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Abstract

Drug synergy allows reduced dosing, side effects and tolerance. Optimization of drug synergy 

chemotherapy is fundamental in acute lymphocytic leukemia and other cancers. This study aimed 

to analyze the pharmacodynamic synergy between the anti-metabolite cytarabine and WEE1 

inhibitor adavosertib on acute leukemia cell lines CCRF-CEM and Jurkat. In both cell lines 

analysis of concentration-inhibition curves of adavosertib-cytarabine combinations and synergy 

matrixes supported mutually synergistic drug interactions. Overall mean ( ± SD) synergy scores 

were higher in Jurkat than CCRF-CEM: Jurkat, ZIP 22.51 ± 1.1, Bliss 22.49 ± 1.1, HSA 23.44 

± 1.0, Loewe 14.16 ± 1.2; and, CCRF-CEM, ZIP 9.17 ± 1.9, Bliss 8.13 ± 2.1, HSA 11.48 

± 1.9 and Loewe 4.99 ± 1.8. Jurkat also surpassed CCRF-CEM in high-degree synergistic 
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adavosertib-cytarabine interactions with mean across-models synergy values of ~89.1% ± 2.9 

for 63 nM cytarabine-97 nM adavosertib (91.4% inhibition synergy barometer). Combination 

sensitivity scores scatter plots confirmed combination’s synergy efficacy. This combined approach 

permitted identification and prioritization of 63 nM cytarabine-97 nM adavosertib for multiple 

endpoints analysis. This combination did not affect PBMC viability, while exhibiting Jurkat 

selective synergy. Immunoblots also revealed Jurkat selective synergistically increased γH2AX 

phosphorylation, while CDC2 phosphorylation effects were attributed to adavosertib’s WEE1 

inhibition. In conclusion, the high synergistic efficacy combination of cytarabine (63 nM) and 

adavosertib (97 nM) was associated with remarkable alterations in metabolites related to the Krebs 

cycle in Jurkat. The metabolic pathways and processes are related to gluconeogenesis, amino 

acids, nucleotides, glutathione, electron transport and Warburg effect. All above relate to cell 

survival, apoptosis, and cancer progression. Our findings could pave the way for novel biomarkers 

in treatment, diagnosis, and prognosis of leukemia and other cancers.
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1. Introduction

Leukemia accounts for approximately 2.5% of all new cancer incidence and 3.1% of 

cancer-related mortality worldwide with 474,519 new cases and 310–330,000 deaths of 

leukemia reported in 2020, with males population having a mortality rate almost double 

when compared to women [1,2]. Leukemia ranks 10th in the estimated number of cancer 

deaths worldwide [1,2]. Of the four main types of leukemias, acute lymphoblastic leukemia 

(ALL) has the second highest mortality rate of leukemias worldwide with 79,662 deaths 

(14.24% of total leukemia deaths) reported in 2020 [2]. Globally ALL is the principal 

contributor to incident cases in individuals between the ages of 0 and 59 years old, and the 

age-standardized incidence rate is expected to increase for all sub-types of leukemia, with 

the highest increase (31.1%) predicted for ALL [2]. In the United States leukemia is the 

ninth highest cancer type to produce new cases in men and tenth in women and the estimated 

deaths for 2023 have leukemia placed in the sixth position for highest deaths in men and 

seventh for women [3].

Indeed, acute lymphoblastic leukemia (ALL) is a rapidly progressing, low survival rate 

cancer mostly affecting children [4-6]. Current therapies for leukemia focus on DNA 

damaging treatments (DNAdt) such as chemo and radiation therapies. Cytarabine (cytosine 

arabinoside or ara-C), is widely used in ALL, acute myeloid leukemia (AML), chronic 

myelogenous leukemia (CML), and non-Hodgkin’s lymphoma [7]. This antimetabolite 

and nucleoside analog can produce DNA damage, inhibition of both DNA and RNA 

polymerases, and cell death. Like many DNAdt, cytarabine produces many debilitating 

side effects, toxicities, and rapid development of resistance. Cytarabine is still used as 

induction and consolidation phase therapy in ALL and other cancers. Several cytarabine 

resistance development mechanisms include inactivation by deamination and increase in cell 

time for DNA repair by overexpression of the G2-M checkpoint kinase Wee-1 (Wee1) [8]. 
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Wee1 inhibitors including adavosertib (MK-1775, AZD-1775) have been shown to overcome 

chemo-resistance in a variety of cancer models [8]. Adavosertib and Wee1 inhibitors (Zn-

C3; Debio 0123; SY4835; and IMP7068) are promising in ALL and other cancers as single 

and drug combination therapy [4] as revealed by prior and ongoing clinical trials [4,9,10].

Furthermore, Wee-1 is overexpressed in most cancer cells and phosphorylation of its 

immediate substrate (CDC2; CDK1) will halt cell cycle progression at the G2-M phase 

[11]. Delay in G2-M phase transition allows more time for DNA repair, allowing the cancer 

cell to enter mitosis “undamaged”. Inhibition of Wee1 abrogates the extended pause in the 

G2-M catapulting cancer cells into a mitotic catastrophe and apoptosis. Adavosertib has 

undergone a series of clinical trials [12], including as single agent treatment in patients 

with refractory solid tumors [13]. The drug has a proliferation inhibitory effect and induces 

apoptosis in sarcoma and acute lymphoblastic leukemia cells [14,15]. In combination with 

other drugs, such as bortezomib, apoptosis was induced in multiple myeloma (MM) cell 

lines, more efficiently than utilizing isolated drugs [16]. Adavosertib sensitized myeloid 

leukemia cells to the inhibitory effects of cytarabine (AML, CML and MDS cells) and 

induction of apoptosis in myeloid cancer cells [17]. In the Jurkat ALL model adavosertib 

and cytarabine interactions were reported using a limited set of drug combinations and 

synergy analysis tools [18].

Drug synergy permits enhanced therapeutic efficacy at lower drug concentrations 

(chemosensitization), concomitant diminished drug(s) toxicity and decreased development 

of refractoriness-tolerance. Today, expanded models (Loewe, Bliss, highest single agents 

(HSA), and zero interaction potential (ZIP)) and web-based methods (Compusyn, 

Combenefit, SynergyFinder Plus, MuSyc, others) provide additional analytical capabilities 

[19]. We hypothesize and demonstrate that a comprehensive drug synergy analysis in 

leukemic cells permits selection and prioritization of highly synergistic drug combinations 

for multiple endpoints assessment. Specifically, our study focuses on cytarabine and 

adavosertib in the Jurkat and CCRF-CEM ALL model systems. A stepwise approach was 

applied in the selection and prioritization of drug combinations displaying high degree 

of synergistic interactions and efficacy to evaluate the effect in highly proliferating non-

cancerous T-Cells, low proliferating PBMC’s from a non-cancerous donor, and a series of 

mechanistic end points of the cell cycle, DNA damage and the Jurkat metabolome. The 

results shed light on the translation of this drug combination in ALL treatment and provide a 

framework for synergy-based pharmacometabolomics in cancer.

