotic fluid of women with IAI are Ureaplasma 
spp., with Ureaplasma parvum being the most commonly identified species [10, 13–17]. 

Importantly, recent evidence suggests that a subset of women experiences intra-amniotic 
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invasion by bacteria that are conventionally difficult to cultivate and detect, such as Sneathia 
spp. [9, 15, 18]. Indeed, reports have indicated that Sneathia are one of the most frequently 

detected bacterial taxa in the amniotic cavity of women with spontaneous preterm birth [9, 

17, 19–24]. While the evidence supports Sneathia as a notable emerging pathogen associated 

with obstetrical disease [9, 11, 15, 17–20, 23–27], mechanistic studies exploring the host 

response triggered by these bacteria are lacking.

The host intra-amniotic inflammatory response triggered by bacteria involves the infiltration 

of leukocytes into the amniotic cavity [28–39] together with the enhanced release of 

inflammatory and anti-microbial mediators [40–52]. Thymic stromal lymphopoietin (TSLP) 

is a known pro-inflammatory cytokine that is rapidly released and perpetuates inflammation 

[53–57]. TSLP activates JAK1 and JAK2 via its heterodimeric receptor, leading to the 

activation of STAT5A and STAT5B and subsequently the downstream production of multiple 

cytokines [58, 59]. Indeed, TSLP has been found to be a critical mediator of the immune 

response in disease states such as asthma, atopic dermatitis, and cancer [60–62]. Moreover, 

recent studies have shown that TSLP also participates in functions unrelated to inflammation 

such as cell maturation, proliferation, survival, and recruitment [60, 63–65], thereby placing 

TSLP as an important cytokine of interest in the pathological host response. To date, TSLP 

has largely been investigated outside of reproductive health, although recent studies have 

begun investigating TSLP in the context of pregnancy maintenance [66–69], endometriosis 

[70, 71], and cervical cancer [72, 73]. However, the role of TSLP in the intra-amniotic host 

response is unknown.

In this study, we aimed to establish a role for TSLP in the intra-amniotic host response 

observed in women with spontaneous preterm labor and birth. First, we investigated whether 

TSLP concentrations are increased in amniotic fluid of women with spontaneous preterm 

labor and SIAI or IAI who delivered preterm. Next, we determined whether the expression 

of TSLP and its receptors, TSLPR and IL-7Rα, was upregulated in the chorioamniotic 

membranes of women with spontaneous preterm labor and SIAI or IAI, in addition to 

exploring their localization. Moreover, we explored whether TSLP was expressed by the 

amniotic fluid neutrophils of women with IAI. Lastly, we sought to elucidate whether the 

expression of TSLP was upregulated in amnion epithelial cells by in vitro inoculation of 

Ureaplasma parvum and Sneathia species.

2. METHODS

2.1 Human subjects and clinical specimens

This study included the amniotic fluid samples collected from the following patients: 

(1) women with spontaneous preterm labor with intact membranes who delivered at 

term without intra-amniotic inflammation (see Clinical definitions below) (n = 30); (2) 

women with spontaneous preterm labor who delivered preterm without intra-amniotic 

inflammation (No SIAI/IAI) (n = 34); (3) women with spontaneous preterm labor who 

delivered preterm with sterile intra-amniotic inflammation (SIAI) (n = 27); and (4) women 

with spontaneous preterm labor who delivered preterm with intra-amniotic infection (IAI) 

(n = 17). Chorioamniotic membrane (CAM) samples from women in each of the study 

groups were also studied using qRT-PCR for mRNA expression and immunohistochemistry 
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staining or western blot analysis for protein expression. Human amniotic fluid and CAM 

samples were retrieved from the Biorepository of the Perinatology Research Branch, an 

intramural program of the Eunice Kennedy Shriver National Institute of Child Health and 

Human Development, National Institutes of Health, U.S. Department of Health and Human 

Services, Wayne State University (Detroit, MI), and the Detroit Medical Center (Detroit, 

MI). The collection and use of human materials for research purposes were approved 

by the Institutional Review Board of Wayne State University. All participating women 

provided written informed consent prior to sample collection. The clinical and demographic 

characteristics of the study population are shown in Supplementary Table 1.

2.2 Amniotic fluid sample collection

Amniotic fluid was retrieved by transabdominal amniocentesis under antiseptic conditions 

using a 22-gauge needle monitored by ultrasound. All amniotic fluid samples were obtained 

from women undergoing spontaneous preterm labor to detect intra-amniotic inflammation/

infection. Amniotic fluid samples were transported to the clinical laboratory in a capped 

sterile syringe. Samples were centrifuged at 1 300 x g for 10 minutes (min) at 4°C, and the 

supernatant was stored at −80°C until use. Additionally, an aliquot of amniotic fluid was 

transported to the clinical laboratory for culture of aerobic/anaerobic bacteria and genital 

mycoplasmas. The clinical and research tests also included the determination of amniotic 

fluid white blood cell (WBC) count and measurement of glucose and interleukin (IL)-6 

concentrations.

