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Summary

There has been growing research interest in developing methodology to evaluate healthcare 

centers’ performance with respect to patient outcomes. Conventional assessments can be 

conducted using fixed or random effects models, as seen in provider profiling. We propose 

a new method, using fusion penalty to cluster healthcare centers with respect to a survival 

outcome. Without any priori knowledge of the grouping information, the new method provides a 

desirable data-driven approach for automatically clustering healthcare centers into distinct groups 

based on their performance. An efficient alternating direction method of multipliers algorithm 

is developed to implement the proposed method. The validity of our approach is demonstrated 

through simulation studies, and its practical application is illustrated by analyzing data from the 

national kidney transplant registry.
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1 | INTRODUCTION

Assessing the comparative performance of healthcare centers (e.g., hospitals, nursing homes, 

transplant centers, or dialysis facilities) has attracted significant interest over the past 

decades. The objective is to outline and compare the performance of these centers in order 

to facilitate improvements through accountability and feedback. This information can aid 
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individuals in selecting the most suitable healthcare facility and also enable stakeholders and 

payers to identify areas requiring enhancements.

Our motivating example is the national kidney transplant registry data collected by the 

U.S. Organ Procurement and Transplantation Network (OPTN). Our goal is to evaluate 

transplant centers based on their five-year post-transplant graft survival rates. For patients 

with end-stage renal disease, kidney transplantation provides the best opportunity for 

survival. The Scientific Registry of Organ Recipients (SRTR) commonly utilizes the five-

year post-transplant graft survival metric, defined as the time until either death or graft 

failure within five years following transplantation, for regulatory monitoring of transplant 

centers1,2. Consequently, we will employ the five-year post-transplant graft survival to 

assess the quality of care provided by transplant centers.

Traditionally, profiling methods have been developed to evaluate the quality of care provided 

by various healthcare centers, using multiple patient outcome quality measures, such as 

readmission, mortality, and hospitalization. Existing transplant center profiling approaches 

typically employ inference-based procedures and generate a three-tier system, indicating 

whether centers perform worse than expected, as expected, or better than expected. Random 

effects and fixed effects models are two prevalent analytical methods used in profiling3,4,5,6. 

However, both models have their drawbacks. For random effects models, healthcare centers 

on the tails of the distribution tend to have small sample sizes, leading to substantially 

shrunk estimates towards the population mean7,8. This may result in reduced sensitivity 

when classifying healthcare centers in the tail areas, causing the majority of healthcare 

centers to be classified as expected, despite noticeable heterogeneity9. Additionally, 

misspecification of the random effects distribution can pose challenges in both estimation 

and inference. In contrast, fixed effects models suffer from a loss of efficiency due to a 

large number of parameters. Moreover, the simultaneous testing of the null hypothesis for 

extensive healthcare center effects is computationally demanding.

In order to offer more comprehensive ratings for kidney transplantation, the SRTR has 

implemented a five-tier rating system10,11 that indicates whether a transplant center 

performs better than expected, somewhat better than expected, as expected, somewhat worse 

than expected, or worse than expected. However, concerns arise regarding the selection of 

appropriate cutoffs to categorize transplant centers into distinct groups. Furthermore, the 

decision regarding the total number of tiers is arbitrary.

To tackle the aforementioned challenges, we introduce a new fused effects model12 designed 

to automatically identify homogeneous groups of healthcare centers without requiring a 

priori classification knowledge. We employ Cox’s proportional hazards model13 with fusion 

penalty14 to cluster transplant centers based on the post-transplant graft survival outcome. 

Unlike random or fixed effects models, this new method offers a data-driven approach that 

does not rely on inference tests of statistical significance. Our model can also investigate risk 

factors associated with post-transplant graft survival. Our method can be considered as an 

alternative of the latent class model, where we use fusion penalty to “classify” providers into 

different latent groups.
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We employ a local quadratic approximation to the partial likelihood and optimize the 

penalized partial likelihood with the fusion penalty. Prioritizing clustering accuracy, we opt 

for the smoothly clipped absolute deviation (SCAD)15 penalty function over the LASSO 

penalty16. Compared to the LASSO, the SCAD penalty is nearly unbiased in identifying 

groups and enforces a sparser solution more aggressively17. The alternating direction 

method of multipliers (ADMM) algorithm can be utilized to implement the estimation, 

ensuring rapid convergence18. Due to the information loss during computation, we perform 

refitting by maximizing the log partial likelihood with the grouped data to obtain accurate 

parameter estimates.

The remainder of this paper is structured as follows: in Section 2, we outline the penalized 

Cox’s regression model with fusion penalty for clustering healthcare centers. Section 3 

evaluates the performance of our approach through Monte Carlo simulation studies. In 

Section 4, we demonstrate the proposed method using the kidney transplant data as a 

practical example. Finally, we summarize our methodology and discuss potential future 

directions in Section 5.