2. Materials and methods

2.1. Cell lines, reagents, and culture conditions

Human cell lines Jurkats Clone E6–1 (ATCC TIB-152) and CCRF-CEM (ATCC CCL-119) 

were obtained from American Type Culture Collection (ATCC) (Virginia, USA) as 

mycoplasma-free cell lines authenticated by comparing their STR profile with the ATCC 

Human Cell STR Database. Human cell lines Jurkats Clone E6–1 and CCRF-CEM obtained 

from ATCC, were maintained in RPMI 1640 medium supplemented with 10% FBS, 1% 

Antibiotic/antimycotic cocktail, at 37 °C in a 5%CO2 atmosphere. PBMC were extracted 

essentially as previously described [20] using Ficoll gradient centrifugation and cultured in 
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RPMI 1640 medium with 10% heat inactivated FBS, 1% Antibiotic/antimycotic cocktail, at 

37 °C in a 5%CO2 atmosphere. For experimental usage 6–14 cell passages for Jurkats and 

CCRF-CEM. T-Cells were isolated using Depletion Dynabeads and activated using Human 

T-Activator CD3/CD28 Dynabeads and rIL-2 (Invitrogen). Cytarabine was obtained from 

Sigma-Aldrich (Catalog number: PHR1787) and adavosertib (MK1775) from ChemBlocks 

Inc. (Catalog number: M15123). Both PBMC’s and T-Cells were extracted from healthy 

individuals following protocol approval from our Institutional Review Board (IRB).

2.2. Concentration-inhibition (dose-response) curves (CIC)

Using Falcon Corning black 384 well plates, single and combined doses of adavosertib 

and cytarabine were analyzed by Alamar Blue [21, 22] staining using a Victor Wallack 

plate reader. Cell growth curves at 96hrs determined that 4 × 104/40 μL per well was an 

acceptable amount to maintain a logarithmic growth of the cells. Concentration-inhibition 

(dose-response) curves (CIC) were done using 96 low binding plates for preparation of 

different drug concentrations and adding serial dilutions vertically and horizontally. After 

96hrs cells were treated with Alamar Blue incubated for 3hrs and analyzed. Statistical 

analysis was done using GraphPad Prism, and synergy analysis via web-based freeware 

Synergyfinder Plus (https://synergyfinderplus.org) [19], Combenefit [23] and Compusyn 

[24].

2.3. Synergy methods

The effects on leukemic Jurkat and CCRF-CEM cell proliferation of cytarabine, adavosertib, 

and their combinations were analyzed via a series of synergy models (Loewe, Bliss, 

highest single agents (HSA), and zero interaction potential (ZIP)) using Combenefit and 

SynergyFinder Plus. CIC data was transformed to data files according to the freeware’s 

format and further presented in color-coded graphical representations of heatmaps or matrix 

plots indicating synergy, no effect or antagonism. In the ZIP synergy model synergy 

scores (sigma) higher than 10 are the most interesting or significant. Across synergy 

models synergy scores of the most synergistic drug combination concentration ranges 

were organized in table format. Further pioritization and selection of the synergistic drug 

combinations for further biomarker analysis was done by CSS versus Synergy scores 

scatter SS plots, and by using a synergy barometer, where the actual drug combination 

response can be directly compared with the expectations of non-interaction among multiple 

synergy models [19]. This identification and selection were also supported using Compusyn-

generated isobologram and Fraction affected (Fa)-Combination Index (CI) plots.

2.4. Western blots

Jurkat cells were seeded and cultured in 6 well plates and drugs administered at the desired 

concentrations. After 24 h treatments samples were collected, centrifuged, and washed with 

4 mL PBS. Pellets were resuspended in PBS (300 μL), transferred to 1.5 mL conical tubes 

and mixed with cold acetone (1.2 mL) for storage overnight at −20 °C. Samples were 

then spun at 12,000 g for 10 min at 4 °C, supernatant discarded, residual acetone extracts 

dried in a speed vac, and resuspended in DDH2O, phosphate and protease inhibitors. 

After protein content estimates (Bradford assay) 10 μg protein were loaded per well, 

ran in 4–20% Mini-protean® precast gels (Bio-Rad) and transferred to PVDF membranes 
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overnight. Membranes were washed with PBS/0.4% Tween20 (5 min twice), stained with 

Indian ink (1 hr 30 min), washed with 1X TBS and dried. An image from each stained 

membrane was obtained for total protein quantification, and subsequent analysis done with 

Molecular Imager® VersaDoc™ MP Imaging Systems (Bio-Rad). After drying, rehydration 

(in methanol), and blocking (5% BSA, 0.5% Tween20, 1X TBS 20 mL) membranes were 

incubated with primary (Cell Signaling Technology®) and secondary antibodies (Sigma®) 

diluted in blocking solution: pCDC2 (Y15) (1:5,000) (Cell Signaling Technology, Catalog # 

4539 S), H2Ax (S139) (1:25000) (Cell Signaling Technology, Catalog # 9718 S) and Goat 

anti-rabbit (2ry) antibody (1:100,000) (Sigma Catalog # SAB3700878, Lot # R135256). 

Chemiluminescent signal detection was done with SuperSignal™ West Femto Maximum 

Sensitivity Substrate (West Thermo Scientific™), membranes processing and analysis with 

ChemiDOC XRS+ System™ Imaging System (Bio-Rad) and analysis with Image Lab 

Software (Bio-Rad) following manufacturer’s instructions.

2.5. Metabolomic extraction

After treating leukemic Jurkat cells for 48 h with cytarabine (63 nM), adavosertib (97 nM) 

and their combinations samples (~107 cells per sample) were homogenized in methanol 

(1 mL, 99%), homogenates shaken (15 min) and centrifuged at 13,000 rpm (10 min) (all 

at 4°C). Supernatants were evaporated, metabolites derivatized by methoxyamination in a 

solution of methoxyamine hydrochloride (Sigma-Aldrich) in pyridine (Sigma-Aldrich) and 

incubated at 37 °C for 2 h. Trimethylsilylation subsequently done adding of N-methyl-N-

trimethylsilyl-trifluoroacetamide (MSTFA+1% TMCS) (Sigma-Aldrich) (50 μL). Samples 

were incubated (65 °C, 1 hr), centrifuged (3000 rpm, 10 min at RT), and supernatants 

transferred to glass vials. Samples (20 μL) were added to glass vials with inserts and 

1 mM 2-Fluobiphenyl (Sigma-Aldrich) added as internal standard, and processed by gas 

chromatography-mass spectrometry GC/MS-QP2010 (Shimadzu, Inc.) [25-27].

2.6. Data processing and bioinformatics

Raw chromatography data were obtained and processed in GCMS Solution Post run 

Analysis software (Shimadzu Scientific Instruments, Inc., Columbia, MD) equipped with 

NIST14/2014/EPA/NIH database. Peak integrations of metabolites and extensive mass 

spectral library searches of major peaks yielded a final data set of 22 metabolic features 

selected for metabolomics analysis. Reproducibility of metabolite recovery, performance 

of sample extraction, derivatization, and instrumentation were validated by utilization 

of several blank samples for system suitability, extraction processing, and derivatization 

processing. For reproducibility of metabolic features, a pooled composite sample was 

prepared from each experimental sample, aliquoted and processed with experimental 

samples as quality control (QC) (n = 5). Systematic bias mitigation was done via 

randomization of sample analysis order. Blanks and QC samples were spaced evenly among 

injections to monitor instrument stability. Identified metabolites were transferred to a data 

matrix alongside retention time, peak area, and reference ions per metabolite. Quantitative 

analysis of metabolic feature’s concentrations per sample done by calculation of a response 

factor using the internal standard. A table containing metabolite concentrations per sample 

was analyzed via MetaboAnalyst 5.0 [28]. Samples were normalized by sample weight and 

range scaling. Data processed and statistically analyzed using multivariate, and univariate 
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analyses. Samples were normalized by sample weight and range scaling. Multivariate 

analyses consisted of principal component analysis (PCA) for variance between samples and 

partial least squares-discriminant analysis (PLS-DA) to identify groups separation. Quality 

and reliability were assessed by cross-validation using parameters R2 and Q2 (R2 measures 

degree of goodness of fit of the data; Q2 measures quality assessment). PLS-DA significance 

was assessed by Permutation Test, with ≤ 0.05 considered statistically significant. Univariate 

analyses between sample treated with cytarabine, adavosertib, the drug combination and 

control groups were assessed by one-way ANOVA with Fisher’s LSD post hoc test with p 

≤ 0.05 considered statistically significant. PLS-DA, and Heatmap plots were generated via 

MetaboAnalyst [28]. To gain insights into the underlying biological processes and metabolic 

functions affected by cytarabine, adavosertib, and their combinations, we conducted the 

metabolite set enrichment analysis (MSEA) using Metaboanalyst 5 [28].

