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Abstract: Mitochondria are involved in the regulation of cellular energy metabolism, calcium home-
ostasis, and apoptosis. For mitochondrial quality control, dynamic processes, such as mitochondrial
fission and fusion, are necessary to maintain shape and function. Disturbances of mitochondrial
dynamics lead to dysfunctional mitochondria, which contribute to the development and progression
of numerous diseases, including Type 2 Diabetes (T2D). Compelling evidence has been put forward
that mitochondrial dynamics play a significant role in the metabolism-secretion coupling of pancreatic
β cells. The disruption of mitochondrial dynamics is linked to defects in energy production and
increased apoptosis, ultimately impairing insulin secretion and β cell death. This review provides
an overview of molecular mechanisms controlling mitochondrial dynamics, their dysfunction in
pancreatic β cells, and pharmaceutical agents targeting mitochondrial dynamic proteins, such as
mitochondrial division inhibitor-1 (mdivi-1), dynasore, P110, and 15-oxospiramilactone (S3).
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1. Introduction: Diabetes—A Global Epidemic

Global diabetes mellitus incidences are increasing tremendously in all age groups,
affecting the well-being and quality of life of many individuals [1]. Reports from the
International Diabetes Federation stated that nearly 537 million people are suffering from
diabetes, which is anticipated to increase to 643 million by 2030 and 783 million by 2045 [2].
Diabetes is a multifactorial disease, usually associated with persistently high glucose levels
(hyperglycemia), either due to impaired insulin secretion or action [3]. It is categorized into
two distinct types: Type 1 (T1D) and Type 2 Diabetes (T2D), wherein T2D accounts for at
least 90–95% of total diabetic cases. In people with T1D, also known as early-childhood or
juvenile diabetes, the immune system obliterates insulin-producing pancreatic beta (β) cells.
In contrast, T2D usually develops later, and the patients are characterized by a blend of two
metabolic dysfunctions: insulin resistance and inadequate insulin secretion [3,4]. Under
conditions of insulin resistance, where insulin-dependent glucose uptake in peripheral
organs is reduced, the β cells produce more insulin to compensate, leading to hyperinsu-
linemia [5]. Moreover, in some individuals, genetically compromised cells fail to secrete an
adequate amount of insulin, resulting in hyperglycemia, the hallmark of T2D. Ultimately,
cell mass and functions decrease, further aggravating the pathology [6]. Whether the
exhaustion of β cells is caused by elevated insulin production [7] or dedifferentiation due
to other metabolic complications [8] remains to be determined. Epidemiological studies
reveal that age, lifestyle, ethnicity, smoking, and obesity also contribute to T2D [4]. Diabetes
co-morbidities such as cardiovascular diseases, peripheral vascular diseases, neuropathy,
retinopathy, stroke, and nephropathy are the main reasons for mortality in T2D individu-
als [9,10]. Despite extensive research, the pathophysiology related to the progression and
complications of T2D is not fully understood. Definitely, to comprehend the underlying
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mechanisms associated with the disease, it is required to understand the concept of glucose
homeostasis (glycemia).

1.1. Glucose Homeostasis

All mammalian cells require glucose as a metabolic substrate for energy production.
Thus, it is necessary to sustain adequate levels of blood sugar in the range of 4–7 mmol/L.
To maintain normal blood glucose levels, various hormones are released from the brain,
liver, adipose tissues, pancreas, intestine, and muscles [3]. Among these, the endocrine
pancreas plays a very critical role in regulating fuel storage by secreting several hormones.
Mature endocrine cells, constituting only 2–3% of the total pancreatic volume, aggregate to
form a discrete group of cells, which are termed the islets of Langerhans. These pancreatic
islets consist of five types of endocrine cells: alpha-cells (15–20%) producing glucagon,
beta-cells (65–80%) producing insulin and C-peptide, delta-cells (3–10%) producing so-
matostatin, gamma cells (3–5%) producing pancreatic polypeptide (PP), and epsilon-cells
(<1%) producing ghrelin [11]. Human islets display a unique architecture wherein all the
endocrine cells are bordered by the blood vessels, β cells are mostly located in the center,
and α cells occupy the mantle position of the islet. As a result, the ratio of β cells to α cells
is relatively higher in the core as compared to the mantle part of the islets [12]. The highly
specialized blood supply pattern through the islet of Langerhans allows the ready exchange
of molecules. The mass of β cells is maintained by the differentiation and replication of
existing β cells, which are governed by different cell cycle machinery [13]. The islet cell
organization of the diabetic patient and the non-diabetic patient does not differ significantly.
The quantitative analysis, however, demonstrated a substantial reduction in β cell mass
relative to α cell mass in type 2 diabetic subjects [14]. Two antagonistic hormones, insulin
and glucagon, are crucial in sustaining blood sugar levels in the body [15]. In response
to low blood glucose levels (hypoglycemia), glucagon promotes hepatic glucose release
by glycogen breakdown and gluconeogenesis and enhances lipolysis in adipose tissue. In
contrast, insulin has a counter-regulatory effect by reducing high blood glucose levels (hy-
perglycemia). Insulin stimulates glycogen production (glycogenesis) and glucose uptake in
the skeletal muscle, liver, and adipose tissues, respectively. Alongside, hepatic glucogenesis
and glycogenolysis are decreased, and lipolysis is potently inhibited [15,16]. To sense the
blood glucose level for regulation of glucose homeostasis, glucose is transported to and
metabolized in cells proportionally to the extracellular level [15–17].