2.3 Research determination of interleukin-6 concentrations in amniotic fluid

IL-6 concentrations in amniotic fluid samples were measured with a sensitive and 

specific enzyme immunoassay from R&D Systems (Minneapolis, MN, USA), as previously 

established [45]. The IL-6 concentrations were determined by interpolation from the 

standard curves. The inter- and intra-assay coefficients of variation for IL-6 were 8.7% 

and 4.6%, respectively. The detection limit of the assay was 0.09 pg/mL. A cut-off of 2.6 

ng/mL was used to determine intra-amniotic inflammation, as previously established [45].

2.4 Clinical definitions and placental histopathological examination

Gestational age was determined by the last menstrual period and confirmed by ultrasound 

examination, or by ultrasound examination alone when the sonographic determination of 

gestational age was inconsistent with menstrual dating. Spontaneous preterm labor was 

defined as the presence of regular uterine contractions with a frequency of at least two every 

10 min and cervical changes between 20 and 36 (6/7) weeks of gestation.

The intra-amniotic inflammatory status of patients was determined by combining the 

presence or absence of microbes, as determined by microbiological culture and/or molecular 

test [polymerase chain reaction with electrospray ionization mass spectrometry (PCR/ESI-

MS) (Ibis® Technology Athogen, Carlsbad, CA, USA)], together with the evaluation of 

amniotic fluid IL-6 concentrations [9–12]. A positive microbial signal (either by culture 

or molecular tests) together with an elevated IL-6 concentration was considered as IAI 

[9–12], whereas a negative microbial signal (indicated by both culture and molecular 

tests) together with an elevated IL-6 concentration was considered as SIAI [9–12]. A 
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negative microbial signal (indicated by both culture and molecular tests), together with a 

low IL-6 concentration, was considered as confirming the absence of both intra-amniotic 

inflammation and microbial infection (No SIAI/IAI).

Histopathological examination of the placenta was performed by perinatal pathologists 

blinded to clinical diagnoses and obstetrical outcomes according to standardized 

Perinatology Research Branch protocols. Acute inflammatory lesions of the placenta 

(maternal inflammatory response and fetal inflammatory response) were diagnosed 

according to established criteria, including staging and grading [74, 75].

2.5 Determination of TSLP concentrations in amniotic fluid

Amniotic fluid samples were assessed for TSLP concentrations. A U-PLEX immunoassay 

(Meso Scale Discovery, Rockville, MD, USA) was utilized to measure the TSLP 

concentration in the amniotic fluid samples, according to the manufacturer’s instructions. 

Plates were read using the MESO QuickPlex SQ 120 (Meso Scale Discovery) and analyte 

concentrations were calculated with the Discovery Workbench 4.0 (Meso Scale Discovery). 

The sensitivity of the TSLP assay was 0.20 pg/mL.

2.6 Immunoblotting analysis

Tissue lysates of CAM (n = 3 per group) were prepared by mechanically homogenizing 

snap-frozen tissues in 1X PBS containing a complete protease inhibitor cocktail (Cat# 

11836170001; Roche Applied Sciences, Mannheim, Germany). Lysates were centrifuged 

at 15 700 x g for 5 min at 4°C and the supernatants were stored at −80°C until use. 

Total protein concentrations of tissue lysates were determined using the Pierce BCA Protein 

Assay Kit (Cat# 23225; Pierce Biotechnology, Thermo Fisher Scientific, Inc., Rockford, IL, 

USA) prior to immunoblotting.

Tissue lysates (50 μg) of CAM were subjected to electrophoresis in 4%–12% sodium 

dodecyl sulphate-polyacrylamide gels (Cat# NP0336BOX; Invitrogen by Thermo Fisher 

Scientific). Separated proteins were then transferred onto nitrocellulose membranes (Cat# 

1620145; Bio-Rad, Hercules, CA, USA). Next, the nitrocellulose membranes were blocked 

with 5% non-fat dry milk (Cat# 1706404; Blotting-Grade Blocker, Bio-rad) with 1 X 

Tris-buffered saline containing 0.05% Tween 20 (TBST) for 30 min at room temperature 

and then probed overnight at 4°C with the following antibodies: anti-human TSLP 

(Cat# NB110-55234; Novus Biologicals, Littleton, CO, USA), anti-human TSLPR (Cat# 

PA5-20378; Invitrogen), or anti-human IL-7Rα (Cat# PA5-119230; Invitrogen). Finally, the 

nitrocellulose membranes were washed with TBST, blocked, and re-probed for 1 h at room 

temperature with a mouse anti-β-actin (ACTB) monoclonal antibody (Cat# A5441; Sigma-

Aldrich). After incubation with each primary antibody, the membranes were incubated 

with HRP-conjugated anti-mouse IgG (Cat# 7076S; Cell Signaling, Danvers, MA, USA) or 

HRP-conjugated anti-rabbit IgG (Cat# 7074S; Cell Signaling) for 1 h at room temperature. 

Chemiluminescence signals were detected with the ChemiGlow West Chemiluminescence 

Substrate Kit (Cat# 60-12596-00; ProteinSimple, San Jose, CA, USA) and images were 

acquired using the ChemiDoc Imaging System (Bio-Rad). The specificity of the TSLP 

signal was confirmed with a blocking peptide against the TSLP antibody. Quantification was 
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performed with ImageJ software [76]. Each individual protein band on the blot image was 

automatically quantified by the software. The target protein expression in each individual 

sample of the fetal membranes was normalized using the internal control, β-actin, in the 

same sample to obtain relative quantification.

