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Abstract

The first correlation between metal-centered stereogenicity and regioselectivity in a catalytic 

process is described. Alternate pseudo-diastereomeric chiral-at-ruthenium complexes of the 

type RuX(CO)[η3-prenyl][(S)-SEGPHOS] form in a halide-dependent manner, and display 

divergent regioselectivity in catalytic C-C couplings of isoprene to alcohol proelectrophiles via 

hydrogen auto-transfer. Whereas the chloride-bound ruthenium-SEGPHOS complex prefers a 

trans-relationship between the halide and carbonyl ligands and delivers products of carbonyl sec-

prenylation, the iodide-bound ruthenium-SEGPHOS complex prefers a cis-relationship between 

the halide and carbonyl ligands and delivers products of carbonyl tert-prenylation. The chloride- 

and iodide-bound ruthenium-SEGPHOS complexes were characterized in solution and the solid 

phase by 31P NMR and X-ray diffraction. DFT calculations of the iodide-bound catalyst implicate 

a Curtin-Hammett-type scenario in which the transition states for aldehyde coordination from an 

equilibrating mixture of sec- and tert-prenylruthenium complexes is rate- and product-determining. 

Control of metal-centered diastereoselectivity has unlocked the first catalytic enantioselective 

isoprene-mediated carbonyl tert-prenylations.
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Introduction

Halide counterions can profoundly influence metal-catalyzed reactions, yet the precise 

nature of their effect is seldom understood.1 In recent work,2 experimental and 

computational analyses of the halide-bound ruthenium-JOSIPHOS complexes, RuX(CO)

(η3-C3H5)(JOSIPHOS), where X = Cl, Br, I, revealed that the enhanced enantioselectivities 

of iodide-containing catalysts emanate from iodide’s capacity to promote selective 

formation of a chiral-at-ruthenium octahedral stereocenter,2,3 and engage in formyl CH···I 
hydrogen bonding in the transition state for carbonyl addition.4 By exploiting iodide 

counterions in combination with C1-symmetric JOSIPHOS ligands, the intervention of 

predominantly one of 10 possible diastereomeric transition structures5 could be achieved, 

enabling highly enantioselective ruthenium-catalyzed 1-aryl-1-propyne-mediated carbonyl 

(α-aryl)allylations,2 2-butyne-mediated carbonyl vinylations,6 and butadiene/methylallene-

mediated crotylations (Figure 1).7

These data impelled a survey of halide counterions in ruthenium-SEGPHOS-catalyzed 

reactions of isoprene (>105 tons/yr)8 with primary alcohol proelectrophiles via 

hydrogen auto-transfer. Not only was a halide-dependent partitioning of diastereomeric 

chiral-at-ruthenium-SEGPHOS complexes observed, but it was also found that the 

diastereomeric complexes display regiodivergent reactivity:9 chloride- and bromide-bound 

ruthenium-SEGPHOS catalysts preferentially promote carbonyl sec-prenylation, whereas 

the diastereomeric iodide-bound ruthenium-SEGPHOS catalyst delivers products of 

carbonyl tert-prenylation. These data represent the first correlation between metal-centered 
stereogenicity and regioselectivity in metal catalysis, which, in turn, has enabled a 

method for catalytic enantioselective isoprene-mediated carbonyl tert-prenylation beyond 

premetalated reagents.10–15

Results and Discussion

In 2008, our laboratory disclosed the first use of dienes as allylmetal pronucleophiles 

in late transition metal-catalyzed carbonyl addition.16a This study encompassed racemic 

examples of isoprene-mediated sec-prenylation and involved the use of a chloride-bound 

ruthenium catalyst. Subsequent efforts to develop asymmetric variants of this process 

focused on butadiene,16b-d as reactions of isoprene often led to regioisomeric mixtures of 

sec-prenylation and tert-prenylation products. Our recent finding that halide counterions 

can guide formation of pseudo-diastereomeric chiral-at-metal ruthenium complexes led 

us to probe the question of whether regioisomerism observed in couplings of isoprene 
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occurred in response to metal-centered diastereogenicity. Toward this end, alcohol 2a (100 

mol%) and isoprene 1a (400 mol%) were exposed to RuH2(CO)(PPh3)3 (5 mol%) and 

(S)-SEGPHOS (5 mol%) in THF (0.5 M) and trifluoroethanol (TFE) (300 mol%) at 115 

°C in the absence and presence of the halide additives LiX, where X = Cl, Br and I (Table 