1.2. Glucose-Stimulated Insulin Secretion

Glucose-Stimulated Insulin Secretion (GSIS) is a complex event modulated by the inte-
gration and interactions of multiple signal transductions in β cells [18]. Although glucose is
the chief stimulator of insulin secretion, several hormones, nutrients, neural inputs, chem-
ical messengers, and drugs modulate insulin release [18,19]. Following a meal, elevated
blood glucose levels lead to glucose uptake via facilitated glucose transport into pancreatic
β cells. In the cytoplasm, glucose is metabolized through glycolysis, thereby generating
adenosine triphosphate (ATP), pyruvate, nicotinamide adenine dinucleotide (NADH), and
water molecules [20,21]. The formed pyruvate enters the mitochondrial matrix, and is
converted into acetyl-Coenzyme A (CoA), which enters the tricarboxylic acid (TCA) cycle
for the generation of the reducing equivalents nicotinamide adenine dinucleotide (NADH)
and flavin adenine dinucleotide (FADH2), guanosine triphosphate (GTP), and carbon
dioxide (CO2). The reduced electron carriers NADH and FADH transfer their high-energy
electrons to the electron transport chain (ETC), which harvests the energy by step-wise
transport to drive protons into the intermembrane space, forming a proton gradient. The
proton gradient is used to make ATP by driving the ATP synthase, a process known as
oxidative phosphorylation (OXPHOS) [21–23]. Specifically, in β cells, the generated ATP
elevates the cytoplasmic ATP/ADP ratio, which in turn closes the ATP-sensitive potassium
channel, resulting in plasma membrane depolarization. This initiates the opening of L-type
voltage-gated calcium channels, facilitating calcium (Ca2+) ions’ influx into the cells and
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thereby triggering the exocytosis of insulin granules [24,25]. From the above-described
sequence of events, it is evident that the mitochondria of pancreatic β cells control GSIS, in
particular by transferring the stored energy of glucose to ATP, the main trigger of insulin
secretion, as represented in Figure 1.
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Figure 1. A schematic model showing the steps involved in glucose-stimulated insulin secretion by
the pancreatic β cell.

GSIS is biphasic and has been considered a combined effect of both triggering and
amplifying pathways, as shown in Figure 1. However, the amplifying pathways are
more diverse and detailed as compared to the well-defined triggering pathways [26]. The
triggering pathway initiates the first phase of insulin secretion lasting for 5–10 mins by the
KATP-dependent mechanism, whereas the second phase of insulin secretion lasts for hours,
and the majority of insulin is released in this phase. A sustained second phase is enabled by
the amplification pathway, which augments GSIS by KATP-independent metabolic signals
generated by byproducts of glucose metabolism such as nicotinamide, adenine dinucleotide
phosphate hydrogen (NADPH), guanosine triphosphate (GTP), glutamate, and malonyl-
CoA [27]. Several hormones and neurotransmitters acting on membrane receptors regulate
the amplification of insulin secretion, such as cyclic adenosine monophosphate (cAMP),
diacylglycerol (DAG), and plasma membrane phosphoinositides. In addition to metabolic
signals, lipid metabolism also controls and modifies insulin secretion. Glucose-stimulated
activation of cell division cycle 42 (Cdc42) pathways is important for second-phase insulin
secretion, as it controls the mobilization and exocytosis of insulin. Reports suggest the
impairment of amplifying pathways in β cells in both type 2 diabetic animal models and
patients. Drugs that can rectify amplifying pathways, e.g., Glucagon-like Peptide 1 (GLP-1)
conjugates, could be useful in overriding β cell dysfunction and enhancing insulin secretion
in T2D [26–28].