2.7 Immunohistochemistry

Formalin-fixed paraffin-embedded CAM (n = 5 per group) tissues were cut in 5-μm-thick 

sections. Slides were deparaffinized in xylene and hydrated with decreasing concentrations 

of ethanol. Immunohistochemistry staining for TSLP, TSLPR, and IL-7Rα was performed 

using the Leica Bond Max automatic staining system (Leica Microsystems; Wetzlar, 

Germany). The Bond™ Polymer Refine Detection Kit (Leica Microsystems) was used 

to detect the chromogenic reaction of horseradish peroxidase upon oxidation of 3’3-

Diaminodenzidine (DAB). Isotypes were used as negative controls. Brightfield images were 

taken using the Vectra Polaris Multispectral Imaging System and inForm software version 

2.5.1. Representative images were taken at 200X magnification.

2.8 Primary cell culture of amnion epithelial cells

Immediately after collection of the CAM from women without labor at term (n = 3), 

the amnion membrane was manually peeled from the underlying chorion layer of the 

chorioamniotic membranes and dissected into small pieces. The amnion fragments were 

rinsed in 0.05% (w/v) trypsin/EDTA (Life Technologies) and incubated in 25 mL of fresh 

trypsin/EDTA at 37°C with gentle shaking for 10 min. The trypsin digestion supernatant 

was discarded, and the amnion fragments were placed into fresh trypsin/EDTA solution. 

Amnion epithelial cells (AEC) were obtained by digesting at 37°C for 40 min with gentle 

shaking. The total digestion/incubation process was repeated twice. Fetal bovine serum 

(FBS; Thermo Fisher Scientific) was added to the supernatant to stop digestion between 

each incubation period. Finally, digested tissues were filtered through a 100 μm cell strainer 

(Fisher Scientific, Durham, NC, USA). The resulting cell suspensions were centrifuged at 

300 x g for 10 min and the cells were cultured in DMEM (Life Technologies) containing 

10% FBS and 100 U/mL penicillin and streptomycin (Thermo Fisher Scientific) at 37°C 

with 5% CO2. The absence of mycoplasma contamination in AEC cultures was confirmed 

by qPCR using the MycoSensor QPCR Assay Kit (Cat# 302107, Agilent Technologies, 

Santa Clara, CA, USA) and the Mycoplasma Detection Kit (Cat# rep-mys-20; MycoStrip™; 

InvivoGen, San Diego, CA, USA) according to the manufacturer’s instructions. Cells 

between passages two – five were used for incubation with Ureaplasma isolates.

2.9 Preparation of Ureaplasma parvum isolates for in vitro experiments

Ureaplasma parvum isolates from −80°C stock were cultivated in SP4 broth as previously 

described [77] for co-culture experiments. The culture media was collected and centrifuged 

at 3 000 x g for 30 min at room temperature. The resulting Ureaplasma parvum pellet was 

resuspended in 1 mL of SP4 broth and kept on ice. The Ureaplasma parvum cell count in the 

inoculation suspension was measured using flow cytometry, following a modified version 

of a previously described method for counting mycoplasmas using a bacteria counting 

kit (Cat# L34856, LIVE/DEAD BacLight Bacterial Viability and Counting Kit for flow 

cytometry; Invitrogen), the BD LSR II flow cytometer (BD Bioscience), and BD FACSDiva 
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6.0 software (BD Bioscience). The absolute number of cells was determined using the 

counting beads included in the kit. The Ureaplasma parvum suspension was diluted in SP4 

broth according to the obtained count. SP4 broth was used as the vehicle control treatment in 

all Ureaplasma parvum experiments.

2.10 Preparation of Sneathia for in vitro experiments

Frozen stocks of Sneathia vaginalis (type strain CCUG 51846) and Sneathia sanguinegens 
(type strain CCUG 41628T) were utilized for Sneathia co-culture experiments. Sneathia 
stock cultures were kept on dry ice and transferred to the anaerobic culture chamber (5% 

CO2, 10% H2, 85% N2) for recovery of isolates in Brain Heart Infusion broth supplemented 

with human serum (10%), yeast extract (1%), glycogen (0.1%), hemin (0.01%), and Vitamin 

K1 (0.01%). Supplemented BHI broth (hereafter referred to as sBHI broth) was given 24 h 

to acclimate to the anaerobic chamber prior to inoculation, and non-inoculated sBHI broth 

samples were included as negative controls. Inoculated broth was incubated for 48 h at 37 

°C before use in the experiments. The Sneathia cell count in the inoculation suspension was 

measured using flow cytometry, following a modified version of the method described above 

for counting Ureaplasma parvum. Briefly, an aliquot of the inoculation suspension (10 μL) 

was diluted 100X in 1X PBS and then stained with SYTO9 (final concentration of 10 μM) 

for 15 min at room temperature in the dark. The stained Sneathia were counted using the BD 

Fortessa flow cytometer (BD Bioscience) and BD FACSDiva 9.0 software (BD Bioscience). 