2 | METHODS

2. 1 | Model

We begin by introducing the required notations to formulate our model. For subject 

j = 1, …, ni from healthcare center i = 1, …, m, we have data in the format yij, xij, δij , where 

the observed time yij is the minimum of the censoring time cij and the event time 

tij, δij = I tij ≤ cij  is the censoring indicator, and xij is a p × 1 vector of predictors. The Cox’s 

proportional hazards model is

ℎij t ∣ xij = ℎ0 t exp ai + xij
⊤β , (2.1)

where ℎij t  is the hazard for patient j of center i at time t, ℎ0 t  is a baseline hazard function, 

ai is the center-specific effect, and β = β1, ⋯, βp
⊤ is the vector of covariate coefficients. 

A constraint ∑i = 1
m ai = 0 ensures that all parameters are identifiable. For estimation and 

inference, we often rely on the partial likelihood, where the unspecified baseline hazards can 

be canceled out. Patients are assumed to be independent within each healthcare center, i.e., 

we assume independence of yij given xij and ai. The partial likelihood for model (2.1) can be 

written as

L a, β =
i = 1

m

j = 1

ni exp ai + xij
⊤β

i′ = 1
m

j′ = 1
ni′ I yi′j′ ≥ yij exp ai′ + xi′j′

⊤ β

δij

, (2.2)

where a = a1, ⋯, am
⊤. We assume that ai belongs to one of K groups G1, ⋯, GK, which are 

mutually exclusive partitions of 1, ⋯, m ; and the number of groups is much smaller than 

that of centers, i.e., K ≪ m. Moreover, the number of groups and the group membership are 

unknown in advance.
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We utilize the fused SCAD penalty to identify homogeneous center performance and then 

fuse them as shared parameters to classify groups of healthcare centers. Incorporating the 

fusion penalty into the partial likelihood (2.2) results in the following optimization problem:

a, β = arg min − ℓ a, β +
1 ≤ i < k ≤ m

pγ ai − ak , λ , (2.3)

where ℓ a, β  is the log of the partial likelihood, and pγ t, λ  is the SCAD penalty function15 

defined as

pγ t, λ = λ
0

t

min 1, γ − x/λ +/ γ − 1 dx,

with x + = x if x > 0 and = 0 otherwise, λ ≥ 0 is a tuning parameter, γ ≥ 0 is a parameter that 

controls the concavity of the penalty functions. Following Ma et al.,17 we treat γ as a fixed 

constant.

2. 2 | Estimation procedure

Note that the penalty function pγ ai − ak , λ  cannot be written in the form of addition of 

separate terms of pγ ai , λ  and pγ ak , λ  as in LASSO. Here, we introduce a new set of 

parameters θik = ai − ak, which are equivalent to the pairwise differences of healthcare center 

effects. Consequently, the above minimization problem (2.3) can be transformed into the 

following constraint optimization problem:

F0 a, β, θ = − ℓ a, β +
i < k

pγ θik , λ  subject to ai − ak − θik = 0, (2.4)

where θ = θik, i < k ⊤. As a result, the alternating direction method of multipliers (ADMM) 

algorithm can be used to identify the groups in the objective function (2.4). The ADMM 

algorithm combines the strengths of dual decomposition and augmented Lagrangian 

methods for constrained optimization. The estimates of the parameters are obtained by the 

augmented Lagrangian

F a, β, θ, v = F0 a, β, θ +
i < k

vik θik − ai + ak + ϑ
2 i < k

θik − ai + ak
2, (2.5)

where v = vik, i < k ⊤ are Lagrange multipliers, ϑ is the penalty parameter. We use ADMM 

to iteratively compute the estimates of a, β, θ, v . For given θ s , v s  at step s, the iterations 

can be specified as follows:

a s + 1 , β s + 1 = arg min
a, β

F a, β, θ s , v s , (2.6)
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θ s + 1 = arg min
θ

F a s + 1 , β s + 1 , θ, v s , (2.7)

vik
s + 1 = vik

s + ϑ ai
s + 1 − ak

s + 1 − θik
s + 1 . (2.8)

To update a and β, minimizing (2.6) is equivalent to minimizing

f a, β = − ℓ a, β + ϑ
2 i < k

ai − ak − θik
s + ϑ−1vik

s 2 + C, (2.9)

where C is the constant independent of a and β. To solve the optimization problem 

(2.9), we approximate the nonlinear logpartial likelihood function using a two-term 

Taylor series expansion. At each iteration, we solve a reweighted least squares 

problem 19. Specifically, let y = y1
⊤, ⋯, ym

⊤ ⊤ with yi = yi1, ⋯, yini
⊤, X = X1

⊤, ⋯, Xm
⊤ ⊤ with 

Xi = xi1, ⋯, xini
⊤,  A = diag 1n1, ⋯, 1nm  with 1ni = 1, ⋯, 1 ⊤ being the vector with ni ones, and 

η = Aa + Xβ. Let ℓ′ η , ℓ″ η  denote the gradient and Hessian of the log-partial likelihood 

with respect to η, respectively. The log-partial likelihood ℓ a, β  can be approximated by the 

following quadratic form (see the supplementary material)