2. Mitochondrial Dynamics in Diabetes

Mitochondria are organelles in eukaryotic cells, comprising an inner and an outer
membrane separated by the intermembrane space. Beyond their primary role in fueling
energy metabolism, they are also involved in several processes including cell signaling,
calcium homeostasis, and apoptosis [29]. The crucial role of mitochondria in metabolic
disorders, such as diabetes, is evident from the fact that in β cells, around 80% of glucose
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oxidation takes place in mitochondria. Therefore, hampering the mitochondrial energy
metabolism by blocking the ETC, for example, impairs GSIS [30]. The significance of
mitochondria in metabolism-secretion coupling has further been illustrated in Rho cells
devoid of mitochondrial DNA (mtDNA) that no longer respond to glucose. These cells ex-
hibit higher NAD(P)H levels, which in turn inhibit the enzyme glyceraldehyde phosphate
dehydrogenase but enhance lactate production by the lactate dehydrogenase enzyme [31].
The above findings highlight the significance of hydrogen shuttles and mitochondrial
respiration in re-oxidizing NAD formed during glycolysis in β cells. The effect of mi-
tochondrial dysfunction is also demonstrated by mtDNA mutations, e.g., the A3243G
mutation in a transfer RNA (tRNA), which causes a significant decline in both first- and
second-phase insulin secretion [32]. Further, the knockout of mitochondrial transcription
factors A (Tfam) in β cells impair OXPHOS and GSIS, resulting in diabetic mice [33]. The
mutation m.8561C>G in the subunit of mitochondrial ATP synthase (MT-ATP6/8) resulted
in impaired complex assembly and decreased ATP production, causing peripheral neu-
ropathy and diabetes mellitus [34]. The above findings clearly demonstrate the critical role
of mitochondria and their function in insulin secretion. Importantly, mitochondria exist
as a dynamic reticular network that frequently undergoes repetitive cycles of fission and
fusion in a regulated manner, referred to as “mitochondrial dynamics.” The mitodynamics
are regulated by a group of highly conserved dynamin-related GTPases [29] as shown in
Figure 2. In humans, mice, and rats, β cell mitochondria exist as densely interconnected
tubules throughout the cytoplasm [35]. In the β cell, mitochondrial dynamics compensate
for damaged and dysfunctional mitochondria by fusing them with functional ones. On
the other hand, fission can drive the removal of damaged or non-functional mitochondria
through mitophagy [36]. It is conceivable to state that a counterbalance between the two
dynamic processes is required for normal mitochondrial functionality. Accumulated pieces
of evidence support the notion that disturbances in the tuning of the fusion/fission process
in the pancreatic β cell led to the development and progression of diabetes in animal and
human models.
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Chronic nutrient exposure (e.g., glucose or free fatty acids) has been associated with in-
creased ROS production, mitochondrial dysfunction, and enhanced cell apoptosis, thereby
perpetuating diabetes and its complications [37–39]. A previous study demonstrated that
palmitate-induced mitochondrial fragmentation increased ROS production, lowered ATP
production, and increased cell apoptosis [40]. Similarly, in muscle cells, palmitate treatment
caused lipid accumulation, increased oxidative stress, induced mitochondrial fission, and
increased insulin resistance [41]. In prediabetic Zucker diabetic fatty rats, Troglitazone
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(TZD) treatment protected β cells from lipotoxicity and lipo-apoptosis by enhancing the
activity of plasma lipoprotein lipase (LPL), thereby lowering the triglyceride content. TZDs
also prevented mitochondrial alteration, improved insulin sensitivity, and henceforth im-
paired GSIS [42]. Similarly, β cell mitochondria obtained from diabetic GotoKakizaki rats
were found to be disconnected, swollen, and shorter [43], indicating possible disruption of
mitochondrial structure. Islets obtained from type 2 diabetic patients showed disrupted
mitochondrial structure, reduced ATP levels, and decreased amounts of insulin granules,
with a consequent reduction in insulin secretion [44,45]. In INS 1e cells and in islets,
hyperglycemia-induced mitochondrial fragmentation decreased membrane potential, in-
creased ROS production, and eventually promoted β cell apoptosis [46]. Given the evidence
for the structure-function relationship of mitochondria, mitochondrial dynamics-regulating
proteins are certainly involved in the pathophysiology of diabetes.

In the present review, we discuss the functional role of mitochondrial dynamics as a
significant contributing factor to the perpetuation of normal pancreatic β cell function. The
underlying mechanisms have been addressed by altering the expression of mitochondrial
dynamics proteins using pharmacological and genetic tools, the latter either by overexpres-
sion or knockdown.

2.1. Mitochondrial Fusion and Its Machinery

Mitochondrial fusion is considered the merging of the outer and inner mitochon-
drial membranes of two different mitochondria to form a larger unit. Fusion enables the
rapid exchange of metabolites between neighboring mitochondria, thereby complement-
ing impaired mitochondria and promoting their functionality [36]. Mitochondrial fusion
is also required for the maintenance and distribution of mtDNA. Before entering the S
phase of the cell cycle, hyperfusion of mitochondria takes place, thereby increasing ATP
production [36,47]. The three large dynamin-family GTPases responsible for mitochon-
drial fusion in mammals are Mitofusins 1 and 2 (Mfn1 and 2) and optic atrophy 1 (Opa1),
respectively [48] as depicted in Figure 2.

2.1.1. Outer Membrane Fusion Proteins: Mitofusins (Mfn1/2)

Mitofusins 1 and 2 are embedded in the outer mitochondrial membrane (OMM) and
tether mitochondria together by forming complexes in the trans conformation [47,48]. Both
proteins share structural homology but are functionally different. Mfn1 shows greater
GTPase activity and more efficient fusion relative to Mfn2 [49]. However, Mfn1 and Mfn2
can functionally substitute each other, and the lack of both mitofusins eliminates mito-
chondrial fusion. For instance, in fibroblasts, deletion of both Mfn1 and Mfn2 resulted in
complete mitigation of mitochondrial fusion, and the fibroblasts exhibited poor growth,
decreased mitochondrial membrane potential, and reduced respiration [49,50]. Genetic
deletion of either mitofusin causes mitochondrial dysfunction and embryonic lethality [50].
For example, muscle cells lacking Mfn2 displayed a decrease in glucose oxidation, mi-
tochondrial membrane potential, and mitochondrial respiration [51]. Overexpression of
Mfn1T109A, a point mutation in the GTPase domain of Mfn1, acts as a dominant-negative
(DN) and results in extreme fission [52]. Missense mutations in Mfn2 are responsible for
Charcot-Marie-tooth disorder type 2A2 (CMT2A2), a neurodegenerative disease [53]. Over-
expression of wild-type Mfn1 (WT-Mfn1) shifts mitochondria towards fusion, resulting
in perinuclear mitochondrial aggregation in the pancreatic INS-1e cell culture model and
primary β cells. This leads to increased lactate production in INS1e cells, shunting pyruvate
away from complete oxidation in mitochondria, and decreased cellular ATP levels at both
basal and stimulatory glucose concentrations, causing impaired GSIS [54]. In a similar
study, overexpression of WT-Mfn1 induced hypomotility and impaired functionality of mi-
tochondria, which were attributed to Mfn1-induced mitochondrial aggregation, restricting
the entrance into the subplasma membrane area and reducing mitophagy [55]. Adding
further complexity to our understanding of mitodynamics in β cells, overexpression of the
DN-Mfn1 gene results in small, discrete mitochondria extensively distributed in the periph-