The absolute number of cells was determined using counting beads included in the kit. The 

Sneathia suspension was centrifuged at 10 000 x g for 2 min and subsequently diluted in 

sBHI broth according to the obtained count. sBHI broth was used as the vehicle control 

treatment in all Sneathia experiments.

2.11 In vitro co-culture experiments

Primary amnion epithelial cells or an amnion epithelial cell line (Cat# T0531, Applied 

Biological Materials Inc, Richmond, BC, Canada) were cultured in 6-well tissue culture 

plates (Corning, Inc., Corning, NY, USA) at a density of 1.5 x 105 cells/well or 1 x 

106 cells/well at 37°C with 5% CO2. The cells were incubated with Ureaplasma parvum 
(1.3 x 105 cells/well) or Sneathia spp. (1.0 x106 cells/well). Serum-free Opti-MEM (Life 

Technologies), SP4 broth, or sBHI broth with serum-free Opti-MEM were used as negative 

controls. After 24 h of treatment, cells were collected for RNA isolation.

2.12 RNA isolation, cDNA synthesis, and reverse transcription quantitative polymerase 
chain reaction analysis

Total RNA was isolated from the CAM (n = 6 per group), amnion (n = 6 per group), 

primary AEC, or the AEC line using RNase-Free DNase Sets and RNeasy Mini Kits 

(Qiagen), according to the manufacturer’s instructions. RNA concentrations and integrity 

were assessed using NanoDrop 1000 (Thermo Scientific, Wilmington, DE, USA) and 

Bioanalyzer 2100 (Agilent Technologies, Wilmington, DE, USA). Complementary (c)DNA 

was synthesized using SuperScript IV VILO master mix (Thermo Fisher Scientific). Gene 

expression profiling was performed on the Applied Biosystems 7500 Fast Real-Time PCR 

System (Applied Biosystems, Life Technologies) for TSLP, CRLF2 and IL7R, while 

GAPDH was used as internal control.
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2.13 Immunofluorescence

Cytospin slides of human amniotic fluid samples from women with IAI were prepared 

using Fisherbrand Superfrost microscope slides (Thermo Fisher Scientific) and a Shandon 

Cytospin 3 cytocentrifuge (Thermo Fisher Scientific) at 800 rpm for 5 min. After rinsing 

with PBS, the slides were fixed with 4% paraformaldehyde (Electron Microscopy Sciences 

Hatfield, PA, USA) for 20 min at room temperature. AEC were cultured in four-well 

Lab-Tek chamber slides (Thermo Fisher Scientific) at 1 x 104 cells/well. After 24 h of 

treatment, the cells were fixed using 4% paraformaldehyde. For immunofluorescence of 

TSLP, cells were permeabilized using 0.25% Triton X-100 (EMD Millipore, Billerica, MA, 

USA) for 5 min at room temperature. Non-specific antibody interactions were blocked using 

antibody diluent/block (Cat# ARD1001EA; PerkinElmer, Boston, MA, USA) for 30 min at 

room temperature. Cells were then stained with a mouse anti-human TSLP antibody at room 

temperature for 1 h. Mouse IgG (Thermo Fisher Scientific) was used as a negative control. 

Following staining, cells were washed with 1X PBS containing 0.1% Tween 20 (PBST). 

After the wash, cells were incubated with secondary goat anti-mouse IgG–Alexa Fluor 

594 (Cat# A11032, Life Technologies) for 1 h at room temperature in the dark. Finally, 

cells were washed with PBST and mounted using ProLong Diamond Antifade Mountant 

with DAPI (Life Technologies). Immunofluorescence was visualized using a KEYENCE 

BA-X800 Microscope (KEYENCE, Itasca, IL, USA).

2.14 Statistical analysis

Statistical analyses were performed using Prism v9 (GraphPad, San Diego, CA, USA). For 

patient demographics information, the Kruskal-Wallis test was used for continuous variables 

and the Fisher’s exact test was used for non-continuous variables. TSLP concentrations were 

compared using the Kruskal-Wallis test followed by Dunn’s post-hoc test. Gene expression 

in the CAM and co-culture experiments was compared using Mann-Whitney U-tests. For 

qPCR analysis in the CAM and AEC, relative fold changes were calculated using the 2−ΔΔCt 

method and shown as log2(fold change). A p-value < 0.05 was considered statistically 

significant.

3. RESULTS

3.1 Amniotic fluid concentrations of TSLP are disrupted by the intra-amniotic 
inflammatory status in women with spontaneous preterm labor and birth.