1
2 z − Aa − Xβ

⊤
ℓ″ η z − Aa − Xβ

where z = η − ℓ″ η −1 ℓ′ η  with

∂ ℓ η
∂ηij

= δij − exp ηij
i′j′ ∈ Dij

1
uv ∈ Ri′j′ exp ηuv

,

∂2 ℓ η
∂ηij

2 = − exp ηij
i′j′ ∈ Dij

1
uv ∈ Ri′j′ exp ηuv

+ exp 2ηij
i′j′ ∈ Dij

1

uv ∈ Ri′j′ exp ηuv
2,

where Dij is the set of indices i′j′ with ti′j′ < yij (the times for which observation of the i th 

subject in the j th center is still at risk) and Ri′j′ is the set of indices uv with yuv ≥ ti′j′ (those at 

risk at time ti′j′). Since ℓ″ η  is a full matrix, it requires computation of O N2  elements, we 

instead replace ℓ″ η  by a diagonal matrix with the same diagonal elements as ℓ″ η .20,21,19 

This substitution works well because the diagonal elements of ℓ″ η  are much larger than 

the off-diagonal elements. Denote − ℓ″ η  by W .  W and z are computed based on a s  and 

β s  at iteration s. Equation (2.9) can be rewritten as

f a, β = 1
2 z − Aa − Xβ

⊤
W z − Aa − Xβ + ϑ

2 ∥ Δa − θ s + ϑ−1v s ∥2

+ C,
(2.10)
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where Δ = ei − ej , i < j ⊤ with ei being a m × 1 vector whose i th element is 1 and the 

remaining elements are 0. Thus, for given θ s , v s  at the sth step, we set the derivatives 

∂f a, β / ∂a = 0 and ∂f a, β / ∂β = 0 to obtain the following updates a s + 1  and β s + 1 :

a s + 1 = A⊤QxA + ϑΔ⊤Δ −1 A⊤Qxz + ϑΔ⊤ θ s − ϑ−1v s (2.11)

where Qx = W − WX X⊤X −1X⊤W. We let a s + 1 = a s + 1 − mean a s + 1  to guarantee 

that the estimate a s + 1  satisfies the constraint ∑i = 1
m ai = 0, and

β s + 1 = X⊤WX −1X⊤W z − Aa s + 1 . (2.12)

To update θ, we minimize the function

ϑ
2 θik − πik

s 2 +
i < k

pγ θik , λ

where πik
s = ai

s − ak
s + ϑ−1vik

s . It is worth noting that by using the concave penalties, the 

objective function F a, β, θ, v  is no longer a convex function. However, it is convex with 

respect to each θik when γ > 1/ϑ + 1 for the SCAD penalty; consequently, given a, β, v , the 

minimizer of F a, β, θ, v  with respect to θik is unique and has a closed-form solution as 

follows:

θik
s + 1 =

S πik
s , λ/ϑ πik

s ≤ λ + λ/ϑ,
S πik

s , γλ/ γ − 1 ϑ
1 − 1/ γ − 1 ϑ λ + λ/ϑ < πik

s ≤ λγ,

πik
s πik

s > λγ,

(2.13)

where S x, t = x 1 − t/ x + is a groupwise soft thresholding operator. Finally, the Lagrange 

multiplier vik is updated by (2.8). This process is conducted iteratively until the convergence 

over a grid of values for λ. The iterative algorithm terminates when primal residuals 

rprimal 
s + 1 = Δa s + 1 − θ s + 1  and dual residuals rdual 

s + 1 = ϑΔ⊤ θ s + 1 − θ s  are close to zero, i.e., 

∥ rprimal 
s + 1 ∥ < ϵprimal 

s + 1  and ∥ rdual 
s + 1 ∥ < ϵdual 

s + 1 , where ϵdual 
s + 1  and ϵprimal 

s + 1  are specified as suggested by Boyd 

et al.18 It is important to find appropriate initial values for the ADMM algorithm. In this 

paper, the initial values a 0  are obtained from the fixed effects Cox model, then we set 

θik
0 = ai

0 − ak
0  and v 0 = 0. If θ̂ik = 0, ai and ak are classified into the same group. As a result, 

we obtain K̂ estimated groups Ĝ1, ⋯, ĜK̂, and set αk to be the common value of ai ’s from the k
th group.

Due to the approximation in the computation, Equation (2.10) does not fully capture 

parameter information, and the iteration may also lead to a loss in efficiency. Once the 

groups have been identified, we conduct a refitting step to estimate a and β by maximizing 

the following log-partial likelihood with the grouped information:
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ℓ α, β =
k = 1

K

i = Ĝk j = 1

ni

δij αk + xij
⊤β − log

i′j′ ∈ Rij, i′ ∈ Ĝk

exp αk + xi′j′
⊤ β , (2.14)

where α = α1, ⋯, αK̂
⊤, and Rij is the set of indices i′j′ with yi′j′ ≥ tij (those at risk at time 

tij). Here rather than the constraint ∑i = 1
K̂ αk = 0 (as for ai in Section 2.1), we assume that 

αk̂ = 0 to simplify the interpretation, where k̂ = arg mink = 1, ⋯, K̂ αk . The above procedure can be 

conveniently implemented using R function coxph, which also provides standard errors and 

p-values of α and β.