Int. J. Mol. Sci. 2023, 24, 13782 6 of 19

ery due to disruption of mitochondria in the microtubule system. However, no statistically
significant changes occurred in apoptosis, mitochondrial hyperpolarization, or metabolism-
secretion coupling [54,55]. Hence, mitochondrial fragmentation as such does not seem to
affect insulin secretion, at least not in vitro. In a recent study, Mfn1 or Mfn2 β cell-specific
knockout mice exhibited normal glucose homeostasis with no changes in insulin secretion.
In contrast, double knockout mice with β cell-specific Mfn1 and 2 deletions displayed
glucose intolerance and impaired insulin secretion due to loss of mtDNA content. Inter-
estingly, Tfam overexpression in fusion-deficient β cells ameliorated the reduced mtDNA
copy number but impaired GSIS. Furthermore, the pharmacologic agonism of mitofusin
was capable of rescuing mtDNA content and GSIS in islets from db/db mice, a model of
T2D [56]. Consistently, the pancreatic β cell-specific knockout of Mfn1/2 in mice (βMfn1/2
KO) led to several metabolic abnormalities, such as glucose intolerance, impaired glucose
clearance, and a decrease in plasma insulin levels. βMfn1/2 KO mice displayed a higher
degree of fragmented mitochondria and disrupted cristae structure. Under hyperglycemic
conditions, the KO mice showed a reduction of mitochondrial calcium accumulation and
hyperpolarization, associated with impaired GSIS [57,58] which could be rescued by treat-
ment with glucagon-like peptide 1 (GLP1) or glucose-dependent insulinotropic peptide
receptor (GIP) [58,59]. Indirect evidence was observed in Mfn1 KO mice, which displayed
defective mitochondrial structure and flexibility in pro-opiomelanocortin (POMC) neurons
and defective insulin secretion by pancreatic β cells [60].

2.1.2. Inner Membrane Fusion Protein: Optic Atrophy 1 (Opa1)

Opa1 is positioned in the inner mitochondrial membrane (IMM) through the inter-
membrane space of mitochondria [47,61]. It also promotes Mfn1-mediated mitochondrial
fusion of the outer membrane [48,62]. The defect in Opa1 causes autosomal dominant optic
atrophy, an inherited optic neuropathy condition [63]. As suggested by several in vitro
cell culture studies, Opa1 plays a vital role in the intrinsic apoptotic pathway and the
maintenance of mtDNA [64–68]. Possibly due to the loss of mtDNA, the reduction in
mitochondrial fusion results in decreased oxidative phosphorylation [47,68]. In RIP2-Opa
1 KO islets, decreased levels and activity of electron transport chain complex IV resulted
in impaired oxygen consumption rate, calcium signaling, and insulin secretion. The mice
were found to be hyperglycemic. Notably, however, the total amount of mtDNA remained
unchanged in this case. In vivo, studies further confirmed that β cell-specific Opa1 knock-
out mice are hyperglycemic and exhibit dismantled mitochondria with abnormal cristae
structures. Additionally, these mice displayed reduced β cell proliferation, decreased ATP
production, and GSIS [69]. Mild overexpression of Opa1 in INS1e cells led to more elon-
gated and tubular mitochondria, whereas higher levels of Opa1 overexpression resulted in
an increased number of fragmented mitochondria [70,71].

2.2. Mitochondrial Fission and Its Machinery

Mitochondrial fission is defined as the division of mitochondria into two new or-
ganelles. Fission is necessary for growing cells to provide them with a sufficient number of
mitochondria [47,48]. During cellular stress conditions, fission enables the removal of dam-
aged mitochondria and promotes apoptosis, thus helping quality control [61,72,73]. Outer
mitochondrial fission is mediated by conserved dynamin family GTPases, mitochondrial
fission 1 protein (Fis1), and dynamin-related protein 1 (Drp1) [48] as shown in Figure 2.

2.2.1. Mitochondrial Fission 1 Protein (Fis1)

Fis1 induces fission by different mechanisms in eukaryotes. In yeast, Fis1 executes
mitochondrial fragmentation by recruiting the Drp1 homolog Dnm1p to the mitochondrial
outer membrane (OMM) [48,61]. However, in humans, hFis1 promotes mitochondrial
fragmentation by two different mechanisms: firstly, it is thought to have a similar role
as the homolog Dnm1p, i.e., the mitochondrial recruitment of Drp1 and the initiation of
fragmentation; secondly, it binds to pro-fusion proteins Mfn1, Mfn2, and Opa1, and blocks
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mitochondrial fusion by inhibiting the GTPase activity [47,74,75]. In addition, Fis1 has also
been involved in apoptotic and autophagic pathways [76]. In primary pancreatic β cells and
INS-1e cells, the alteration of fission by silencing Fis1 resulted in compromised mitophagy,
accounting for the accumulation of dysfunctional mitochondria, reduced respiratory func-
tion, and GSIS. However, the Fis1 knockdown did not significantly alter mitochondrial
morphology [71,77]. Intriguingly, in the reverse experiment of Fis1 overexpression, mi-
tochondrial fragmentation was remarkably induced and resulted in a similar phenotype
of bioenergetics dysfunction, i.e., increased lactate production, impaired glucose-induced
hyperpolarization, and reduced ATP levels, accompanied by decreased cytosolic and mito-
chondrial calcium release, all accounting for impaired insulin secretion [54,77]. Schultz et al.
reported reduced Fis1 expression in glucose-unresponsive cells INS832/2 vs. responsive
cells INS832/13, along with a greater number of elongated mitochondria in INS832/2 cells.
Interestingly, lentiviral overexpression of Fis1 in INS832/2 cells induced a more homoge-
nous mitochondrial network and enhanced insulin secretion. On the contrary, silencing
of Fis1 in INS832/13 cells and primary mouse β cells increased mitochondrial elongation,
decreasing GSIS. However, the expression levels of electron transport chain complexes and
ATP synthase were unaffected. Further overexpression of Fis1 in primary mouse β cells
reduced insulin secretion and fragmented mitochondria. In contrast, Fis1 overexpression
improved insulin secretion in INS832/13 cells. Furthermore, a stepwise increase of Fis1
levels in the less glucose-responsive insulin-producing cell line RINm5F of the rat resulted
in improved GSIS, whereas high overexpression was adverse, resulting in mitochondrial
clusters and diminished GSIS [78]. The above finding confirms the significant role of Fis1 in
regulating metabolism-secretion coupling in pancreatic β cells, although the effect depends
on the expression levels of Fis1. However, Fis1 RNAi maintained mitochondrial dynamics
by favoring fusion and preventing apoptosis [71].