We first evaluated the concentrations of TSLP in the amniotic fluid of women who 

underwent spontaneous preterm labor with SIAI or IAI (Figure 1A and Supplementary 

Table 1). Amniotic fluid samples from women who underwent spontaneous preterm labor 

and delivered at term or delivered preterm without SIAI or IAI were included as controls 

(Supplementary Table 1). Notably, women who underwent spontaneous preterm labor with 

SIAI or IAI had elevated concentrations of TSLP compared to those without inflammation 

or those who delivered at term; yet, there was no difference in TSLP concentrations 

between the SIAI and IAI groups (Figure 1B). These data indicate that TSLP is elevated 

in the amniotic cavity of women who undergo spontaneous preterm labor and birth with 

intra-amniotic inflammation, regardless of the nature of the stimuli.
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3.2 TSLP and its receptors are expressed by the chorioamniotic membranes and 
modulated by the intra-amniotic inflammatory status

We then sought to determine whether TSLP signaling was targeted towards the 

chorioamniotic membrane (CAM). TSLP signaling is initiated by the establishment of a 

complex between this protein and its receptor, TSLPR, as well as the IL-7 receptor-α 
(IL-7Rα) [78–80]. Therefore, we evaluated the gene and protein expression of TSLP and its 

co-receptors in CAM samples from each of our study groups (Figure 2A). The expression 

of TSLP by the CAM was reduced in women who underwent spontaneous preterm labor 

and birth with SIAI (Figure 2B); yet, immunoblotting revealed a tendency for increased 

protein levels of TSLP in the CAM of women with SIAI or IAI (Figure 2C). Given that 

intra-amniotic infection involves the infiltration of leukocytes into the amniotic cavity [28–

34, 36–39], we also evaluated TSLP expression by amniotic fluid neutrophils and found 

that such cells express this protein (Figure 2D). Next, we examined the expression of TSLP 

receptors by the CAM and showed that the expression of CRLF2 (gene encoding the TSLPR 

protein) was upregulated in women who underwent spontaneous preterm labor and birth 

with IAI compared to the other study groups (Figure 2E), which was not reflected by the 

protein levels of this receptor (Figure 2F). Furthermore, the expression of IL7R displayed 

no differences between study groups (Figure 2G); however, IL-7Rα protein levels were 

enhanced in the CAM of women who underwent spontaneous preterm labor and birth with 

IAI in comparison to the other study groups (Figure 2H). Together, these data suggest 

that the inflammatory status of the amniotic cavity can influence the expression of TSLP 

receptors by the CAM at the gene and protein level.

We then performed immunohistochemistry to localize TSLP and its receptors to the layers 

and cell types of the CAM (Figure 3). Consistent with our findings of gene and protein 

expression within whole tissue extracts, TSLP was consistently detected across all study 

groups and seemed to primarily localize to the chorion layer of the CAM, with some 

amnion and decidual cells also showing expression (Figure 3A). Importantly, the overall 

expression of TSLP seemed to increase depending on the intra-amniotic inflammatory status 

(Figure 3A). By contrast, TSLPR seemed to be predominantly found in the decidual layer 

of the CAM (decidua parietalis) (Figure 3A), suggesting that the sender and receiver cells 

of the TSLP signaling pathway are different. The expression of the IL-7Rα tended to 

increase with the severity of the intra-amniotic inflammatory response, being most highly 

detected in the SIAI and IAI study groups (Figure 3A). The latter finding indicates that the 

leukocytes infiltrating the CAM as part of the intra-amniotic inflammatory response may be 

the predominant IL-7Rα-expressing cells.

To further validate the expression of TSLP and its receptors within the different 

compartments of the CAM, we then separated the amnion layer to evaluate gene expression, 

which we compared to gene expression within the entire CAM (Figure 3B). TSLP and 

IL7R were detected within all CAM and amnion samples regardless of study group; yet, 

their expression was similar among groups (Figure 3B). Notably, CRLF2 was consistently 

expressed by all amnion samples from women with IAI, whereas several amnion samples 

from the other study groups displayed CRLF2 expression below the detection limit (Figure 

3B).
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Taken together, these data indicate that cells present in the CAM can express the receptors 

for TSLP, which may respond to protein present in the amniotic fluid or released by 

neighboring cells within the CAM itself.

3.3. TSLP is a component of the host response to Ureaplasma parvum and Sneathia spp.

Given that TSLP and IL-7Rα appeared to exhibit a modest dose-response relationship with 

the inflammatory status of the amniotic cavity (Figure 3A), we next explored whether 

the in vitro exposure to microbes commonly found in women with IAI could induce the 

expression of TSLP (Figures 4 & 5). We isolated amnion epithelial cells (AEC) from the 

CAM and performed co-culture experiments using two isolates of Ureaplasma parvum that 

were previously collected from the amniotic fluid of women who underwent spontaneous 

term or preterm labor with IAI [77] (Figure 4A). Amnion epithelial cells were chosen given 

their direct contact with the amniotic fluid, thereby positioning these cells as some of the 

first to participate in the host response to alarmins or microbes present in amniotic fluid of 

women with SIAI or IAI, respectively. Both Ureaplasma parvum isolates caused a dramatic 

upregulation of TSLP expression by AEC (>10-20-fold change), thereby supporting the 

involvement of this cytokine in the host response to Ureaplasma parvum present in the 

amniotic cavity (Figure 4B). Next, we performed co-culture experiments using the two 

known Sneathia species, Sneathia vaginalis (formerly known as Sneathia amnii [81]) and 

Sneathia sanguinegens, together with a human AEC cell line (Figure 5A). While both 

Sneathia spp. induced TSLP expression by the AEC compared to unstimulated controls, 

Sneathia vaginalis exerted greater upregulation compared to Sneathia sanguinegens (Figure 

5B). Given the observed moderate increase in TSLP only with Sneathia vaginalis (two-fold 

change), we performed immunofluorescence imaging of AEC co-cultured with Sneathia spp. 

to confirm the results of gene expression and demonstrated protein expression of TSLP by 

such cells (Figure 5C). Together, these data support the involvement of TSLP in the host 

response to microbial invasion of the amniotic cavity.