After obtaining a path of solutions, it becomes essential to choose an optimal tuning 

parameter λ by minimizing the modified Bayesian Information Criterion (BIC) using a grid 

search.22. The BIC is given by

BIC λ = − 2 ℓ a λ , β λ + CN K λ + p log N,

where â λ , β λ  and K λ  are the estimates of a, β and K at given λ, respectively. 

ℓ â λ , β λ  is the log-partial likelihood evaluated at â λ  and β̂ λ , p is the dimension of 

the parameter β, and CN is a positive number depending on the total number of observations 

N = ∑i = 1
m ni. If CN = 1, the modified BIC reduces to the traditional BIC23 Following Wang et 

al22, CN = log log N + p .

We summarize our method in Algorithm 1 below.

Algorithm 1 ADMM algorithm for healthcare center clustering

Require: Initialize θ 0
 and v 0 .

 for s = 0,1,2,⋯do

  Compute a s + 1  using (2.11)

  Compute β s + 1
 using (2.12)

  Compute θ s + 1
 using (2.13)

  Compute v s + 1  using (2.8)

  if the convergence criterion is met, then

   Stop and denote the last iteration by a λ , β λ ,

  else

   s = s + 1.

  end if

 end for

 After identifying the groups, estimate α, β  using (2.14).
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Ensure: Output

3 | SIMULATION

In this section, we evaluate the finite sample performance of the proposed methods through 

simulation studies. Conventionally, in Model (2.1), the healthcare center effect ai is treated 

as either a random effect or a fixed effect. We compare our fused effects model with 

SCAD penalty (SCAD) to the random effects model (RE) and fixed effects model (FE). 

Specifically, we examine the efficiency of estimation and the accuracy of healthcare center 

classification. We consider two different numbers of centers, m = 50 and 100, and obtain all 

simulation results via 100 replicates.

Example 1. To assess the relative performance of different models, we mimic the censoring 

rate observed in the real-life application of kidney transplant centers in Section 4. We 

assume that among the m center effects ai ’s, 10% are set to - 1, representing healthcare 

centers performing “better than expected,” 10% are set to 1, indicating centers performing 

“worse than expected,” and the remaining 80% are set to 0, representing centers performing 

“as expected.” The survival time is generated from the Weibull distribution with scale and 

shape parameters of 2 and 3, respectively. The censoring time is generated from a uniform 

distribution U 0,1  to achieve approximately a 70% censoring rate, which is close to the real 

data. The covariates xij = xi1, xi2
⊤ are generated from the multivariate normal distribution 

with mean 0, variance 1 and an exchangeable correlation ρ = 0.2. The coefficient β = 2,2 ⊤. 

We consider the number of patients in each center ni ~ Uniform (50,100).

The Rand Index (RI)24 is employed to assess the level of agreement between the estimated 

partitions and the true partitions. Each pair of observations ai and ak falls to one of four 

categories: (i) true positive (TP) where ai and ak from the same group are assigned to the 

same cluster; (ii) true negative (TN) where ai and ak from different groups are assigned to 

different clusters; (iii) false negative (FN) where ai and ak from different groups are assigned 

to the same cluster; (iv) false positive (FP) where ai and ak from the same group are assigned 

to different clusters. The Rand Index is given by

RI = TP+TN
TP+FP + TN + FN = TP+TN

N
2

.

Intuitively, TP and TN represent agreement between the true group and the estimated cluster, 

while FP and FN indicate disagreement between the true group and the estimated cluster. RI 

ranges from 0 to 1, with a larger value indicating a higher degree of agreement.

The top panel of Table 1 presents the mean, median, and standard deviation (SD) of the 

estimated number of groups K, the percentage of K̂ equal to the true number of groups 

(per), and the RI for evaluating the classification accuracy. As expected, the RI and the 

percentages of correctly classifying centers in comparison to the reference are very close to 
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1 and improve as m increases. To visually display the distribution of K, the histograms of K
are depicted in Figure 1

Let α1, α2 and α3 be the average estimates of center effects from “better than expected”, 

“as expected”, and “worse than expected” groups, with true values being −1,0 and 1, 

respectively. The top panel of Table 2 presents the bias, the standard deviation (SD), the 

standard error (SE), and the coverage probability of 95% confidence intervals (CP) of the 

estimators α1 and α3. The estimator α2 serves as a reference, such as the national norm. The 

Oracle estimators are obtained with a priori knowledge of the true grouping information. As 

not all replications are clustered into three groups by SCAD, we only use the replications 

with the estimated number of groups equal to three to compute the bias, SD, SE, and CP 

of α1 and α3. For the Oracle, the measures are calculated based on all 100 replications. 