2.2.2. Dynamin Related Protein 1 (Drp1)

In mammals, mitochondrial fragmentation is mainly mediated by a highly conserved
GTPase protein, namely dynamin-related protein 1 (Drp1). Drp1 is distinctly expressed in
various tissues; high levels are expressed in the brain, muscle, and endocrine tissues; mod-
erate levels are found in the kidney, lung, pancreas, and liver, and low levels are detected
in the ovaries [79,80]. There are four domains in Drp1: (1) the N-terminus GTPase domain,
which forms a dimer, stabilizes the active sites, and stimulates GTPase activity; (2) the
variable domain, which contains most of the post-translational modification sites; (3) the
helical middle assembly domain, which promotes Drp1 self-assembly into higher-order
structures; and (4) the C-terminus GTPase effector domain, which mediates both intra and
intermolecular interactions, as represented in Figure 3. However, Drp1 lacks a C-terminus
proline-rich domain and pleckstrin homology domain [80,81]. Drp1 consists of 21 exons,
and alternate splicing of exons 3, 16, and 17 gives rise to multiple isoforms with differential
GTPase activity [82,83]. Different isoforms are expressed differently in various tissues. The
longer Drp1 isoform is expressed predominantly in neurons and consists of distinctive
polypeptide sequences within their GTPase and variable domain, called A-insert (encode
for exon 3) and B-insert (encode for exons 16 and 17), respectively [82–84]. The widely
expressed and shorter isoforms of Drp1 lack the A insert and alternatively exclude either
exon 16, 17, or both and differentially regulate the geometry and curvature of Drp1 on the
fission sites [82,83]. Drp1 mostly resides in the cytoplasm, and about 3% of the total protein
dwells at the mitochondrial surface. Several cellular stimuli, such as Ca2+ concentration
and apoptosis, activate the recruitment of Drp1 to the OMM and self-associate with adapter
proteins, mitochondrial fission factor (Mff), fission protein 1 (Fis1), and mitochondrial
dynamics proteins of 49 and 51 KDa (Mid49 and Mid51) [48,75]. After association, Drp1
forms a higher-order assembly on prospective OMM fission sites, followed by GTP hy-
drolysis, causing conformational changes and inducing mitochondrial fission [85]. The
incorporation of the dominant negative (DN) mutant of Drp1 K38A inhibits membrane
constriction and blocks organelle fission [86]. In mammalian cells, inhibition of Mff or
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double knockdown of MiD49 and MiD51 decreases Drp1 translocation to mitochondria
and promotes elongation [87,88]. It has also been reported that MiD49 and MiD51 proteins
are capable of controlling mitochondrial fission independently of Fis1 and Mff [89]. Apart
from regulating mitochondrial fission, Drp1 is also thought to be involved in mediating
vesicle formation, endoplasmic reticulum morphology, and peroxisomal fission in mam-
mals [90]. The function of the fission gene Drp1 is influenced by various posttranslational
modifications such as phosphorylation, sumoylation, ubiquitination, and S-nitrosylation.
These posttranslational modifications; along with protein effectors as shown in Figure 3,
are known to modulate the stability, localization, and GTPase activity of Drp1 in various
physiological and pathological conditions [91]. Drp1 phosphorylation by the Cdk1/Cyclin
B complex at serine 616 is necessary to trigger mitochondrial fission in mitotic cells to allow
even mitochondrial distribution to progeny [92]. An increased level of phosphorylation at
the Ser 616 site has been observed in Alzheimer’s patients [93]. The protein kinase (PKA)-
dependent Drp1 phosphorylation at Ser 616 enhances mitochondrial fission, leading to
hypertensive encephalopathy [94]. The cyclic adenosine monophosphate (cAMP)-mediated
PKA-dependent Drp1 phosphorylation at Ser 637 attenuates Drp1 GTPase activity along
with intermolecular interaction, resulting in reduced mitochondrial fission [95]. Activation
of AMP-activated protein kinase (AMPK) increased Drp1 phosphorylation at anti-fission
site Ser 637 and prevented the alteration in endoplasmic reticulum morphology, decreased
mitochondrial fragmentation, and reduced apoptosis in energy-stressed β cell [96]. Elon-
gated mitochondria are spared during autophagy and maintain ATP production and cell
viability, specifically during starvation [97]. On the contrary, calcineurin-dependent Drp1
dephosphorylation at Ser 637 boosts its recruitment to mitochondria and favors mitochon-
drial fission [98]. SUMO ligases like Sumo1, Ubc9, and MAPL mediate Drp1 sumoylation
at different lysine residues within the variable domain and exert an effect on its interac-
tion with the OMM or other proteins [99]. Overexpression of Sumo 1 stabilizes Drp1 on
mitochondria and prevents its degradation, thereby promoting mitochondrial fission [100].
SUMO protease SenP5 mediates the desumoylation of Drp1, which is essential for the
elimination of SUMO-2/3 conjugates of Drp1 [101]. SUMO-specific protease 2 (SENP2)
regulates Drp1 phosphorylation at the Ser 616 residue and insulin secretion in the NIT-1
pancreatic β cell line [102]. MARCH5-dependent K63-linked ubiquitination stabilizes Drp1
on mitochondria, whereas parkin-mediated K48-linked ubiquitination triggers the protea-
somal degradation of Drp1 [103,104]. Drp1 can also be modified by nitrosylation at Cys644.
