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Abstract: Tuberculosis remains the leading cause of death from a single pathogen. On the other hand,
antimicrobial resistance (AMR) makes it increasingly difficult to deal with this disease. We present
the hyperbolic embedding of the Mycobacterium tuberculosis protein interaction network (mtbPIN)
of resistant strain (MTB XDR1219) to determine the biological relevance of its latent geometry. In
this hypermap, proteins with similar interacting partners occupy close positions. An analysis of the
hypermap of available drug targets (DTs) and their direct and intermediate interactors was used to
identify potentially useful drug combinations and drug targets. We identify rpsA and rpsL as close
DTs targeted by different drugs (pyrazinamide and aminoglycosides, respectively) and propose that
the combination of these drugs could have a synergistic effect. We also used the hypermap to explain
the effects of drugs that affect multiple DTs, for example, forcing the bacteria to deal with multiple
stresses like ethambutol, which affects the synthesis of both arabinogalactan and lipoarabinomannan.
Our strategy uncovers novel potential DTs, such as dprE1 and dnaK proteins, which interact with
two close DT pairs: arabinosyltransferases (embC and embB), Ser/Thr protein kinase (pknB) and RNA
polymerase (rpoB), respectively. Our approach provides mechanistic explanations for existing drugs
and suggests new DTs. This strategy can also be applied to the study of other resistant strains.

Keywords: drug resistance; drug targets; protein–protein interaction network; network hyperbolic
mapping

1. Introduction

Tuberculosis (TB) is a chronic and deadly infectious disease and one of the top ten
leading causes of death worldwide. TB occurs in every country of the world and affects
all age groups. It is also a leading cause of death in HIV-positive patients [1]. The “Global
Tuberculosis Report” from the World Health Organization (WHO) reported 1.45 million
deaths and ten million individuals infected with TB in 2019. An increasingly alarming
cause of concern is latent tuberculosis infection caused by MDR strains of Mycobacterium
tuberculosis (MTB). An estimated 0.5 million cases of multi-drug-resistant TB (MDR-TB)
were reported in 2019, of which 186,772 were fully diagnosed and only 57% received
treatment [2]. To make matters worse, the current unprecedented COVID-19 pandemic has
produced major direct and indirect negative impacts on TB control programs [3,4]. The
major impact of the pandemic on tuberculosis was a decline in the diagnosis and reporting
of TB cases. According to the WHO 2021 report on TB, there was a decline of 18.3% in newly
diagnosed TB cases, i.e., a reduction from 7.1 million reported cases in 2019 to 5.8 million
cases in 2020 [4]. In 2020, TB alone caused 1.5 million deaths, comparable to the 1.8 million
deaths from COVID-19 in the same year [5].
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To deal with the threat of MDR-TB, the scientific community studies several topics: the
development of bacterial resistance [6], understanding the biology of MTB [7], discovering
and validating new TB DTs, the identification of inhibitors with new mechanisms of action,
formulating adequate anti-TB regimens, improving the standard therapy duration, and
developing better and faster diagnostics and innovative biological assays as in vivo mi-
croenvironment representations [5]. The current regimen to treat TB uses various drugs and
fixed-dose combinations: (i) the two-drug regimen: isoniazid and rifampicin; (ii) the three-
drug regimen: isoniazid, rifampicin, and pyrazinamide; and (iii) the four-drug regimen:
ethambutol, pyrazinamide, isoniazid, and rifampicin. These combinations are intended to
reduce the emergence of drug resistance. MDR-TB is treated with fluoroquinolones, clofaz-
imine, linezolid, amoxicillin, and clavulanic acid combinations. Bedaquiline, pretomanid,
and delamanid are three new drugs that have been approved for clinical use within the last
50 years [1].

Despite these efforts, TB infection still poses serious threats due to a rapid increase in
antimicrobial resistance (AMR). This requires new antibiotics to which bacteria are not yet
resistant [8]. Over the past few years, conscious and concerted efforts have been made to
find new pairs of targets and inhibitors. However, since 1984, no new class of antibiotic
(with a new mechanism of action) has been introduced [9], which means that there is a void
of 30 years in anti-TB drug development. As a result, the pool of drugs available against
TB is rapidly dwindling with the increase in AMR [10].

The systematic analysis of cellular networks offers possibilities to obtain insights into
biological function. Since proteins are interconnected in a network of interactions to perform
specific cellular functions, disease mechanisms might be related to subsets of interacting
proteins [11]. Protein interactions often mediate diseases or bacterial infections [12,13]. The
study of the underlying molecular mechanisms of disease in terms of protein interaction
networks can help us better understand disease progression, etiology, pathogenesis, and
resistance mechanisms, and aid in identifying druggable targets [14]. Protein–protein
interaction network mapping approaches have been used to reveal mechanisms of disease,
indicating new therapeutic options [15].

Recent applications of network theory to protein interaction networks are opening
new avenues for the exploration of the mechanisms of disease. Network theory is a tool
for modeling diverse types of complex systems (cellular interactions, internet, social, and
economic networks) [16]. There are several algorithms and models that support the fact
that the topology of complex networks, such as the human protein–protein interaction
network (hPIN), is shaped by an underlying hidden geometry [17]. One of the widely ac-
cepted models is the popularity–similarity model (PSM), representing the two-dimensional
hyperbolic space (H2) in a disk [18]. In the PSM, the network evolves by the continuous
appearance of new nodes in the hyperbolic plane with logarithmically increasing radial
coordinates and uniformly random angular coordinates. A new node establishes connec-
tions to the previous ones with a probability depending on the hyperbolic distance. The
tendency of a node to connect to hyperbolically close nodes arises from a trade-off between
its popularity (radial coordinate) and its similarity (angular coordinate) compared to the
newly arriving node [19]. In parallel, another field closely related to hyperbolic embedding
has recently received a great boost with the development of hyperbolic networks [20–22].
Alanis-Lobato et al. performed the embedding of the hPIN to hyperbolic space and found
biological interpretations of the embedded network in terms of the PSM. They concluded
that the radial position of the nodes captures information about the conservation and age of
proteins. In contrast, their angular position reflects the functional and spatial organization
of the proteins in the cell [17]. This mapping may help to understand the complexity
of different disorders. Recently, mapping hPIN to H2 led to a better understanding of a
complex human disorder such as Huntington’s disease [23].