1, entries 1–4). Whereas the chloride-modified catalyst exclusively promoted formation of 

the sec-prenylated product sec-3a, an increasing proportion of the tert-prenylated adduct 

tert-3a was observed using the catalysts modified by bromide and iodide. Remarkably, in 

the case of the iodide-modified catalyst, a 12:1 regioisomeric mixture favoring tert-3a was 

formed in 65% yield and 91% enantiomeric excess (Table 1, entry 4), thus representing a 

halide-dependent inversion in regioselectivity. This trend persisted in reactions conducted 

using the precatalysts RuHCl(CO)(PPh3)3 and RuHBr(CO)(PPh3)3 in the absence of added 

lithium halides (Table 1, entries 5 & 6), and in reactions using RuHCl(CO)(PPh3)3 with 

added LiBr and LiI (Table 1, entries 7 & 8). Higher yields and regioselectivities in the 

formation of the tert-3a could be achieved using KI instead of LiI, perhaps due to the 

increased solubility of KI in ethereal solvent (Table 1, entry 9). Further variation of ligand 

(Table 1, entries 10–14) did not improve conversion or selectivity. Reactions conducted with 

the precatalyst Ru(CF3CO2)2(CO)(PPh3)2 favored formation of sec-3a (35% yield, 12:1 rr, 

3:1 dr, 21% ee), as did the arylsulfonate-modified catalyst generated from the acid-base 

reaction16c of RuH2(CO)(PPh3)3 with p-toluenesulfonic acid (42% yield, 3:1 rr, 5:1 dr, 18% 

ee).

To assess whether the observed halide-dependent inversion in regioselectivity was due to 

intervention of pseudo-diastereomeric chiral-at-ruthenium-SEGPHOS complexes, crystals 

of the indicated chloride- and iodide-bound π-allylruthenium complexes were subjected to 

X-ray diffraction analysis (Figure 2). A trans-relationship between the carbonyl and chloride 

ligands, which reside in apical coordination sites, was observed for the π-allylruthenium 

chloride complex. In contrast, the π-allylruthenium iodide complex exhibited a cis-

relationship between the carbonyl and iodide ligands in apical and equatorial coordination 

sites, respectively. The diastereomeric preference observed in the solid state may reflect 

crystal packing forces. Hence, it was essential to determine whether this preference persisted 

in solution. A comparison of the solid and solution phase 31P NMR spectra17 of the 

chloride and iodide complexes suggested this to be the case. The respective solid and 

solution phase spectra matched and a single (but distinct) diastereomer was observed for 

both the chloride and iodide complexes. Notably, for the chloride complex, two signals 

with very similar chemical shifts were observed in solution (δ = 33.3, 31.7), which is 

consistent with two phosphorus atoms in similar chemical environments. In contrast, the 

phosphorus atoms of the iodide complex appeared at very different chemical shifts (δ = 

32.7, 48.7) with a low-field doublet consistent with that of a phosphine atom that is trans 
to a halide.18 As the haptomeric equilibria of π-allylruthenium complexes is dynamic,19 

enabling interconversion of diastereomeric chiral-at-ruthenium-SEGPHOS complexes via 

Berry pseudorotation via pentacoordinate σ-allyl complexes,20 the collective data suggest 

the diastereomeric preferences of the chloride- and iodide-bound complexes reflect a 

thermodynamic bias.
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To assess reaction scope, optimal conditions identified for the isoprene-mediated tert-
prenylation of alcohol 2a were applied to primary alcohols 2b–2m (Table 2). The 

homoallylic alcohols 3b–3m and epi-3m were formed in good to excellent yields, 

regioselectivities and enantioselectivities. Diverse N-heterocycles were tolerated, including 

piperidines (3d), pyridines (3e, 3l), pyrazoles (3f), unprotected indoles (3h), thiophenes (3i), 
thiazoles (3j), and pyrimidines (3k). The chiral δ-stereogenic alcohol 2m underwent tert-
prenylation with good levels of catalyst-directed diastereoselectivity. Attempted reactions 

of primary benzylic and allylic alcohols led to low yields of sec-prenylated adduct. The 

reaction of myrcene 1b with alcohol 2a provides the product tert-geranylation 4a, thus 

forming an acyclic quaternary carbon stereocenter (eq. 1).21 Finally, using 2-propanol 

as reductant, isoprene-mediated tert-prenylation of aldehydes dehydro-2a and dehydro-2b 
occurred with good regio- and stereocontrol (Scheme 1). The absolute stereochemical 

assignments of adducts 3a-3m and 4a were made in analogy to 3e, which was established 

via single crystal X-ray diffraction.