In Alzheimer’s patients, S-nitrosylation of Drp1 at Cys644 promotes mitochondrial fission
and neurotoxic events; however, preventing S-nitrosylation by the Cys644Ala mutation
abrogated neurotoxicity [105]. In cardiomyocytes, O-linked-N-acetyl-glucosamine glyco-
sylation (O-glcNAcylation) of Drp1 at residues T585 and T586 activates its recruitment
to mitochondria and enhances fission [106]. The above findings certainly underscore the
crucial role of Drp1 in regulating mitochondrial fission.
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Global Drp1-knockout mice were found to be embryonic lethal due to the lack of mito-
chondrial fission [29]. Similarly, abnormal brain development was observed in newborn
children with a heterozygous mutation in Drp1. Cells obtained from this patient displayed
elongated and interconnected mitochondria [107]. All the above findings support the
involvement of Drp1 in causing mitochondrial fission provoked by various cellular stimuli.
Blocking of Drp1 function by RNAi or the DN allele gives rise to elongated and intercon-
nected mitochondria that result in the degradation of mitochondrial mass. For instance,
in HeLa cells, the knockdown of Drp1 induced a reduction in mtDNA and mitochondrial
respiration [108]. Another study demonstrated that the downregulation of Drp1 prevented
the decrease in mitochondrial membrane potential and the release of cytochrome c in COS-7
cells [71]. Whereas, in hippocampal neurons, loss of Drp1 function leads to misshaped
synaptic vesicles [109]. The indispensable role of Drp1 in mitochondrial fragmentation
was also recognized in the research field of diabetes. Huang et al. reported alterations in
mitochondrial morphology and a decrease in ATP production due to the abnormal increase
of Drp1 expression in a mouse model of T2D [110]. Several knockdown and chemical
inhibition studies in β cell lines and pancreatic islets have emphasized the role of Drp1-
dependent mitochondrial fission in the regulation of insulin secretion. Glucose stimulation
of INS1e cells induced reversible shortening of mitochondria and promoted insulin secre-
tion. However, the suppression of the fission event by the dominant negative (DN) mutant
DLP1-K38A eliminated glucose-induced morphological changes, increased proton leak,
decreased ATP production, and consequently GSIS [111]. In a similar study by Twig et al.,
inhibition of Drp1 by the DN mutant prevented mitochondrial autophagy, increased the
accumulation of oxidized mitochondrial protein, and led to defective insulin secretion [71].
Further, the inhibition of fission by small hairpin Drp1 RNAs in INS1e cells and islets
reduced the expression of mitochondrial fusion proteins, thereby shifting the mitochondrial
morphology from moderate clusters to the elongated form. These morphological changes
were responsible for reduced mitochondrial membrane potential, ATP production, and
GSIS [112]. In the NIT1 pancreatic β cell line, Drp1 knockdown caused impairment of
GSIS, which was restored by SENP 2 overexpression [102]. In our previous work, we
have demonstrated that the substrate supply upstream of the oxidative phosphorylation
machinery is hampered by the pharmacologic silencing of Drp1 in MIN6 cells and mouse
pancreatic islets [113]. Recently, Bordt et al. suggested off-target effects of the Drp1 inhibitor
mdivi-1 (mitochondrial division inhibitor-1) on complex I of the ETC [114]. However, ge-
netic silencing of Drp1 achieved similar results as pharmacology. The direct supply of
exogenous pyruvate fully rescued the deficiency in oxidative phosphorylation, ATP levels,
and GSIS [113], strongly suggesting that Drp1 silencing affects mainly substrate supply.
While increasing Drp1 expression would have been a feasible route to improve insulin se-
cretion, transient Drp1 overexpression failed to rescue GSIS in Drp1-KD MIN6 cells, which
was due to drastically reducing insulin content [115]. The effect of inhibiting or blocking
mitochondrial fission has also been interrogated in vivo by generating β cell-specific Drp1
knockout mice (β Drp1KO). The islets exhibited highly fused mitochondrial morphology
and impaired second-phase insulin secretion with no alteration in oxygen consumption
rates or calcium ion influx [116]. Comprehensively, in pancreatic β cell lines and islets,
genetic or pharmacologic silencing of Drp1 caused impairment in insulin secretion due to
decreased ATP-linked respiration and/or increased mitochondrial proton leak, whereas in
Drp1β KO islets, oxygen consumption remained unchanged. These discrepancies in past
data may be attributed to the difference in proliferative β cell lines and dormant mouse
islets or the effect of chronic vs. acute exposure. However, suppression of Drp1 activity
ameliorated free fatty acid (FFA)-induced mitochondrial fragmentation, insulin resistance,
and apoptosis in pancreatic cells and islets, as well as in muscle cells [40,41]. The effect
of changed mitochondrial dynamic proteins on insulin secretion has been summarized
in Figure 4. The genetic variation of mitochondrial dynamic proteins and their effect on
mitochondrial morphology and β cell function are summarized in Table 1.
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Table 1. Manipulation of mitochondrial dynamics proteins in pancreatic β cells and islets and their
effect on mitochondrial morphology and β cell function.