3. Results

3.1. Concentration-inhibition curves of adavosertib and cytarabine in CCRF-CEM and 
Jurkat cells

Concentration-inhibition (dose-response) curves (CIC) determined the relative potency and 

efficacy of adavosertib, cytarabine and their combinations inhibiting proliferation of ALL 

CCRF-CEM (Figs. 1A and 1B) and Jurkat cells (Figs. 1C and 1D). The potency of 

adavosertib was higher in CCRF-CEM (IC50 ~103 nM ± 5 nM) (Fig. 1A, Table 1) than 

Jurkat (IC50 ~ 370.4 nM ± 13 nM) (Fig. 1C, Table 1). The potency of cytarabine was also 

higher in CCRF-CEM (IC50 ~90 nM ± 5 nM) (Fig. 1B, Table 1) than Jurkat (IC50 ~159.7 

nM ± 8 nM) (Fig. 1D, Table 1). In both leukemic cell lines, the increase in the apparent 

potency and efficacy (parallel left shifts and upward trends) of the CIC for adavosertib in 

the presence of increasing concentrations of cytarabine, and the CIC curves of cytarabine in 

the presence of increasing concentrations of adavosertib are strongly suggestive of synergy. 

The magnitude of parallel left shifts in the CIC of CCRF-CEM yields a maximum 2.02-fold 

decrease in the IC50’ of adavosertib in the presence of 24 nM cytarabine (Fig. 1A, Tables 

1) and 8.18-fold decrease in the IC50’ for cytarabine in presence of 75 nM adavosertib (Fig. 

1B, Table 1). In Jurkat there is a maximum 3.91-fold decrease in the IC50’ of adavosertib 

in the presence of 31 nM cytarabine (Fig 1C, Tables 1) and 9.86-fold decrease in the IC50’ 

for cytarabine in presence of 162 nM adavosertib. All together the CIC potentiation data is 

strongly supportive of the drugs’ mutual synergistic interaction with the largest magnitude 

changes obtained in Jurkat cells (Table 1).

3.2. Synergy Analysis of Adavosertib and Cytarabine Combinations in CCRF-CEM and 
Jurkat Cells

To further establish in both leukemic cell lines the synergistic nature of this drug pair 

their CIC data sets were analyzed via Combenefit (Fig. 2) which permits analysis using 

Loewe, Bliss and HSA models, and SynergyFinder Plus (Fig. 3) that adds the ZIP synergy 

model (a Loewe-Bliss chimera) [29,30]. In CCRF-CEM and Jurkat, both synergy analytical 

tools yield synergy matrixes with visually discernible areas of high degrees of synergistic 

interactions within defined concentration ranges (Figs. 2 and 3). In CCRF-CEM the 

respective overall synergy scores (Combenefit, SynergyFinder Plus) per model were Loewe 
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(0.7, 4.99), Bliss (5.4, 8.13), HSA (7.7, 11.48) and ZIP (9.17) (Figs. 2 and 3). While in 

Jurkat, the respective overall synergy scores (Combenefit, SynergyFinder Plus) per model 

were higher: Loewe (17.03, 14.67), Bliss (22.25, 22.49), HSA (23.73, 23.44) and ZIP 

(22.51) (Figs. 2 and 3). Hence, irrespective of the freeware or synergy model, the extent and 

overall synergy values in Jurkat also surpassed those determined for CCRF-CEM (Figs. 2 

and 3. Analysis in both leukemic cell lines of the adavosertib-cytarabine concentration pairs 

displaying the highest degrees of synergy also unveiled higher average synergy values for 

Jurkat over CCRF-CEM with all synergy models and analytical tools (Table 2).

3.3. Identification and prioritization of synergistic adavosertib-cytarabine drug 
combinations

Given the higher degree of synergistic interactions determined in Jurkat, this leukemic 

cell line was subsequently used for the identification, selection and prioritization of the 

adavosertib-cytarabine concentration(s) pair to be used for diverse cellular, molecular and 

metabolomic endpoint analysis. Table 2 summarizes the top overlapping high synergy 

adavosertib-cytarabine combinations per synergy model derived from the corresponding 

synergy matrixes (Figs. 2 and 3). In Jurkat, across model highest mean synergy values 

for adavosertib-cytarabine concentration pairs were of 89.0% (Combenefit) and 89.1% 

(SynergyFinder Plus) for 97 nM adavosertib-63 nM cytarabine (Table 2). In contrast, 

CCRF-CEM yielded lower across model highest mean synergy values of 43.7% for 48 

nM adavosertib-45 nM cytarabine (Combenefit) and 59.3% for 75 nM adavosertib-24 nM 

cytarabine (SynergyFinder Plus) (Table 2).

In Jurkat, the high degree of synergy of 97 nM adavosertib-63 nM cytarabine was also 

seen in the normalized isobologram and Fa versus CI plot (Fig. 4A-C, red arrows). In 

both plots the high degree of synergy drug combinations are found within the lower left 

quadrants, well below the lines defining additivity. Furthermore, combination sensitivity 

scores (CSS) versus synergy scores scatter plots (SS plots) for all models confirmed the high 

synergy efficacy and high degree of synergistic interaction of the 97 nM adavosertib-63 nM 

cytarabine combination (Fig. 4D-G). In addition, using a synergy barometer, the actual drug 

combination response was directly compared with expectations of non-interaction among 

all synergy models [19]. Fig. 4H displays the synergy barometer for 97 nM adavosertib-63 

nM cytarabine which reaches 91.39% inhibition (see pointer readout on the barometer). 

The drug combination responses display high-degree synergistic interaction as expected 

responses of HSA, Loewe, Bliss, and ZIP models are much smaller, shown as the marks on 

the barometer [19] (Fig. 4I is a control non-synergistic drug combination). Therefore, the 97 

nM adavosertib-63 nM cytarabine combination was selected and prioritized for subsequent 

analysis on cellular, molecular and metabolomic endpoints.

3.4. Synergistic cytarabine-adavosertib combination effects on PBMC and activated T-
Cells

The high degree of synergy interaction and efficacy 97 nM adavosertib-63 nM cytarabine 

combination was further evaluated on the viability of Jurkat, PBMC and activated T-cells. 