4. DISCUSSION

Herein, we utilized a multifaceted approach to characterize the expression and role of TSLP 

and its receptors in the intra-amniotic host response associated with SIAI or IAI. First, we 

showed that amniotic fluid concentrations of TSLP are elevated in women who underwent 

spontaneous preterm labor and birth with SIAI or IAI. Next, we demonstrated that this 

cytokine is expressed by the CAM as well as by amniotic fluid neutrophils, providing 

two potential sources of TSLP in the amniotic cavity. Both of the known receptors for 

TSLP, TSLPR and IL-7Rα, had detectable gene and protein expression in the CAM; yet, 

CRLF2 expression was specifically elevated in women with IAI. Immunohistochemistry 

revealed that TSLP was constitutively localized to the amnion, chorion, and decidua, where 

its expression increased with intra-amniotic inflammation. By contrast, the expression of 

TSLPR and IL-7Rα was minimal and became most apparent in the presence of IAI. Last, 

the in vitro co-culture of AEC with IAI-relevant bacteria demonstrated that Ureaplasma 
parvum and Sneathia spp. differentially upregulated TSLP expression in these cells. 

Together, these data provide insight into the participation of TSLP in the local host response 

to intra-amniotic infection.
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The amniotic fluid comprises numerous cellular and soluble components as physiological 

constituents that provide baseline protection against potential microbial threats [82–89]. 

The cellular component comprises both innate (i.e., neutrophils, monocytes/macrophages, 

NK cells, and innate lymphoid cells) and adaptive (i.e., T cells and B cells) immune cells 

[33, 90], whereas the soluble component includes a diverse array of molecules, many of 

which display anti-microbial properties [82, 86, 91–105]. During intra-amniotic infection, 

the resulting local inflammatory response is characterized by the bolstering of neutrophil 

and monocyte/macrophage numbers to fight off invading microbes [28–34, 36–39] together 

with the enhanced release of inflammatory and anti-microbial mediators [40–52, 106]. 

Herein, we have provided novel evidence for the involvement of TSLP in the host response 

to microbes by demonstrating that the amniotic fluid concentrations of this cytokine are 

released in women who underwent spontaneous preterm labor with intra-amniotic infection. 

The participation of TSLP in anti-microbial responses is an area of ongoing research, 

with multiple studies reporting the induction of this cytokine by bacteria [107–113], fungi 

[114–122], viruses [123–135], and parasites [136–139]. Notably, a distinct mechanism 

whereby TSLP drives the killing of methicillin-resistant Staphylococcus aureus (MRSA) 

by human and murine neutrophils was reported [111], suggesting that this mediator serves 

an important role by amplifying the bactericidal functions of leukocytes and could thus 

be a key component of neutrophil-mediated host defense in the amniotic cavity. However, 

TSLP has also been shown to display context-dependent functions in the murine female 

genital tract, as progesterone induced a TSLP-dependent suppression of neutrophil influx 

and Th17-associated gene expression in response to gonococcal infection [140]. Thus, TSLP 

may undergo additional hormonal regulation, particularly during pregnancy, which could 

influence its effectiveness in promoting microbial clearance.

A large body of TSLP investigation has focused on the role of mediator in non-infectious or 

sterile inflammatory processes, such as allergy and asthma, due to its close relationship 

with other type 2 cytokines such as IL-33 [141]. In such a context, TSLP has been 

largely reported to propagate or exacerbate inflammation [142–148], in part by promoting 

Th2 responses [56, 148–155]. Yet, whether TSLP was also participating in the sterile 

inflammatory response in the amniotic cavity of a subset of women undergoing spontaneous 

preterm labor had not been reported. Here, we show that TSLP is increased in the 

amniotic fluid of such women, potentially indicating its involvement in sterile intra-amniotic 

inflammation. This observation is strengthened by the fact that women with SIAI included 

in the current study were diagnosed using PCR/ESI-MS that can detect a large number 

of microbes, including fastidious bacteria such as Sneathia spp. [9–12], and thus were 

confirmed to be truly sterile. Moreover, TSLP and IL-33 have known roles as potent 

alarmins and participate in the mechanisms leading to sterile inflammation [65, 141]. The 

wide variety of stimuli that have been reported to induce the expression and release of TSLP, 

including mechanical injury, infection, and inflammatory mediators [65], provide further 

support for the participation of this cytokine in sterile inflammation. Importantly, TSLP 

seems to act upstream of multiple Th2-associated signaling pathways and interacts with 

various immune and non-immune cell types [156], giving promise to therapeutics targeted 

at TSLP for the treatment of atopic disease [65, 157–159]. While the targeting of TSLP 

may not necessarily be effective for the treatment of SIAI-associated preterm labor, further 
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research pointed at uncovering the signaling mechanisms of this cytokine in the amniotic 

cavity may be worthwhile.