Dynamin GTPase Genetic Intervention
Effect on

Mitochondrial
Morphology

Effect on β Cell Function References

Mfn1/2
Mfn1 overexpression in
Ins1e cells and primary

β cells

Hyperfused and
aggregated

Increased lactate production,
decreased cellular ATP levels,

and impaired GSIS
[54]

Mfn1 overexpression in
Ins1e cells

Hyperfused and
aggregated

Loss of mitophagy, hypomotility,
and impaired mitochondrial

function and insulin secretion
[55]

DN-Mfn1
overexpression in

INS1e cells
Discrete

No significant changes in
apoptosis, mitochondrial
hyperpolarization, and

metabolism–secretion coupling

[61,62]

βMfn1/2KO mice

Fragmented
mitochondria,

disrupted cristae shape
and structures

Reduced Ca2+ accumulation,
mitochondrial membrane

potential, β cell connectivity,
and GSIS

[57–59]

Alone βMfn1KO mice
and βMfn2KO mice

Fragmented Normal glucose homeostasis and
no change in insulin secretion [56]

βMfn1/2DKO mice Fragmented
Glucose intolerant, reduced

mtDNA content, and reduced
insulin secretion

[56]
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Table 1. Cont.

Dynamin GTPase Genetic Intervention
Effect on

Mitochondrial
Morphology

Effect on β Cell Function References

Opa1 RIP2-Opa1 KO β cells

Fragmented
mitochondria and
abnormal cristae

structures

Decreased complex IV levels,
impaired OXPHOS, decreased
ATP content, reduced insulin

secretion and cell proliferation

[69]

Mild overexpression in
INS1e cell Elongated NA [70,71]

High overexpression in
INS1e cell Fragmented NA [70,71]

Overexpression in
primary β cell Fragmented NA [70]

Fis1 Downregulation by
RNAi in INS1e cells Elongated Reduced mitophagy, respiratory

functions, and GSIS [71]

Knockdown by shRNA
INS832/13 and

primary mouse β cells
Elongated

Impaired GSIS but no changes in
expression of OXPHOS

complexes and ATP
synthase activity

[66]

Overexpression in INS
1e cells

Fragmented, reduced
volume, and swollen

mitochondria

Increased lactate production,
reduced mitochondrial energy

metabolism, and impaired
insulin secretion

[54]

Overexpression in
primary mouse β cells Fragmented Reduced insulin secretion [78]

Overexpression in
INS832/12 cells

Homogenous
mitochondrial network Enhanced insulin secretion [78]

Moderate
overexpression in

RINm5F cells

Homogenous
mitochondrial network Improved insulin secretion [78]

High overexpression in
RINm5F cells Clusters Reduced insulin secretion [78]

Drp1
Drp1 DN (DLP1-K38A)

overexpression in
INS1e cells

Hyperfused No significant change in GSIS;
prevented apoptosis [117]

Drp1 DN (DLP1-K38A)
overexpression in

INS1e cells
Swollen and elongated

Decreased mitochondrial
autophagy, respiratory functions,

and GSIS
[70,71]

Drp1 DN (DLP1-K38A)
overexpression in

INS1e cells
Elongated

Increased mitochondrial proton
leak, decreased ATP production,

and GSIS
[111]

Downregulation by
shRNA in INS1e cells Elongated

Decreased mitochondrial
membrane potential, reduced

ATP production, and GSIS
[112]

Knockdown in
NIT-1cells Elongated Impaired GSIS [102]

Knockdown genetically
or pharmacological

inactivation by Mdivi1
in MIN6 cells and islets

Elongated

Reduced mitochondrial ATP
synthesis, and impaired GSIS
due to compromised substrate

delivery upstream of
mitochondria

[113]
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Table 1. Cont.

Dynamin GTPase Genetic Intervention
Effect on

Mitochondrial
Morphology

Effect on β Cell Function References

β Drp1b-KO mice Hyperfused

Normal oxygen consumption
rate and calcium concentration

but significantly impaired
second-phase insulin secretion

[116]

Overexpression in
INS1e cells Round and short

Increased cytochrome C release,
and ROS production, no

significant change in GSIS but
tends towards decreased GSIS

[46,117]

Overexpression in
MIN6 cells Fragmented

No effect on mitochondrial
metabolism, impaired GSIS due

to reduced insulin content
[115]