Non-proliferating PBMC were not affected by any drug treatment. In Jurkat and activated 

T-cells the combination significantly diminished cell viability (Fig. 5A-C). In activated 
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T-cells the combination and sum of the individual actions of both drugs were significantly 

higher than 63 nM cytarabine. The drug combination was not significantly different from 

the sum of both drugs as predicated by the additivity principle. Most importantly, in 

Jurkat the combination treatment was significantly higher than the individual drugs (HSA 

principle) and the sum of their effects (additivity principle). The results suggest that this 

type of treatment is not ALL specific and may target other proliferating cells. The selective 

synergistic action on Jurkat cells over non-cancerous cells delineates another advantage of 

synergistic drug interactions, cancer-cell selective synergy.

3.5. Effects of synergistic cytarabine-adavosertib combination on mechanistic end points 
related to the cell cycle and DNA damage in Jurkat

Diverse mechanisms of anticancer drugs affect cell cycle progression and induction of 

DNA damage. These combined effects can lead to mitotic catastrophe of cancer cells. 

Hence, the impact of cytarabine, adavosertib and their high-synergy combination was 

determined on the phosphorylation of DNA damage biomarker γH2AX (Figs. 5D, 5F) and 

phosphorylation of CDC2 a cell cycle progression biomarker (Figs. 5E, 5F). Adavosertib 

(97 nM) and Cytarabine (63 nM) produce a slight but not significant increase in γH2AX 

phosphorylation, while the drug combination produces a highly significant increase of its 

phosphorylation (Fig. 5D). The combination effect was significantly higher when compared 

to the control group, each individual drug, and the sum of the individual effects (Fig. 

5D), hence supporting their synergistic interaction. Fig. 5E shows a significant increase in 

pCDC2 after treatment with cytarabine when compared to all other groups. In contrast, 

adavosertib alone had no effect in the phosphorylation of CDC2 (Fig. 5E) when compared 

to the control, while producing a significant decrease when compared to cytarabine alone 

and an even higher decrease in the combination treatment. The drug combination decreased 

pCDC2 is attributed and expected due to the inhibition of WEE1 kinase by adavosertib [31].

3.6. Assessment of Synergistically Effective Cytarabine-Adavosertib Combination on 
Jurkat Metabolomic Endpoints

After treating Jurkat cells for 48 h with adavosertib (97 nM), cytarabine (63 nM) and 

their combination samples were analyzed via Gas Chromatography/Mass Spectrometry 

using NIST14/2014/EPA/NIH database (see Methods). Further analysis with MetaboAnalyst 

5.0 [28] detailed components of metabolic pathways affected. A partial least squares-

discriminant analysis (PLS-DA) (Fig. 6A) identified the significant separation between 

groups based on cross-validation and permutation test. There is a clear separation of the 

combination treatment compared to cytarabine, adavosertib, and control group (the latter 

three showing partial overlap) (similar patterns were also obtained by analysis of the 

data via sPLS-DA and PCA methods). In Fig. 6B, the metabolomic heatmap shows the 

main metabolites (22) affected by the adavosertib-cytarabine drug combination which are 

amino acids intimately linked to the Krebs cycle (Fig. 7 and Table 3). Despite the apparent 

increases of these metabolites by the individual drugs, when compared to the control group 

only ten (10) of the 22 metabolites were significantly increased by cytarabine (63 nM) (Fig. 

6B, Fig. S2). The prevailing most consistent and significant changes were the inhibition 

of the 22 metabolites elicited by adavosertib-cytarabine compared to the control group and 

individual drugs (Fig. 6B, Fig. 7 and Fig. S2). Analysis of the metabolites whose levels were 
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statistically significantly reduced by the cytarabine-adavoserib combination (Fig. S2 and Fig. 

6C) when compared to the control group revealed that the synergistic drug combination 

elicited statistically significant decreases when compared to the control group in thirteen 

(13) (asparagine, b-alanine, glycine, valine, phenylalanine, glutaric acid, isoleucine, succinic 

acid, fumaric acid, malic acid. N-acetyl-aspartic acid, N-acetyl-l-glutamic acid and thapsic 

acid) of the twenty-two (22) metabolites (Fig S2). Nine (9) of the latter metabolites 

(asparagine, glycine, valine, phenylalanine, isoleucine, succinic acid, fumaric acid, N-acetyl-

aspartic acid and N-acetyl-glutamic acid) have been shown to promote tumor growth 

and/or metastasis in various types of cancer and leukemia [32-45]. While dual roles 

have been reported for isoleucine and succinic acid [46-48]. And five (5) of the thirteen 

(13) metabolites are glucogenic amino acids (asparagine, b-alanine, glycine, valine and 

phenylalanine) [49] an observation consistent with gluconeogenesis being one the three 

main enriched processes (Fig. 6C) affected by the drug combination. Further analysis links 

these metabolites to 44 enriched pathways (top 25 shown in Fig. 6C and Table 3) where the 

combination treatment had a greater effect on 43 of the top 44 pathways when compared 

to the single doses. The metabolite changes are also linked to multiple cellular processes 

as shown in Table 3. The pathways and processes have proven relevance to cancer onset 

and progression. The analysis presented provides a pharmacometabolomic framework of 

molecular endpoints to analyze synergistic drug interactions.

The metabolomic findings are a primer for the cytarabine-adavosertib synergistic 

combination in the ALL model Jurkat, yet it must be noted that our study on the synergistic 

interactions of cytarabine-adavosertib in leukemic cell lines proliferation and metabolomic 

endpoints has limitations. The relatively small number of metabolites identified using a 

GC/MS-based metabolomics approach compared to the broader coverage achievable with 

LC/MS/MS methods limits the broad exploration of the complete metabolic pathways 

related to the synergy mechanism. By incorporating LC/MS/MS techniques in future 

research, this limitation can be surmounted to gain a more comprehensive understanding 

of the synergy mechanism within the complete metabolic pathway. This will enable us to 

enhance our insights into the broader metabolic landscape associated with the observed 

synergistic effects and provide a more thorough characterization of the underlying metabolic 

alterations.

4. Discussion

ALL affects T-Cells and B-Cells demanding aggressive therapeutic treatment [50]. ALL 

normally affects children but is more deadly in adults over age 60. In contrast, CLL exhibits 

a slower progression, providing an expanded therapeutic window [51]. Our study expanded 

analysis of synergism between adavosertib and cytarabine in the CCRF-CEM and Jurkat 

ALL model systems. An ex vivo study reported adavosertib sensitizes primary AML, MDS, 

and CML specimens to cytarabine and potentiates their antileukemic activity in myeloid 

cells [17]. The latter study used cytarabine-advosertib combinations on 6–8 cell lines of 

AML, CML, ALL (Jurkat cells included) and ex vivo cell cultures. Sensitization studies of 

cytarabine-adavosertib on ALL cell models determined the IC50 in Jurkat for cytarabine 

at 58.4 nM and 284.9 nM for adavosertib (72hrs time frame) [18]. In the following ALL 

cell lines the IC50 for adavosertib were 196.7 nM (HPB-ALL), 261.3 (CCRF-CEM) and 
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336.4 nM (Jurkat) (Hu et al., 2021). Another study reported IC50s ranging from 300 to 600 

nM for adavosertib and cytarabine 75–150 nM [17]. Our IC50 values in Jurkat for both 

drugs are within the latter ranges being 159.7 nM cytarabine and 370.4 nM adavosertib at 

96 h. CCRF-CEM displayed an IC50 of 90 nM for cytarabine and 103 nM for adavosertib. 