Independent of the underlying insult, herein we showed that TSLP is produced by the 

chorioamniotic membranes, including the fetal layers (chorion and amnion) and the attached 

maternal layer (decidua parietalis), in women with intra-amniotic inflammation. Overall, 

our findings support the responsiveness of the chorioamniotic membranes to intra-amniotic 

inflammation. As observed herein, the correlation between mRNA and protein expression 

levels in mammals is variable and, in some cases, can be relatively low [160–163]. Yet, 

whether TSLP production was further modified in the current study via post-transcriptional 

and/or post-translational modification is unclear. It is worth noting that TSLP is released 

as a soluble protein, and thus the determination of its concentrations in the amniotic 

fluid collected at the time of diagnosis with SIAI or IAI represents the best readout of 

its participation in such conditions. By contrast, the chorioamniotic membranes collected 

after delivery provide retrospective information regarding the expression of TSLP and its 

receptors that may not reflect the state of these tissues during the onset and propagation of 

SIAI or IAI, necessitating careful interpretation.

Herein, we also showed that TSLP was expressed by the innate immune cells (e.g., 

neutrophils and monocytes/macrophages) invading the amniotic cavity, which can be 

predominantly of fetal origin in cases of intra-amniotic inflammation associated with 

spontaneous preterm labor [164, 165]. Thus, the release of TSLP into this compartment 

at least partially represents a fetal response to a local insult, whether it is microbial invasion 

or sterile injury. We also found that the receptors for TSLP were expressed throughout the 

CAM, including the maternal decidual layer, suggesting that TSLP signaling in this tissue is 

enabled regardless of the inflammatory status of the amniotic cavity. Moreover, we showed 

that CRLF2 expression was specifically upregulated in the context of IAI. Such an increase 

is likely due to the infiltration of the chorioamniotic membranes by maternal neutrophils 

and monocytes/macrophages [75, 166], which are among the multiple cell types that express 

these receptors [111, 167, 168]. Receptor expression within the layers of the CAM suggests 

that fetal TSLP signaling in response to intra-amniotic inflammation drives both a positive 

feedback loop on the fetal side as well as communicates with cells on the maternal side (i.e., 

decidua parietalis), potentially aiding in the activation and recruitment of maternal immune 

cells. Of note, the induction of TSLP during fetal life could have long-term consequences, as 

a recent murine investigation demonstrated TSLP-altered chromatin accessibility in dendritic 

cells resulting in activation of pathogenic gene programs in response to neonatal respiratory 

viral infection [135]. Therefore, TSLP may drive trained immunity resulting in potentially 

harmful alterations of the immune response later in life; yet, this concept requires further 

exploration.

Herein, we demonstrated that an established pathogen frequently detected in the amniotic 

cavity of women with IAI, Ureaplasma, and an emerging pathogen implicated in obstetric 

disease, Sneathia, both induce the release of TSLP by amniocytes. The role of Ureaplasma 
spp. in triggering intra-amniotic inflammation leading to spontaneous preterm labor is well 

established [13–15, 17, 169–172]. Indeed, we have shown that Ureaplasma parvum isolated 

from the amniotic fluid of women with IAI induces a similar intra-amniotic inflammatory 
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response in mice, including the induction of inflammatory gene expression by amniocytes 

[77]. Moreover, we demonstrated that the macrolide clarithromycin prevents Ureaplasma-

induced preterm birth and adverse neonatal outcomes in mice [77], indicating that this 

antibiotic is an important component of the optimal treatment regimen for women diagnosed 

with IAI. By contrast, the role of Sneathia in the intra-amniotic inflammatory response 

has been much less explored, due in part to the difficulty involved in its cultivation [18]. 

However, the emergence of sensitive molecular techniques has allowed for the detection of 

Sneathia in clinical samples [18], even if bacterial viability cannot be firmly established. 

The mechanisms of virulence whereby Sneathia exerts its adverse effects in the context 

of intra-amniotic infection remain an ongoing area of investigation, with reports showing 

that Sneathia vaginalis can damage the chorioamniotic membranes through the release of a 

pore-forming cytotoxin [173]. While a direct link between Sneathia and TSLP remains to be 

established, previous studies have reported that synthetic ligands for multiple TLRs (TLR3, 

TLR5, and TLR2/TLR6) and Staphylococcus aureus drove the expression of TSLP by 

human keratinocytes [174], which is consistent with our findings in amniocytes. Thus, while 

the current study supports the induction of TSLP by Sneathia spp., continued mechanistic 

investigation is required to establish the specific pathogenic factors and signaling pathways 

implicated in this process.

Collectively, our findings have generated novel evidence of a role for TSLP in the 

intra-amniotic inflammation triggered by alarmins or microbial infection. The release 

of TSLP into the amniotic cavity may represent a key element of the fetal response 

to insult by amplifying the functions of infiltrating neutrophils as well as signaling to 

maternal cells in the surrounding decidua. Moreover, the induction of TSLP expression 

by an emerging obstetrical pathogen, Sneathia, provides further understanding of the 

underexplored virulence mechanisms whereby these bacteria exert their harmful effects. 