From Table 2. We notice that our method performs very closely to the Oracle, as it can 

accurately recover the group structure. Evidently, our estimators α1 and α3 align well with the 

corresponding true values on average for all cases. The inference is also adequately precise, 

with a strong correspondence between SD and SE, and the coverage probabilities are near 

the nominal level of 0.95. All the original estimates of α1, α2, and α3 without the refitting step 

are reported in Table S1 of the supplementary material.

We compute the mean squared error (MSE) of â using the formula ∑i = 1
m âi − ai

2/m for each 

replicated dataset. The top panel of Table 3 presents the MSE of the estimator â, the bias, 

the standard deviation (SD), the standard error (SE), and the coverage probability of 95% 

confidence intervals (CP) for the estimators β̂1 and β̂2. It is worth mentioning that, in contrast 

to Table 2, which only displays results for replications with an estimated group count of 

three, Table 3 includes results for all replicates, regardless of whether the estimated number 

of groups is three or not. The MSEs of â from our fused effects model are much smaller than 

those from the random effects and fixed effects models in all cases. As a result, our method 

not only accurately classifies centers but also obtains precise estimates of these centers. To 

graphically visualize the numerical results of Table 3, the boxplots of the MSE of â are 

depicted in Figure 2 For the estimators β̂, our method and the random effects model exhibit 

satisfactory performance, while the fixed effects model yields larger bias.

Example 2. In this example, we generate the covariates xij = xi1, xi2
⊤ from the multivariate 

normal distribution with mean 0, variance 1, and an exchangeable correlation ρ = 0.2. The 

survival time is generated from the Weibull distribution with scale and shape parameters 

being 2 and 3, respectively. The censoring time is generated from a uniform distribution 

U 0,1  to achieve about a 70% censoring rate. We set the coefficient β = 0.1,0.1 ⊤, and the 

number of patients in each center ni ~ Uniform (50, 100). To demonstrate the robustness of 

our method, ai is simulated from the standard normal distribution N 0,1 . Consequently, the 

random effects model is the correct model.

The grouping results of ai using our method are presented in the second panel of Table 1 The 

median of the estimated number of groups K̂ is 8 with m = 50 and 9 with m = 100. The fusion 

penalty generally tends to select fewer groups for m = 50 and more groups for m = 100. As 
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the number of parameters increases with m, the median and the standard deviation of K also 

grow. To graphically visualize the distribution of K, the histograms of K are shown in Figure 

1

The second panel of Table 3 presents the mean squared error (MSE) of the estimator â, the 

bias, the standard deviation (SD), the standard error (SE), and the coverage probability of 

95% confidence intervals (CP) for the estimators β1 and β2. From Table 3. we observe that 

the MSE values of â using our method are smaller than those in the fixed effects model. 

Moreover, our method outperforms the random effects model when the number of centers 

is small m = 50 , likely due to the shrinkage of the predicted values of ai ’s in the random 

effects model. As the number of centers increases, the random effects model performs the 

best, but our method’s performance is only slightly worse than the random effects model and 

still much better than the fixed effects model. All methods exhibit similar performance in 

estimating β1 and β2.

Example 3. In this example, we evaluate the performance of the proposed model with four 

groups. The covariates xij, β, ni,  ℎ0 t , and the censoring time are generated from the same 

distributions as in Example 1. We assume that among the m center effects ai ’s, 10% are set 

to 1 and 10% are set to 2, indicating centers performing at different levels of “worse than 

expected”; 20% are set to −1.5, signifying centers performing “better than expected”; the 

remaining 60% are set to 0, indicating centers performing “as expected”.

The grouping results of âi using our method are presented in the bottom panel of Table 

1, where the medians of K̂ over the 100 replicates are 4, which is the true number of 

subgroups, and the mean values are very close to 4. Furthermore, the RI values and the 

percentage of correctly selecting the number of subgroups approach 1. Therefore, our 

methods perform well in cases with an even number of groups. To graphically visualize 

the distribution of K, the histograms of K are shown in Figure 1.

Let α1, α2, α3, and α4 be the average estimates for the ai ’s from four groups where the true 

values are −1.5,0,1, and 2, respectively. The bottom panel of Table 2 presents the bias, 

the standard deviation (SD), the standard error (SE), and the coverage probability of 95% 

confidence intervals (CP) for the estimators α1, α3, and α4. The estimator α2, which has the 

smallest absolute value, is set as the reference. From the bottom panel of Table 2. we can see 

that the means of α1, α3, and α4 are close to the true values and the Oracle estimators. We also 

observe that the SDs of α1, α3, and α4 are close to the corresponding SEs, resulting in valid 

coverage probabilities.