Pharmacodynamic analysis of CCRF-CEM and Jurkat drug combinations CIC (Fig. 1) 

demonstrated their mutually synergistic interactions as revealed by the increased apparent 

potencies and efficacies of adavosertib in the presence of cytarabine, and vice versa. The 

magnitude of the shifts in CIC elicited by the combinations was greater in Jurkat, while 

adavosertib proved to be most effective chemosensitizing agent in both leukemic cell 

lines. The differences in adavosertib and cytarabine potencies and degrees of synergistic 

interactions between CCRF-CEM (T-cell acute lymphoblastic/lymphoma) and Jurkat (T-cell 

acute lymphoblastic) cells may relate to their origin or relative expression of WEE1 since 

Jurkat expresses higher WEE1 mRNA than a series leukemic cell lines including CCRF-

CEM [52]. Furthermore, decreased expression of WEE1 targets CDK1 (CDC2) and CDK2 

abolished the combinatorial chemosensitizing effect of adavosertib (AZD1775) in Jurkat 

[52,53]. Hence, the combinatorial synergistic efficacy of cytarabine-adavosertib in Jurkat 

and CCRF-CEM may also be due to the relative expression or activation states of the 

WEE1 target proteins CDC2 and CDK1 [53]. Our findings are also be consistent with the 

conclusion that the role of WEE1 in cells with accumulated DNA damage extends beyond 

regulation of CDK1 and the G2/M checkpoint [53] such as the recently established role of 

CDK2 in G1/S arrest [11,54].

The adavosertib-cytarabine synergistic interactions was further established using two 

complementary synergy analytical approaches and frameworks [19]. Previous adavosertib-

cytarabine synergy studies in Jurkat used the Bliss synergy model on MacSynergy II [18] 

and a Loewe based model on CalcuSyn [17]. This prior analysis yielded a single synergistic 

bar graph [18] and a CI estimates [17] for limited drug combinations. Our study on Jurkat 

yielded respective average synergy scores per model with Combenefit and SynergyFinder 

Plus of Loewe (17.03, 14.67), Bliss (22.25, 22.49), HSA (23.73, 23.44) and ZIP (22.51) 

(Figs. 2 and 3, Table 2). While in CCRF-CEM lower overall mean synergy values were 

observed. Across models highest mean scores, isobologram, Fa-CI plot (CompuSyn), SS 

scatter plots, and synergy barometer permitted identification, selection and prioritization of 

the 97–63 nM cytarabine drug combination. These individual drug concentrations constitute 

values eliciting ~25% inhibition each or corresponding to ~IC25. As shown, this drug 

concentration pair displays high degree of synergistic interactions and synergy efficacy, 

hence it was selected and prioritized for evaluation of the effects on endpoints related to 

white blood cells proliferation, cell cycle, and Jurkat metabolome.

Our findings demonstrate that the drugs alone and in combination did not affect non-

proliferating PBMC but decreased the viability of activated T cells as well as leukemic 

Jurkat cells (Fig. 5). Hence, the drugs can potentially impact proliferating cells in 

gastrointestinal mucosa, other mucous membranes, and hematopoietic cells. This outcome 

resembles a Phase I Study in refractory solid tumor patients where adavosertib’s effects 

(described as manageable) were seen on hematologic cells and the gastrointestinal tract 

[13,55]. As other chemotherapies, inhibiting proliferating activated T Cells compromises 

a normal person and patient’s immune response. Most importantly, synergism was further 
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supported in this Jurkat endpoint as the effect of the drug combination was significantly 

higher than either drug’s effect (HSA principle) and the sum of their effects (Loewe 

additivity principle) (Fig. 5), akin a leukemic Jurkat cell–selective synergistic effect. The 

selective synergistic action on Jurkat cells over non-cancerous cells delineates another 

advantage of synergistic drug interactions, cancer-cell selective synergy.

It must be noted that although the combination was more effective, it significantly decreased 

the cell viability of activated T-cells (Fig. 5B). This observation parallels findings with most 

chemotherapeutic agents on normally replicating cells posing a challenge for determining 

in humans the most effective and less toxic drug combination to take advantage of their 

synergistic efficacy. This challenge may be addressed by a priori clinical determination of 

a patients’ WEE1 expression in PBMC’s and primary leukemic cells since its levels may 

vary between patients [52]. This approach can be coupled to a clinical in vitro adavosertib-

cytarabine combination screening with selected prioritized synergistic drug concentration 

pairs on isolated patient’s PBMC and primary leukemic cells. Similarly, we must underscore 

that these are preclinical, in vitro studies which not always may predict complex human 

conditions in vivo. Hence, the value of our findings can be expanded to other leukemia cell 

lines and in future preclinical pharmacodynamic and metabolomic studies on murine and 

xenografts models. The latter are demanded to increase the generalizability, translational 

potential, and overall impact of our findings.

The synergistic nature of the cytarabine-adavosertib drug pair in Jurkat was also established 

via densitometric analysis of γH2AX phosphorylation (Fig. 5D), a key player in DNA 

damage response (DDR) that repairs double strand breaks (DSBs). The combination led 

to a 7.9-fold change when compared to cytarabine, a 6.7-fold change when compared to 

adavosertib, and a 3.5-fold change when compared to the sum of both single agents. γH2AX 

is a biomarker of accumulated DNA damage leading to cell death or cell arrest. Our findings 

contrast previous studies [56] where an absence of WEE1 by siRNA decreased the speed 

of the replication fork and depletion of minichromosomal maintenance proteins (MCM4) 

from chromatin causing γH2AX to have a high expression. A qualitative analysis also 

suggested that adavosertib and cytarabine could alter phosphorylation γH2Ax and the cell 

cycle progression protein pCDC2 [18]. Our findings show that cytarabine (63 nM) increased 

phosphorylation of CDC2 (Fig. 5E) which causes cell cycle arrest to temporarily permit 

DNA repairs. In Jurkat, adavosertib exerted its inhibition of WEE1 leading to the expected 

decrease in pCDC2 seen (Fig. 5D). Although in different time frames, our results resemble 

a study using siRNA of WEE-1 with cytarabine on TF1 (Erythroleukemic cell line from 

blood) on CDC2 phosphorylation [17]. Since CDC2 can’t be dephosphorylated by constant 

exposure to the effects of the phosphorylation cascade caused by DNAdt we witness a 

high pCDC2 signal with cytarabine. In contrast, adavosertib and combination treatments 

allow the phosphorylated cascade to be interrupted by the inhibition of WEE1, permitting 

CDC25c to dephosphorylate CDC2 for cell cycle progression altogether leading to a mitotic 

catastrophe.

And as previously stated, the combinatorial synergistic efficacy of cytarabine-adavosertib in 

Jurkat and T cells may also be due to the relative expression or activation states of the WEE1 

target proteins CDC2 and CDK1 [53].
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Our Jurkat metabolome analysis revealed significant changes produced by the synergistic 

cytarabine-adavosertib combination in 22 metabolites, primarily amino acids interacting 

with the Krebs Cycle (Fig. 5B and D). The metabolites matched to 44 metabolic pathways 

with the top 25 enriched shown in Fig. 5C. Their relationship to amino acids metabolism 

and other cellular processes are diverse (Table 3). These interactions can cause cancer 

cells to utilize lipids and proteins to sustain their pathways. Other interacting pathways 

are responsible for cancer cell proliferation and progression, such as pyruvate metabolism. 