Taken together, these data generate new insight into the molecular mechanisms underlying 

intra-amniotic host response leading to spontaneous preterm labor and birth.
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Figure 1. Concentrations of TSLP in amniotic fluid of women with spontaneous preterm labor.
(A) Representative diagram showing the study groups of women who underwent 

spontaneous preterm labor and delivered at term (PTL del Term) and those who delivered 

preterm without intra-amniotic inflammation (PTL-No SIAI/IAI), with sterile intra-amniotic 

inflammation (PTL-SIAI), or with intra-amniotic infection (PTL-IAI) from whom amniotic 

fluid was collected to measure TSLP. (B) TSLP concentrations in the amniotic fluid of 

women with PTL del Term (n = 30), PTL No SIAI/IAI (n = 34), PTL SIAI (n = 27), 

and PTL IAI (n = 17). Data are shown as box and whisker plots where midlines indicate 

medians, boxes indicate interquartile ranges, and whiskers indicate minimum/maximum 

values. P-values were determined using the Kruskal-Wallis test followed by Dunn’s post-hoc 

test. ***p < 0.001, ****p < 0.0001.
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Figure 2. The expression of TSLP and its receptors in the chorioamniotic membranes.
(A) Representative diagram showed the detection of TSLP and its receptors (TSLPR and 

IL-7Rα) in the chorioamniotic membranes (CAM). (B) RT-qPCR assay showing the gene 

expression of TSLP in the CAM of women with PTL del Term, PTL No SIAI/IAI, PTL 

SIAI, and PTL IAI (n = 6 per group). (C) Representative western blot image and relative 

quantification showing the protein expression of TSLP (10 kDa) in the CAM (n = 3 per 

group). (D) Representative immunofluorescence staining showing the expression of TSLP 

(red signal) by amniotic fluid neutrophils. White arrows indicate positive TSLP staining. 
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DAPI staining (blue) shows cell nuclei. The isotype (negative control) staining images in 

each group are shown at the left corner. All images taken at 400X magnification. Scale 

bar represents 5 μm. RT-qPCR assays showing the gene expression of (E) CRLF2 and 

(G) IL7R in the CAM (n = 6 per group). Representative western blot images and relative 

quantification showing the protein expression of (F) TSLPR (53 kDa) and (H) IL-7Rα 
(51 kDa) in the CAM (n = 3 per group). RT-qPCR data are shown as box and whisker 

plots where midlines indicate medians, boxes indicate interquartile ranges, and whiskers 

indicate minimum/maximum values. β-actin (ACTB) (42 kDa) was used as internal control 

for western blot analysis. P-values were determined by Mann-Whitney U-tests. *p < 0.05.
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Figure 3. Spatial expression of TSLP and its receptors in the chorioamniotic membranes.
(A) Representative immunohistochemistry images showing the expression of TSLP, TSLPR, 

and IL-7Rα (brown staining) in the amnion, chorion, or decidua of the CAM from women 

with PTL del Term, PTL No SIAI/IAI, PTL SIAI, and PTL IAI (n = 5 per group). All 

images were taken at 200X digital magnification. Scale bar represents 50 μm. Tissue 

layers are indicated as A: Amnion; C: Chorion; D: Decidua. (B) Dot plots representing 

the expression of TSLP, CRLF2, and IL7R in the CAM and amnion of women with PTL del 

Term, PTL No SIAI/IAI, PTL SIAI, and PTL IAI (n = 6 per group). Dotted horizontal lines 
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correspond to 40 cycles, which was considered as the detection limit threshold. Blue dots 

represent CAM, red dots represent amnion.
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Figure 4. Ureaplasma parvum stimulates TSLP expression in human amnion epithelial cells.
(A) Representative diagram showing the co-culture of human amnion epithelial cells (AEC) 

(n = 3 samples with 3 technical replicates each) with two isolates of U. parvum (from 

a woman with term or preterm labor) or vehicle control (SP4 broth) for 24 h, after 

which AEC were collected to determine TSLP expression. (B) TSLP expression in AEC 

incubated with SP4 borth or U. parvum isolates. Data are shown as box and whisker plots 

where midlines indicate medians, boxes indicate interquartile ranges, and whiskers indicate 
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minimum/maximum values. P-values were determined by Mann-Whitney U-tests. ****p <0 

.0001.
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Figure 5. Sneathia spp. stimulate TSLP expression in amnion epithelial cells.
(A) Representative diagram the co-culture of human amnion epithelial cells (AEC) (n 

= 3 samples with 3 technical replicates each) with Sneathia vaginalis (S.V.), Sneathia 
sanguinegens (S.S.), or vehicle control [supplemented (s)BHI broth, see Methods] for 24 h, 

after which the AEC were collected to determine TSLP expression. (B) TSLP expression 

in AEC incubated with sBHI broth, S.V., or S.S. Data are shown as box and whisker plots 

where midlines indicate medians, boxes indicate interquartile ranges, and whiskers indicate 

minimum/maximum values. P-values were determined by Mann-Whitney U-tests. *p < 0.05, 

***p < 0.001. (C) Representative immunofluorescence images showing the expression of 

TSLP (red signal) in AEC treated with sBHI broth, S.V., or S.S. White arrows indicate 

positive TSLP staining. DAPI staining (blue signal) shows cell nuclei. The isotype (negative 

control) staining images in each group are shown at the left corner. All images taken at 400X 

magnification. Scale bar represents 20 μm.
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