The bottom panel of Table 3 reports the MSE of the estimator â, the bias, the standard 

deviation (SD), the standard error (SE), and the coverage probability of 95% confidence 

intervals (CP) for the estimators β̂1 and β̂2. From the bottom panel of Table 3 we observe 

that the MSE values of â using SCAD are smaller than those of the random effects and 

fixed effects models. For the estimators β, our method and the random effects model exhibit 

satisfactory performance, while the fixed effects model produces larger bias. These results 

indicate that the proposed method performs well with an even number of groups.
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4 । APPLICATION

To demonstrate the proposed methods, we conduct an evaluation of kidney transplant centers 

using the national kidney transplant registry data obtained from the U.S. Organ Procurement 

and Transplantation Network (https://optn.transplant.hrsa.gov/data/). We limit the study 

cohort to adult kidney transplant recipients (age ≥ 18) who received a transplant between 

January 1, 2007, and December 31, 2007. The analysis cohort includes 4198 patients from 

60 centers, with the number of patients per center ranging from 50 to 100. In our dataset, 

out of 4198 patients who received their kidney transplant in 2007, 1137 (27.1%) either died 

or experienced graft failure within five years after receiving a kidney transplant. All others 

were censored at five years of follow-up. In our survival analysis, the failure time (termed 

“graft survival”) tij is defined as the duration (in years) from transplantation to graft failure 

or death, whichever occurred first. The censoring time cij is at the end of the five-year period 

after the transplantation. Thus, the observed time to event is yij = min tij, cij , with a 72.9% 

censoring rate. We apply our method to investigate the risk factors of five-year graft survival 

using Cox’s proportional hazards model and assess the performance of centers concerning 

their graft outcomes.

The study cohort included 15 baseline characteristics of donors and recipients. The 

characteristics of the study population are as follows: Time on end-stage renal disease 

(ESRD, reference: <1 years), donor age (reference: 30–45 years old), donor gender (male 

= 1, female=0), donor body mass index (BMI, reference: normal), donor race (reference: 

white), donor history of hypertension (DON-HTN, yes=1, no=0), donor meeting expanded 

criteria (DON-EC, yes=1, no=0), recipient gender (male = 1, female=0), recipient race 

(reference: white), recipient insulin dependent diabetes (REC-DIAB Type I, yes=1, no=0), 

recipient non-insulin dependent diabetes (REC-DIAB Type II, yes=1, no=0), recipient age 

at transplant (REC-AGE, reference: 50–60), recipient body mass index (reference: normal), 

recipient previous kidney transplant (REC-PREV-KI, yes=1, no=0), recipient total cold 

ischemia time (REC-COLD-ISCH, > 20 hours = 1,< 20 hours =0).

We use the Akaike Information Criteria (AIC) to assess the performance of three methods. 

A smaller value of AIC indicates better performance. When treating the center effect ai as a 

random intercept, we obtain an AIC of 18501.43. For the fixed effects model, the AIC value 

is 18535.64. If ai is estimated by our fused effects model, the 60 centers are classified into 3 

groups with an AIC of 18451.24. Our method leads to a significant improvement in model 

fitting.

Table 4 reports the estimate (Est.), standard error (SE), and p-value of β̂ for testing the 

significance of the coefficients by our fused effects model with the SCAD penalty (SCAD), 

the fixed effects model (FE) and the random effects model (RE). Longer time spent in 

end-stage renal disease, donor age over 60, black donor, donor history of hypertension, 

black recipient, recipient aged 60 or older at transplant, recipient with non-insulin dependent 

diabetes, and donor with low body mass index all have a significantly worse effect on 

five-year graft survival according to all three methods, with p-values less than 0.05. Asian 

recipients, on the other hand, tended to experience better survival outcomes.
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Next we utilize the standardized mortality ratio (SMR) as an evaluation measure to assess 

center-specific survival, defined as the ratio of the observed number of deaths at a given 

center to the number expected if the center had mortality equal to the population average25,4. 

An SMR greater or smaller than 1 indicates that the center’s observed mortality ratio is 

under-performing or over-performing relative to the population norm, respectively. Let αk

be the common value of estimators ai ’s in group Gk with k = 1,2, 3. Table 5 reports the 

estimates α1 and α3 relative to a reference α2 and the number of elements (num.) in each 

group, standard error (SE), p-value and SMR by our fused effects method. We identify 

75.0% (45) of centers as the reference, 10.0% (6) of centers better than the reference and 

15.0% (9) of centers worse than the reference. The estimated SMR of better and worse 

centers are 0.574 and 1.636, respectively.

In our national kidney transplant dataset, we only have a center-specific factor - the numbers 

of patients within a center (denoted by center size ni). Since center-level confounder, e.g., 

ni is not identifiable with the center-specific effect ai, we cannot include ni directly in our 

model. Along the lines of He et al.4, we instead fit the model ni = βâi + ϵi, where âi is the 

estimated center specific effect. The p-value is 0.915, suggesting a minimal correlation 

between the center-specific effects and the center size. This observation is further supported 

by the boxplots in Figure 3.