In a relevant study WEE1 inhibition or depletion impaired aerobic glycolysis and reduced 

cell viability in a dose-dependent manner in seven T-ALL cell lines, while sensitizing 

the cells to glutaminolysis inhibition [57]. Our results are also consistent with a previous 

metabolomic study where IC50 doses of adavosertib (MK1775) elicited in HPB-ALL cells 

global metabolic changes of crucial metabolic intermediates or products involved in aerobic 

glycolysis with the Warburg effect being the top process affected as per enrichment analysis 

[57]. Metabolites and processes unveiled by enrichment analysis in our study overlap with 

those conducted in HPB-ALL cells. Although, use of the ~IC50 of adavosertib led to 

decreases in HPB-ALL metabolites, our study in Jurkat using an ~IC25 concentration of 

adavosertib alone did not elicit significant changes in metabolites, yet in combination led to 

a consistent and significant decrease in the 22 metabolites when compared to the individual 

drug treatments (Fig. S2).

Analysis of the metabolites whose levels were statistically significantly reduced by the 

cytarabine-adavosertib combination (Fig. S2 and Fig. 6C) when compared to the control 

group yields specific insights into their roles in cancer, relation to main enriched processes 

(Krebs cycle, mitochondrial electron transport chain and gluconeogenesis) and the Warburg 

effect (Fig. 6C and Table 1). The analysis revealed that the synergistic drug combination 

elicited statistically significant decreases when compared to the control group in thirteen 

(13) (asparagine, b-alanine, glycine, valine, phenylalanine, glutaric acid, isoleucine, succinic 

acid, fumaric acid, malic acid. N-acetyl-aspartic acid, N-acetyl-l-glutamic acid and thapsic 

acid) of the twenty-two (22) metabolites (Fig. S2). Due to their relation to the Krebs cycle, 

the observed decreases in nine (9) (asparagine, glycine, valine, phenylalanine, isoleucine, 

succinic acid, fumaric acid and malic acid) of these thirteen (13) metabolites will reduce 

Krebs cycle activity and the concomitant generation of the reducing equivalents (NADH, 

FADH) required for the mitochondrial electron transport chain generation of ATP via 

oxidative phosphorylation [58]. Although decreased Krebs cycle and electron transport 

activity (two of the main enriched processes in Fig. 6C) may contribute to the metabolic 

reprogramming and mitochondrial respiratory injury as part of the Warbug effect [59-62] 

these can also lead to apoptosis, ferroptosis and cell death, adding another dimension to 

the combinatorial synergistic action of cytarabine-adavosertib [63,64]. In addition, decreased 

Krebs cycle activity can also lead to decreased accummulation of lactate via diminished 

conversion of oxaloacetate→phosphoenolpyruvate→pyruvate→lactate counteracting lactic 

acidosis and the lactate stimulation of cancer cell proliferation and suppression of anti-tumor 

immunity other hallmarks of the Warburg effect [59-62].

Furthermore, nine (9) of the latter metabolites (asparagine, glycine, valine, phenylalanine, 

isoleucine, succinic acid, fumaric acid, N-acetylaspartic acid and N-acetyL-glutamic acid) 

have been shown to promote tumor growth and/or metastasis in various types of cancer 
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(non-small cell lung cancer, breast cancer, multiple myeloma, melanoma, pancreatic cancer, 

colorectal cancer, lymphoma, ovarian and brain tumors) and leukemia [32-45]. While dual 

roles have been reported for isoleucine and succinic acid [46-48]. In the case of asparagine, 

it promotes tumor progression and growth in non-small-cell lung cancer, ALL [32] and 

metastasis in breast cancer [33]. In solid tumors and breast cancer asparagine can support 

tumor cell survival when exogenous glutamine is depleted [32]. In Leukemia elevated 

asparagine has been found to be positively correlated with poor prognosis for this reason 

some treatments focus on asparaginase activation [38]. In turn, glycine deprivation inhibits 

proliferation in multiple myeloma [39]. Glycine along with proline are among the main 

amino acids used to form collagen [65] a major component of the tumor microenvironment 

and cancer fibrosis [66]. In leukemia glycine produces a favorable environment for blood 

cell and leukemic cell growth and expansion [40].

Valine catabolism is known to be essential for cancer cells as seen in colorectal cancer 

[41]. Being a branched amino acid valine and isoleucine are essential amino acid with 

vital roles in protein synthesis, energy production, membrane integrity and indirectly for 

nucleotide biosynthesis via the glutamate-glutamine axis necessary for tumor development 

and progression. Both were found in elevated concentrations in Kras-driven pancreatic 

tumors but not in other types of tumors [42]. A study in leukemia demonstrated that 

valine deficiency promotes apoptosis of leukemic cells [43] and promotes cancer complex 

formation [44]. Meanwhile, isoleucine differs from valine has an apparent anti-cancer 

function since at high concentrations it suppress proliferation of lung cancer [46].

The aromatic amino acid phenylalanine was seen to substitute tryptophan when depleted 

in melanoma cells for the biosynthesis of proteins [45]. While dual actions have been 

reported for succinic acid since it enhances cancer cell migration and promotes cancer 

metastasis [34], and displayed anti-cancer effects by inducing apoptosis in renal cancer 

[47]. In leukemia succinic acid had anti-proliferative activity and in vitro was seen to 

promote apoptosis in some leukemia cells [48]. In the case of fumaric acid in leukemia has 

been labeled as an oncometabolite and has cytoprotective effects in leukemia [35]. N-acetyl-

aspartic acid (NAA) was shown to promote tumor growth and elevated concentrations of 

N-acetyl-aspartic acid and its enzyme, aspartate N-acetyl-transferase in patients with ovarian 

cancer and melanoma had worse overall survival than those with lower concentration [36]. 

Similarly N-Acetyl-L-glutamic acid (NAG) promotes tumor growth in lymphoma, ovarian 

and brain tumors [37].

In contrast to these 9 metabolites which overall had cancer promoting actions, two 

metabolites, B-alanine and malic acid, have been associated with anti-cancer roles B-

Alanine was shown to suppresses breast cancer and increases sensitivity to doxorubicin 

[67], and malic acid and its derivatives could be used as anticancer agents for specific 

tumor treatments since in glioblastoma malic acid had a genotoxic activity [68]. No cancer 

related findings can be found for glutaric acid while a study of thapsic acid demonstrated 

its potential role as biomarker for early detection of colorectal cancer [69]. While in the 

case of glutamine, even though it has been documented that cancer cells are “addicted” 

given its multiple pro-cancer roles [52], its metabolism plays a central role in regulating 

uncontrolled tumor growth by modulating bioenergetic and redox homeostasis and serving 
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as a precursor for the synthesis of biomass [70], and cancer cells rely on glutamine to 

interact with M1 and M2 macrophages to alter pro-inflammatory and anti-inflammatory 

responses which effects endothelial cells permitting tumor metastasis [71] its levels were 

decreased but not significantly by adavosertib, nor the cytarabine-adavosertib combination 

when compared to the control group in Jurkat (Fig. S2). Additional experiments and/or 

other synergistic cytarabine-adavosertib concentrations may unveil the significance of 

glutamine in the synergistc assessment in Jurkat. Most importantly, we can conclude that 

the observed decrease in the metabolites’ levels with pro-cancer roles produced by the 

adavosertib-cytarabine combination supports their proposed role promoting cancer, whilst 

pinpointing to additional mechanisms or targets for the antitumor efficacy of our synergistic 

drug combination.