(eq.1)

To gain insight into the reaction mechanism, deuterium la-beling experiments were 

performed (Scheme 2). Exposure of the alcohol deuterio-2a to isoprene 1a under 

standard conditions for tert-prenylation using the iodide-bound catalyst led to formation 

of deuterio-3a, which incorporates deuterium at the primary and secondary vinylic positions 

(Hc = 12% 2H, Hd/e = 15% 2H) and the methyl groups (Hb = 15% 2H). A substantial 

loss of deuterium is observed at the carbinol position (Ha = 54% 2H). Omitting potassium 

iodide, but under otherwise identical conditions, deuterio-2a and isoprene 1a are converted 

to the sec-prenylation product deuterio-sec-3a, which retains significantly more deuterium 

at the carbinol position (Ha = 89% 2H). Notably, deuterium is not transferred to the vinylic 

positions of deuterio-sec-3a (Hd/e = 0% 2H). Reexposure of deuterio-3a or deuterio-sec-3a 
to the reaction conditions does not alter deuterium content at the carbinol position. These 

data corroborate reversible hydrogen transfer between alcohol deuterio-2a and isoprene 

1a prior to carbonyl addition. For the iodide-bound catalyst, formation of a more highly 

substituted 3°-4° C-C bond, lowers the rate of carbonyl addition, which increases H/D-

exchange between deuterio-2a and isoprene 1a and results in greater deuterium loss at the 

carbinol position. Hydroruthenation of the less substituted olefin of isoprene 1a is kinetically 

preferred.22b,c Hydroruthenation of the more substituted olefin of isoprene 1a, only occurs 

when the rate of carbonyl addition is retarded via formation of the more highly substituted 

3°-4° C-C bond. Incomplete deuterium transfer is attributed to H/D-exchange with isoprene, 

as well H/D-exchange between the ruthenium deuteride and the hydroxyl hydrogens of 

the alcohol reactant or TFE.23 Thus, a catalytic cycle is envisioned wherein reversible 

alcohol dehydrogenation via ruthenium alkoxide I delivers aldehyde and ruthenium hydride 
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II. Hydroruthenation of isoprene22 favors formation of the n-prenylruthenium species IIIa 
(and haptomers), which engages the aldehyde in carbonyl addition to form the homoallylic 

alkoxide IV. TFE-assisted exchange of the homoallylic ruthenium alkoxide IV2 with alcohol 

reactant releases the product of tert-prenylation and reforms ruthenium alkoxide I to close 

the cycle (Scheme 3).

To gain deeper insight into how halide counterions bias the regioisomeric C-C coupling 

pathways in isoprene-mediated carbonyl addition via hydrogen auto-transfer, density 

functional theory (DFT) calculations were conducted.24 First, the structures of the 

diastereomeric chloride- and iodide-bound π-allyl- and π-prenylruthenium complexes in 

which the halide counterions reside cis- or trans- to the carbonyl ligand were computed 

(Figure 3). The trans-diastereomers were determined to be lower in energy for the chloride-

bound complexes. For the iodide complexes, the cis-diastereomers were thermodynamically 

preferred. These data are consistent with the experimentally observed diastereomeric 

preferences of the chloride- and iodide-bound π-allylruthenium complexes in the solid 

state and in solution. For the iodide complexes, steric interactions between the large 

iodide counterion and the phenyl groups of the SEGPHOS ligand overcome the innate 

preference for a trans-relationship between the π-donating and π-accepting halide and 

carbonyl ligands.2,22c,25

Next, the energy profiles for the kinetic pathways leading to the regioisomeric tert- and 

sec-prenylation products were computed (Figure 4). The reaction pathways diverge from 

the common intermediate ruthenium-hydride A, which hydrometalates isoprene to form the 

regioisomeric π-allyl complexes B and F, which interconvert with their respective σ-allyl 

species C and H. Remarkably, the transition states for subsequent aldehyde coordination 

(TS1A and TS2A) are rate-determining in both pathways and, hence, represent the regio-

determining event. The transition state TS2A, which leads to the sec-prenylation product, 

is higher in energy than TS1A by 2.1 kcal/mol due to a non-bonded interaction between 

the iodide and the vinylic methyl of the σ-allyl in TS2A (Figure 5). The transition states 

for the following C-C bond formations (TS1B and TS2B) are lower in energy than TS1A 

and TS2A, respectively. TS1B is 0.8 kcal/mol higher in energy than TS2B due to steric 

interactions between the methyl group of acetaldehyde and the southern methyl substituent 

of the σ-allyl, which is absent in TS2B. Although not explicitly shown, a non-classical 

CH···I formyl hydrogen bond between the aldehyde and iodide counterion stabilizes the 

computed transition states for carbonyl addition.2,4 Thus, the DFT calculations corroborate 

a scenario in which regioselectivity is determined in a two-fold manner: first by the cis-

diastereomeric preference of the iodide and carbonyl ligands at ruthenium, and then by 

a Curtin-Hammett-type scenario in which the relative energies of the transition states for 

aldehyde coordination (TS1A and TS2A) to the regioisomeric prenylruthenium complexes is 

rate- and product-determining.