5 | DISCUSSION

In this study, we proposed an innovative fusion method to assess healthcare centers 

concerning survival outcomes. Our method proves more efficient than the fixed effects 

model by using fewer parameters for healthcare centers. Additionally, it outperforms random 

effects models in identifying healthcare centers with better classification accuracy and lower 

bias. Through simulation studies, we demonstrated that our method surpasses existing 

approaches in performance. Our model can be thought as an alternative way to latent 

class models, as we use fusion penalty to classify different healthcare centers into latent 

subgroups.

There are several potential extensions for our method. First, when the number of 

centers is very large, fitting the pairwise fusion penalized Cox model directly becomes 

computationally demanding. In such cases, we could employ the divide-andconquer 

strategy26, which typically involves dividing the full sample into multiple subsets, solving 

the optimization problem for each subset, and combining the subset-specific estimates into 

a single estimate. Second, our method can be applied to cluster regression coefficients in 

the Cox’s proportional hazards model when parameters are partially heterogeneous across 

subgroups. For instance, grouping treatment heterogeneity can enable the provision of 

precise medical treatments to diverse patient subgroups27.17.

Finally, it is of interest to consider more sophisticated hierarchical data, e.g., patients 

clustered within practitioners which are clustered within practices. For this case, a three-

level Cox’s proportional hazards model with two fusion effects can be proposed. Let xijk

denote the covariates for patient k nested within doctor j in center i, the three-level Cox 

model can be written as
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ℎijk t ∣ xijk = ℎ0 t exp ai + bij + xijk
⊤ β ,

where ai is the center-specific effect, bij is the practitioner-specific effect, ℎijk t  is the hazard 

for patient k treated by practitioner j in center i at time t, and ℎ0 t  is a baseline hazard 

function. We can cluster ai and bij by using two fusion penalties. Estimation and inference of 

this model is of future interest.
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FIGURE 1. 
The histograms of K in Example 1–3.
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FIGURE 2. 
The boxplots of the MSE of â with m = 50 and m = 100 in Example 1.
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Figure 3. 
The boxplots of center size from three groups in the national kidney transplant study.
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TABLE 1

The mean, median, and standard deviation (SD) of K, the percentage (per) of K equal to the true number of 

subgroups, and the Rand Index (RI) value by our method with m = 50,100 in Examples 1 to 3, respectively.

m mean median SD per RI

Example 1 50 3.08 3.00 0.339 0.91 0.960

100 3.05 3.00 0.261 0.93 0.969

Example 2 50 8.23 8.00 1.362

100 9.43 9.00 1.653

Example 3 50 4.06 4.00 0.343 0.91 0.963

100 4.04 4.00 0.281 0.92 0.970
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TABLE 2

The bias, standard deviation (SD), standard error (SE), and the coverage probability of 95% confidence 

intervals (CP) of the estimators in Example 1 and Example 3.

m=50 m=100

m Method Bias SD SE CP Bias SD SE CP

Example 1 α1 SCAD 0.014 0.090 0.113 98.9 0.008 0.070 0.078 97.8

Oracle 0.009 0.094 0.105 96.0 0.018 0.078 0.074 94.0

α3 SCAD 0.028 0.094 0.086 91.5 0.010 0.055 0.061 97.8

Oracle 0.006 0.094 0.084 92.0 0.006 0.055 0.060 98.0

Example 3 α1 SCAD 0.009 0.086 0.087 93.4 0.004 0.063 0.062 97.4

Oracle 0.004 0.082 0.087 95.0 0.002 0.061 0.062 98.0

α3 SCAD 0.005 0.069 0.089 97.8 0.019 0.058 0.062 94.8

Oracle 0.004 0.084 0.086 96.0 0.004 0.059 0.061 94.0

α4 SCAD 0.006 0.088 0.085 92.3 0.008 0.057 0.060 93.5

Oracle 0.009 0.087 0.085 93.0 0.006 0.055 0.060 96.0
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TABLE 3

The bias, standard deviation (SD), standard error (SE), and the coverage probability of 95% confidence 

intervals (CP) of the estimators in Examples 1 to 3.