In addition, five (5) of the thirteen (13) metabolites are glucogenic amino acids 

(asparagine, b-alanine, glycine, valine and phenylalanine) [72] an observation consistent 

with gluconeogenesis being one the three main enriched processes (Fig. 6C) affected by 

the drug combination. Indeed, six (6) of the 9 metabolites whose levels were decreased 

compared to control but not significantly are also glucogenic [72], a decrease expected 

to diminish gluconeogenesis. Although decreased gluconeogenesis may favor glycolysis 

it will also diminish the available intracellular glucose for the aerobic glycolysis of the 

Warburg effect in these leukemic cancer cells. A diminished Warburg effect may also 

serve as a complementary anticancer mechanism for the cytarabine-adavosertib synergistic 

drug combination. These metabolomic-based set of actions add further value to the claim 

by Garcia et al. (2018) [53] that the combinatorial chemosensitizing efficacy of the 

cytarabine-adavosertib drug combination in leukemic Jurkat cells encompasses more than 

their combined DNA damage and G2/M arrest inhibition. Hence the pharmacodynamic 

and metabolomics findings of this study can be shedding light on the need to consider all 

the following mechanisms in explaining the combinatorial synergistic efficacy of cytarabine-

adavosertib and other drug pairs: (1) combined DNA damage and G2/M arrest inhibition, 

G1/S arrest inhibition leading to mitotic catastrophe, (2) diminished Krebs cycle activity 

with decreased reducing equivalents for ATP synthesis, diminished electron transport chain 

and oxidative phosphorylation ATP synthesis leading to apoptosis and/or ferroptosis; and, 

(3) diminished lactate accumulation and decreased gluconeogenesis leading to decreased 

intracellular glucose for the aerobic glycolysis of the Warburg effect. Future studies must 

address novel mechanisms involved in the Warburg effect and the relationship to synergistic 

drug actions, such as the role of hypoxia-inducible factor (HIF-1), microRNAs, regulation of 

mitochondrial pyruvate uptake via MCT4, and the regulation of facilitated cellular glucose 

uptake via GLUT1 [60-62,73].

We can also mention from the metabolomics data in Jurkat, that the adavosertib-cytarabine 

synergistic combination treatment also reduced nucleotide metabolisms necessary for 

DNA replication, RNA synthesis, cellular energy, and interactions. Increased nucleotide 

metabolism leads to uncontrolled growth of tumors [74,75]. Glutathione metabolism is 

important for cell differentiation, proliferation, apoptosis, and progression of many diseases. 

As stated before ancer cells modify glutamine and glutamate metabolism to maintain cell 

growth and proliferation, while arginine biosynthesis has a key role in cell survival and 

proliferation in normal and malignant cells [75]. In turn, fumaric acid promotes tumor 
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growth through diverse signaling functions and succinic acid accumulation can impact gene 

expression regulation and promote tumorigenesis. In addition, high acetyl-CoA shifts cells 

to a pro-anabolic state increasing expression of genes for cell growth and proliferation, 

including glycolytic enzymes. Acetyl-CoA can be generated from the oxidation of pyruvate, 

fatty acid, oxidation degradation of leucine, isoleucine, and tryptophan, or mitochondrial 

enzyme aceyl-CoA synthetase short-chain family, member 1 (ACSS1)-mediated conversion 

of acetate. [75,76]. Combination treatment decreased leucine and isoleucine, and threonine 

which via a dehydrogenase pathway is degraded to acetyl-CoA. Additional pathways 

relevant to cancer include metabolic recycling of ammonia via glutamate dehydrogenase 

which supports biomass in breast cancers [77], porphyrin accumulation:, [78] ketone body 

metabolism, [79] gluconeogenesis, [80] and Warburg metabolism [81].

5. Conclusion

Our study provides a comprehensive analysis of the synergistic interaction between 

cytarabine and adavosertib in the CCRF-CEM and Jurkat ALL model systems. The approach 

provides an important framework for future synergism analysis in high throughput in 

vitro drug screening assays. The analysis permitted expansion and identification of the 

range of potential useful cytarabine-adavosertib synergistic combinations for pre-clinical 

and future clinical translation. Identification and prioritization of a high degree of synergy 

cytarabine-adavosertib combination allowed assessment of effects at cellular, molecular and 

metabolome levels. The effects on two endpoints demonstrate cancer cell selective synergy, 

an added value to the decreased dosing, side effects and tolerance advantages of synergistic 

drug combinations. In summary, we conclude that the high synergistic efficacy combination 

of cytarabine (63 nM) and adavosertib (97 nM) was associated with remarkable alterations 

in metabolites related to the Krebs cycle in Jurkat. The metabolic pathways and processes 

are related to gluconeogenesis, amino acids, nucleotides, glutathione, electron transport and 

Warburg effect. All above relate to cell survival, apoptosis, and cancer progression. Our 

findings could pave the way for novel biomarkers in treatment, diagnosis, and prognosis of 

leukemia and other cancers.
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Fig. 1. 
Concentration Inhibition Curves (CIC) of Adavosertib, Cytarabine and their Combinations 

in CCRF-CEM and Jurkat Leukemic Cell Lines. Panel A, CCRF-CEM CIC curves of 

adavosertib alone or combined with different fixed concentrations of cytarabine. Panel 

B, CCRF-CEM CIC curves of adavosertib alone or combined with different fixed 

concentrations of cytarabine. Panel C, Jurkat CIC curves of adavosertib alone or combined 

with different fixed concentrations of cytarabine. Panel D, Jurkat CIC curves of cytarabine 

alone or combined with different fixed concentrations of adavosertib. The second drug 

concentrations are included in each panel inserts with the corresponding color-coded 

symbols. Each data point represents the mean inhibition value with the standard error mean 

(SEM) (n = 8).
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Fig. 2. 
Combenefit Synergy Matrixes for Adavosertib-Cytarabine in the CCRF-CEM and Jurkat 

Leukemic Cell Lines. The figure illustrates the Combenefit-generated matrixes of the 

drug combinations demonstrating with shades of blue showing the levels of synergy 

corresponding to different models (color scales to the right of all panels) with the overall 

mean synergy score indicated at the bottom of each matrix. Panels A-C correspond to 

CCRF-CEM cells: (A) Loewe additivity, (B) Bliss independence, and (C) Highest Single 

Agent Model (HSA). Panels D-F correspond to Jurkat cells: (D) Loewe additivity, (E) 

Bliss independence, and (F) Highest Single Agent Model (HSA). Values indicate the mean 

synergy score with the standard error mean (SEM) (n = 8), the matrix of drug combinations 

with degree of significance (*) (t-test) calculated by the program as a synergy score (n = 8). 