In summary, we describe the first correlation of metal-centered stereogenicity to 

regioselectivity in metal catalysis, as demonstrated by regiodivergent carbonyl sec- vs 
tert-prenylations of alcohol proelectrophiles mediated by isoprene. Specifically, whereas 

chloride-bound ruthenium-SEGPHOS complexes prefer a trans-relationship between the 

halide and carbonyl ligands and deliver products of carbonyl sec-prenylation, iodide-bound 
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ruthenium-SEGPHOS complexes prefer a cis-relationship between the halide and carbonyl 

ligands and deliver products of carbonyl tert-prenylation. DFT calculations of the iodide-

bound catalyst implicate a Curtin-Hammett-type scenario in which the transition states 

for aldehyde coordination from an equilibrating mixture of sec- and tert-prenylruthenium 

complexes is rate- and product-determining. These studies, which underscore the profound 

influence of both halide counterions1 and metal-centered diastereoselectivity3 vis-à-vis 
selectivity in metal catalysis, have unlocked a practical method for catalytic enantioselective 

carbonyl tert-prenylation mediated by the abundant feedstock diene isoprene.
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Figure 1. 
Halide-directed regio- and enantioselectivity unlocks isoprene-mediated carbonyl tert-
prenylation.
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Figure 2. 
Single crystal X-ray diffraction data for chloride-vs iodide-bound ruthenium-SEGPHOS 

complexes and their solution and solid phase 31P NMR spectra.a

aDisplacement ellipsoids are scaled to the 50% probability level. Hydrogen atoms have been 

omitted for clarity. See Supporting Information for complete crystallographic and 31P NMR 

data.
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Figure 3. 
Calculated stabilities of diastereomeric chloride- and iodide-bound π-allyl- and π-

prenylruthenium (S)-SEGPHOS complexes.a

aSee supporting information for further details.
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Figure 4. 
Computed energy profiles of the kinetic pathways leading to the regioisomeric tert- and 

sec-prenylation products.
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Figure 5. 
Calculated competing transitions states TS1A and TS2A for rate- and regio-determining 

aldehyde binding.a

aSee supporting information for further details.
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Scheme 1. 
Regio- and enantioselective isoprene-mediated tert-prenylation of aldehydes dehydro-2a and 

dehydro-2b.a

aYields of material isolated by silica gel chromatography. Enantioselectivities were 

determined by chiral stationary-phase HPLC analysis. See Supporting Information for 

further details.
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Scheme 2. 
Deuterium labelling experiments.a

aDeuterium incorporation was assessed via 1H, 2H NMR and HRMS. See Supporting 

Information for further details.
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Scheme 3. 
Proposed mechanism for regio- and enantioselective ruthenium-SEGPHOS-catalyzed 

isoprene-mediated tert-prenylation of primary alcohols as corroborated by deuterium 

labelling.a

aThe extent of deuterium incorporation was corroborated 1H, 2H NMR and HRMS. See 

Supporting Information for further details.
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Table 1.

Halide-dependent tert- and sec-prenylation in ruthenium-catalyzed C-C couplings of isoprene 1a with alcohol 

2a via hydrogen auto-transfer.a

Entry X Additive Ligand Yield tert-3a (ee) 3a (tert:sec)

1 H — (S)-SEGPHOS 54% - 1:3

2b H LiCI (S)-SEGPHOS 42% - >1:20

3 H LiBr (S)-SEGPHOS 40% - 1:6

4 H Lil (S)-SEGPHOS 65% 91% 12:1

5c Cl — (S)-SEGPHOS 74% - 1:16

6 Br — (S)-SEGPHOS 72% - 1:5

7 Cl LiBr (S)-SEGPHOS 64% - 1:4

8 Cl Lil (S)-SEGPHOS 66% 91% 12:1

→ 9 Cl Kl (S)-SEGPHOS 75% 91% 17:1

10 Cl Kl (S)-DM-SEGPHOS 59% 89% 12:1

11 Cl Kl (S)-BINAP 83% 65% 15:1

12 Cl Kl (S)-tol-BINAP 74% 72% 13:1

13 Cl Kl (S)-CI.MeO-BIPHEP 45% 58% 9:1

14 Cl Kl (S,S)-DIOP 73% 85% 12:1

a
Yields of material isolated by silica gel chromatography as isomeric mixtures. Enantioselectivities were determined by HPLC analysis.

b
sec-3a (3:1 dr, 11% ee).

c
sec-3a (3:1 dr, 11% ee). See Supporting Information for further details on reaction optimization.
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