a β 1 β 2

Method MSE Bias SD SE CP Bias SD SE CP

Example 1 50 SCAD 0.022 0.011 0.043 0.045 95.0 0.012 0.043 0.045 95.0

FE 0.078 0.029 0.045 0.047 91.0 0.026 0.045 0.047 94.0

RE 0.189 0.005 0.044 0.046 97.0 0.008 0.044 0.046 95.0

Oracle 0.002 0.003 0.043 0.046 97.0 0.005 0.043 0.046 94.0

100 SCAD 0.017 0.002 0.034 0.032 93.0 0.004 0.033 0.032 94.0

FE 0.074 0.034 0.032 0.033 88.0 0.032 0.034 0.033 87.0

RE 0.034 0.001 0.032 0.033 95.0 0.001 0.033 0.033 94.0

Oracle 0.001 0.002 0.032 0.032 95.0 0.001 0.033 0.032 93.0

Example 2 50 SCAD 0.321 0.001 0.032 0.030 93.0 0.002 0.031 0.030 94.0

FE 1.183 0.002 0.033 0.030 93.0 0.002 0.031 0.030 94.0

RE 1.810 4e-4 0.032 0.030 94.0 0.003 0.031 0.030 94.0

100 SCAD 0.242 0.002 0.019 0.021 97.0 0.002 0.022 0.021 93.0

FE 1.080 0.001 0.020 0.021 98.0 0.003 0.022 0.021 93.0

RE 0.060 0.001 0.019 0.021 98.0 0.001 0.022 0.021 93.0

Example 3 50 SCAD 0.016 0.004 0.047 0.046 94.0 0.007 0.044 0.046 97.0

FE 0.079 0.031 0.046 0.047 90.0 0.027 0.045 0.047 92.0

RE 0.847 0.003 0.045 0.046 96.0 0.006 0.044 0.046 96.0

Oracle 0.003 9e-5 0.044 0.046 96.0 0.003 0.042 0.046 97.0

100 SCAD 0.012 0.001 0.033 0.032 94.0 1e-4 0.032 0.032 92.0

FE 0.077 0.035 0.032 0.033 88.0 0.034 0.033 0.032 89.0

RE 0.039 0.003 0.032 0.033 94.0 0.001 0.033 0.033 92.0

Oracle 0.001 0.003 0.032 0.032 94.0 0.002 0.033 0.032 92.0
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TABLE 4

The estimates (Est.), standard error (SE), and P-value of β in the national kidney transplant study.

Variable Fused FE RE

Est SE P-value Est SE P-value Est SE P-value

Time on ESRD

 < 1 years Ref

 1–5 years 0.093 0.041 0.022 0.100 0.041 0.015 0.086 0.041 0.035

 > 5 years 0.150 0.040 0.000 0.142 0.042 0.001 0.143 0.041 0.001

Donor age

 < 15 −0.063 0.044 0.149 −0.073 0.044 0.098 −0.069 0.044 0.114

 15–30 −0.066 0.042 0.113 −0.067 0.042 0.112 −0.075 0.042 0.073

 30–45 Ref

 45–60 0.073 0.040 0.068 0.076 0.040 0.061 0.075 0.040 0.062

 > 60 0.113 0.043 0.009 0.115 0.044 0.009 0.114 0.043 0.009

Donor race

 White Ref

 Black 0.066 0.028 0.021 0.072 0.029 0.015 0.071 0.029 0.013

 Asian 0.001 0.030 0.987 0.004 0.031 0.908 0.001 0.030 0.969

DON-HTN 0.090 0.035 0.011 0.088 0.036 0.014 0.087 0.035 0.014

DON-EC −0.003 0.045 0.953 −0.002 0.046 0.973 −0.003 0.046 0.947

Recipient gender 0.048 0.030 0.115 0.053 0.031 0.086 0.053 0.031 0.083

Recipient race

 White Ref

 Black 0.079 0.030 0.009 0.090 0.034 0.008 0.091 0.032 0.004

 Asian −0.100 0.037 0.007 −0.105 0.038 0.005 −0.099 0.037 0.008

Recipient BMI

 Normal Ref

 Under 0.054 0.029 0.068 0.050 0.030 0.093 0.054 0.030 0.070

 Over 0.005 0.037 0.896 0.003 0.038 0.934 −0.001 0.037 0.971

 Obesity 0.026 0.037 0.484 0.024 0.038 0.530 0.027 0.037 0.472

REC-PREV-KI 0.046 0.030 0.127 0.038 0.031 0.220 0.053 0.030 0.084

REC-COLD-ISCH 0.006 0.030 0.837 −0.004 0.033 0.895 0.014 0.031 0.662

REC-AGE

 18–35 0.050 0.034 0.150 0.055 0.035 0.116 0.045 0.035 0.189

 35–50 −0.029 0.038 0.439 −0.025 0.039 0.520 −0.029 0.038 0.449

 50–60 Ref

 60–70 0.112 0.034 0.001 0.110 0.035 0.001 0.114 0.034 0.001

 > 70 0.082 0.030 0.006 0.081 0.030 0.007 0.095 0.030 0.001

REC-DIAB

 Type I 0.056 0.029 0.054 0.061 0.030 0.042 0.057 0.030 0.055

 Type II 0.075 0.030 0.012 0.071 0.031 0.021 0.075 0.030 0.014

Donor gender 0.005 0.030 0.872 0.007 0.030 0.818 0.005 0.030 0.863
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Variable Fused FE RE

Est SE P-value Est SE P-value Est SE P-value

Donor BMI

 Normal Ref

 Under 0.104 0.037 0.005 0.108 0.037 0.004 0.103 0.037 0.005

 Over 0.037 0.035 0.292 0.036 0.035 0.300 0.034 0.035 0.329

 Obesity −0.008 0.035 0.815 −0.009 0.035 0.798 −0.003 0.035 0.927
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TABLE 5

Results of αi in the national kidney transplant study.

α1 α2 α3

Est −0.556 ref 0.492

num 6 45 9

SE 0.129 ref 0.073

P-value <0.001 ref <0.001

SMR 0.574 1.000 1.636
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