Statistical significances: * , p < 0.05; * *, p < 0.01; * ** , p < 0.001.
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Fig. 3. 
SynergyFinder Plus-generated Synergy Matrixes for Adavosertib-Cytarabine in the CCRF-

CEM and Jurkat Leukemic Cell Lines. The figure illustrates the SynergyFinder Plus-

generated matrixes of the drug combinations demonstrating with shades of blue showing 

the levels of synergy corresponding to different models (color scales to the right of all 

panels) with the overall mean synergy score indicated at the top of each matrix. Panels 

A-D correspond to CCRF-CEM cells: (A) Loewe additivity, (B) Bliss independence, (C) 

Highest Single Agent Model (HSA), and (D) Zero Interaction Potential (ZIP). Panels E-H 

correspond to Jurkat cells: (E) Loewe additivity, (F) Bliss independence, and (G) Highest 

Single Agent Model (HSA), and (H) Zero Interaction Potential (ZIP). Values indicate the 

mean synergy score with the standard error mean (SEM) (n = 8), the matrix of drug 

combinations with degree of significance (*) (t-test) calculated by the program as a synergy 

score (n = 8). Statistical significances: * , p < 0.05; * *, p < 0.01; * ** , p < 0.001.
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Fig. 4. 
Isobologram, Fa-CI Plot, Scatter SS Plots and Barometers for Adavosertib-Cytarabine 

in the Jurkat Leukemic Cell Line. Compusyn generated isobologram (Panel A) and Fa-

combination index (CI) (Panel B) plots. In both plots the highest synergy scores are located 

within the lower quadrant well below the lines of additivity (dashed blue lines envelope 

in Panel A). The red arrows identifies our combination of interest and highest degree of 

synergistic interaction cytarabine (63 nM) and adavosertib (97 nM). Panel C includes figures 

symbols corresponding to the top 15 most synergistic combinations (see Table 2). Panels 

D-G are the corresponding scatter SS Plots (CSS versus Synergy Score) for the different 

synergy models of Jurkat cells. CSS indicates the efficacy of a drug combination, whereas 

the synergy score for each model indicates the degree of interactions. The upper right 

quadrant of the plots depicts cytarabine-adavosertib combinations exhibiting higher CSS and 

higher synergy scores. The plots further support the prioritization of the 63 nM cytarabine 

with 97 nM adavosertib drug combination pair for further endpoint analysis (red arrow). 

Panel H illustrates the synergy barometer for the 63 nM cytarabine-97 nM adavosertib 

combination exhibiting a 91% inhibition, and for comparison Panel I barometer shows 0% 

inhibition for 15 nM cytarabine with 58 nM adavosertib (AZD-1775). In the barometer 

the needle indicates the overall percent inhibition and lines indicate the relative levels per 

synergy model.
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Fig. 5. 
Effect of Cytarabine and Adavosertib Alone and in Combination on Cell Viability of Non-

proliferating PBMC’s, Activated T-Cell’s and Leukemic Jurkat Cells; and, two Mechanistic 

End Points Related to the Cell Cycle and DNA Damage. The effects of the highly synergistic 

concentrations of cytarabine (63 nM), adavosertib (97 nM) as single drug treatment and in 

combination are shown for normal PBMC (A), activated T-cells (B), and Jurkat (C) at 48Hrs. 

The data reveal a lack of effect of the treatments on PBMC viability, a decreased viability 

produced by either drug and their combination on activated T cells and Jurkat. Interestingly, 

only the effect of the drug combination was significantly higher than the effects of either 

drug or the sum of their individual actions, akin a Jurkat–selective synergistic effect. 

Experiments were conducted using Trypan blue viability staining to compare the viability 

percentage. Statistical analysis was conducted using Tukey’s test with the standard error 

mean (SEM) (n = 4). Statistical significances: * , p < 0.05; * *, p < 0.01; * ** , p < 

0.001; * ** *, p < 0.0001. Panel D-F and Fig. S1 represents the quantitative densitometric 

analysis of immunoblot data normalized over the 24hrs control. Panel D shows an increase 

in γH2AX phosphorylation elicited by the high synergistic combination and the single doses 

of cytarabine (63 nM) and adavosertib (97 nM). Interestingly, as in the viability assays 

on Jurkat (Panel C), only the effect of the drug combination was significantly higher than 

the effects of either drug or the sum of their individual actions akin a Jurkat–selective 

synergistic effect. Panel F display immunoblots of the phosphorylation of the G2/M cell 

cycle progression marker CDC2 (34 kDa) and the DNA damage marker γH2AX after 

0 and 24hrs exposure to the drugs alone or in combination. Panel E is the quantitative 
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densitometric analysis using India ink revealing a significant increase in phospho-CDC2 

elicited by cytarabine consistent with its ability to induce DNA damage and delay cell cycle 

progression. In turn, adavosertib, consistent with its WEE1 kinase inhibition, significantly 

decreased CDC2 phosphorylation when combined with cytarabine. Statistical analysis was 

conducted using Tukey’s test with the standard error mean (SEM) (n = 4). Statistical 

significances: * , p < 0.05; * *, p < 0.01; * ** , p < 0.001; * ** *, p < 0.0001.
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Fig. 6. 
Effect of Cytarabine and Adavosertib Combination on the Jurkat Metabolome. Panel A is the 

partial least squares-discriminant analysis (PLS-DA) score plot showing the discriminating 

characteristics of the Jurkat Cell metabolomic endpoints, with a clear clustering of the data 

points of the different drug treatments (63 nM cytarabine, 97 nM adavosertib and their 

combination) and the untreated sample control after 48Hrs (see the color codes in the box 

inside the figure). Consideration of component 1 (82% variance) and to a lesser extent 

Component 2 (8.9% variance) permitted separation of the synergistic drug combination 

treatment from the control group and individual drug treatments that showed overlapping 

segments. Each group consisted of five samples. Panel B reveals the heatmaps for 22 

metabolites being differentially affected after 48hrs of treatment with cytarabine (63 nM), 

adavosertib (97 nM) and their combination versus a control untreated group. Panel C lists 

the enrichment overview of the top 25 pathways affected by the combination treatment when 

compared against the untreated control sample (n = 5).
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Fig. 7. 
Relationship of the Jurkat Metabolites to the Krebs Cycle. The figure illustrates the relative 

changes (horizontal bar graphs) in the concentrations of each metabolite (amino acid) and 

their relationship to the Krebs cycle. The relative changes of each metabolite are further 

included in supplementary Fig. S2, where statistical analysis was conducted using Tukey’s 

test with the standard error mean (SEM) (n = 5). Statistical significances: * , p < 0.05; * *, p 

< 0.01; * ** , p < 0.001; * ** *, p < 0.0001.
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Table 1

Summary of IC50 ( ± SEM) values and Fold-shifts in Concentration Inhibition Curves of Adavosertib and 

Cytarabine, Alone and in Combination in the CCRF-CEM and Jurkat Cell Lines.

CCRF-CEM Cell Line

Adavosertib
IC50 ± SEM (nM)

Cytarabine (nM) Combination Fold Reduction in
IC50

N

51 ± 4 24 2.02 8

70 ± 1 13 1.37 8

86 ± 4 7 1.20 8

97 ± 4 4 1.06 8

102 ± 2 2 1.01 8

102 ± 2 1 1.01 8

103 ± 5 0 ———— 8

Cytarabine
IC50 SEM (nM)

Adavosertib
(nM)

Combination Fold Reduction in
IC50

N

11 ± 1 75 8.18 8

28 ± 2 48 3.21 8

48 ± 2 30 1.88 8

90 ± 5 0 ———— 8

Jurkats

Adavosertib
IC50 ± SEM
(nM)

Cytarabine (nM) Combination Fold Reduction in
IC50

N

94.7 ± 26 31 3.91 8

164.1 ± 11 16 2.26 8

239 ± 5 8 1.55 8

295.9 ± 8 4 1.25 8

333.6 ± 19 2 1.11 8

370.4 ± 13 0 ———— 8

Cytarabine
IC50 ± SEM
(nM)

Adavosertib
(nM)

Combination Fold Reduction in
IC50

N

16.2 ± 1 162 9.86 8

30 ± 2 97 5.32 8

52.6 ± 3 58 3.04 8

159.7 ± 8 0 ———— 8
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