3. Targeting Mitochondrial Dynamic Proteins

Drp1 also plays a critical role in the regulation of mitophagy as shown in Figure 2, thus
helping to maintain mitochondrial integrity and function necessary for cell survival [118–121].
Previous studies also demonstrated mitochondrial fission followed by selective fusion
and elimination of dysfunctional mitochondria through mitophagy [71]. Accumulation
of dysfunctional mitochondria and increased ROS production were reported in Type 2
diabetic patients [122–124]. In T2D, β cells are exposed to high glucose which is associated
with increased oxidative stress and disrupted mitochondrial morphology that hinders the
mitophagy pathway and related genes and eventually leads to increased insulin resistance
and beta cell death [119,122]. Twig et al demonstrated that inhibition of mitochondrial
fission by DRP1K38Aor FIS1 RNAi resulted in decreased mitophagy, reduced mitochondrial
respiration, and impaired insulin secretion [71,72]. The indispensable molecular players of
the mitophagy process are PTEN-induced putative kinase 1 (PINK1), E3 ubiquitin ligase
PARKIN and CLEC16A, cardiolipin, transcriptional regulators like Transcription factor B2
(TFB2M), and orphan nuclear receptor Nor1/NR4A3 [125–129]. Altered expression of these
proteins alters mitochondrial dynamics and impairs the mitophagy process leading to the
development of T2D [130]. The impairment of mitophagy can be restored by mitophagy
inducers and can be used as a promising strategy for ameliorating T2D [119,131].

The proper functioning of β cell mitochondria is essential due to their involvement in
insulin production and release. Unregulated mitochondrial dynamic protein function is
associated with numerous pathologies, including T2D. Treatment strategies focusing on
manipulating mitochondrial dynamics could possibly ameliorate β cell dysfunction and
help maintain glucose homeostasis. Targeting regulators of mitochondrial dynamics in
T2D would be a novel approach, but it is very challenging due to multifaceted molecular
mechanisms that can lead to unexpected side effects. In recent years, different computa-
tional tools have aided in rational drug design and screening of therapeutically important
small molecules. These advances have provided breakthroughs for the development of
pharmacological compounds that can modulate mitochondrial dynamics. It is widely re-
ported that the compound mdivi-1 inhibits the GTPase activity of Drp1, which is involved
in mitochondrial fission. In C2C12 muscle cells, mdivi-1 treatment attenuated palmitic
acid-induced mitochondrial fragmentation, oxidative stress, mitochondrial depolarization,
and insulin resistance [41]. Delivery of mdivi-1 into diabetic mice reduced mitochon-
drial fission, ROS production, inflammation, atherosclerosis, and ameliorated endothelial
function [132]. Mdivi-1 treatment exhibited a cardioprotective effect in HFD-STZ mice
by reducing mitochondrial fission, improving mitochondrial function, and suppressing
cardiomyocyte apoptosis [133]. However, a study in the pancreatic β cell line MIN6 and
mouse islets demonstrated that mdivi-1 treatment impaired insulin secretion by affecting
substrate supply upstream of mitochondria [113]. Mdivi-1 reversibly inhibits mitochondrial
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complex I-O2 consumption and ROS production independently of Drp1 [114]. Collectively,
the short-term potential benefits of mdivi-1 are well demonstrated and can be used in
the management of macrovascular complications in T2D. On the other hand, long-term
treatment with mdivi-1 suppresses mitochondrial function, decreases mitochondrial mass,
and promotes apoptosis in vascular smooth muscles [134]. Another compound that is a
competitive inhibitor of the GTPase activity of Drp1 is Dynasore. It acts by inhibiting the
endocytic pathway by blocking coated vesicle formation [135]. In ischemia/reperfusion
mice, dynasore treatment prevented mitochondrial fragmentation and oxidative stress,
thereby improving overall cardiac function [136]. P110, a small peptide inhibitor, blocks
the Drp1/Fis1 interaction, which is necessary to dock Drp1 on mitochondria. In cultured
neurons, it blocks the binding of Drp1 to Fis1 and exhibits a neuroprotective effect by
inhibiting mitochondrial fragmentation and ROS production [137]. Furthermore, P110
prevented the association of Drp1 with p53 in the ischemia/reperfusion rat and decreased
brain infarction and necrotic cell death [138]. Lastly, 15-Oxospiramilactone (S3), a diter-
penoid derivative, inhibits USP30 (mitochondria localized-deubiquitinase) that promotes
non-degradative ubiquitination of Mfn1/2, which further enhances Mfn1/2 activity and
mitochondrial fusion. In mfn1–/–or mfn2–/– knockout cells, it has been observed that S3
restored mitochondrial function and fusion [139]. In summary, mitochondrial fission in-
hibitors are promising therapeutic agents for diseases where increased Drp1 expression is
involved in the pathology. It is important to note that limited data are available on their
effects on metabolic diseases like T2D, and therefore further research is needed. Collectively,
however, the application of fission-inhibitors, such as mdivi-1, Dynasore, and P110, or
fusion-promoters, such as S3, is not obvious for the treatment of β cell dysfunction, where
fission is required during at least the initial phase of GSIS.

4. Conclusions

T2D has emerged as one of the leading global health problems and is associated
with insufficient insulin secretion from pancreatic β cells and peripheral insulin resistance.
Mitochondria are highly dynamic organelles and play a vital role in maintaining energy
homeostasis. Mitochondrial morphological changes upon glucose stimulation are neces-
sary for proper insulin secretion. Accumulating pieces of evidence support the notion that
mitochondrial fission and fusion cycles are essential for the metabolism-secretion coupling
of pancreatic β cells both in vitro and in vivo. This review has provided an overview of the
functional aspects of the alteration of mitochondrial dynamics protein on insulin secretion.
Targeting mitochondrial dynamics is emerging as a potential therapeutic approach, includ-
ing for T2D. In the review, we have also discussed compounds targeting mitochondrial
dynamics, such as mdivi-1, dynasore, P110, and S3. However, the data are limited to cancer
and brain diseases, and research on T2D still needs to be explored.
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