This line of research motivated us to apply hyperbolic embedding to the interaction net-
work of bacterial proteins to understand its biological relevance. We followed an interolog
approach to construct the MTB protein interaction network (mtbPIN) of a resistant strain
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(MTB XDR1219), followed by embedding interactions in the two-dimensional hyperbolic
plane to explore, analyze, and comprehend the network.

We focused on the protein–protein interactions of the available DTs from a large
mtbPIN embedded in the H2. We hypothesized that detecting two or more DTs hyperboli-
cally close to each other in H2 could be used to search for one, two, or more different drugs,
simultaneously inhibiting them and providing us with an understanding of the molecular
mechanism of the effect of those drugs from a geometric perspective. We also studied the
role of common interactors of DT pairs geometrically lying close in the H2 involved in
the same or different pathways to understand the complexity of resistance and tolerance
mechanisms of available drugs.

2. Results
2.1. Network Embedding on the Hyperbolic Disc

First, we generated a protein–protein interaction network from the high confidence
interaction data [24]. The network embedding is only possible with the network’s largest
connected component (LCC). The LCC of the mtbPIN comprised 20,487 interactions be-
tween 2880 proteins, or nodes mapped out of 3883 proteins of the pathogen’s proteome.
This network was embedded by applying the LaBNE + HM algorithm in the hyperbolic
space H2 [17,25,26] (see Section 5 for details). Afterward, the hyperbolic coordinates of
each node were inferred to analyze the geometrical properties of the network.

2.2. Protein Clustering in the Angular Similarity

One of the two interesting attributes of the PSM is the similarity component, which
corresponds to the angular coordinate of the nodes in the hyperbolic plane and reflects
characteristics that make a node similar to others [17]. To exploit the biological meaning of
the angular dimension, we find proteins grouped in clusters by identifying gaps between
consecutive inferred angles (θ; Supplementary Figure S1A, see Section 5 for details). This
resulted in eleven protein clusters in the mtbPIN. The identified protein clusters revealed
the cell’s functional organization, which is supported by performing the Gene Ontology
(GO) term enrichment of the proteins in individual clusters. The proteins are clustered in a
similarity-based fashion as each cluster is found to be enriched with various aspects of the
GO biological process (Figure 1). We focused on understanding the interactions of proteins
that are validated DTs. The 63 DTs were found distributed in nine of the eleven clusters of
the MTB hyperbolic network (Figure 1). Only cluster 2 “regulation of growth” and cluster
8 “nucleoside monophosphate metabolic process” lacked any DTs. The coordinates of this
map are available in Supplementary Table S1.

2.3. Hyperbolic Distance and Drug–Target Interactions

Once the biological meaning of the similarity component of the PSM had been in-
terpreted, we used both components (r and θ) to compute the hyperbolic distance (dH2)
between the 63 MTB DTs and their adjacent proteins in the hyperbolic map. According
to the coordinates inferred by LaBNE + HM, if two proteins are close to each other, the
probability that they will interact is high, while if the proteins are far away, the chances of
interaction are lower [17]. Accordingly, we observed that proteins separated by a shorter
dH2 made plausible interactions, and fewer direct interactions were observed with the
greater dH2 values (Supplementary Figure S1B). The shortest distance between 63 DTs
and each protein in the network was also computed to determine intermediate interactors
between DTs. We analyzed direct interactors of DTs with other DTs that can be in the same
or different regions of the mtbPIN. Secondly, we studied the cases in which DT pairs share
a common neighbor/interactor(s) that are not yet exploited as DTs but could be involved
in the same pathways as DTs. We propose that these could be novel, potentially effective
DT candidates.



Int. J. Mol. Sci. 2023, 24, 14050 4 of 23

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW  4  of  26 
 

 

 

Figure 1. The embedded mtbPIN in a two-dimensional hyperbolic disc. Different colors represent 

protein clusters identified in the angular dimension of the hyperbolic space by large gaps separating 

them. Individual clusters were analyzed for enrichment in GO terms (biological process) to reveal 

their biological relevance. The positions of DTs (nodes labelled with gene symbol) in the hyperbolic 

map are indicated; DTs were found in most clusters. 

2.3. Hyperbolic Distance and Drug–Target Interactions 

Once  the  biological meaning  of  the  similarity  component  of  the  PSM  had  been 

interpreted, we used both components (r and θ) to compute the hyperbolic distance (dH2) 

between the 63 MTB DTs and their adjacent proteins in the hyperbolic map. According to 

the  coordinates  inferred by LaBNE + HM,  if  two proteins  are  close  to  each other,  the 

probability that they will interact is high, while if the proteins are far away, the chances of 

interaction are lower [17]. Accordingly, we observed that proteins separated by a shorter 

dH2 made plausible  interactions, and  fewer direct  interactions were observed with  the 

greater dH2 values (Supplementary Figure S1B). The shortest distance between 63 DTs and 

Figure 1. The embedded mtbPIN in a two-dimensional hyperbolic disc. Different colors represent
protein clusters identified in the angular dimension of the hyperbolic space by large gaps separating
them. Individual clusters were analyzed for enrichment in GO terms (biological process) to reveal
their biological relevance. The positions of DTs (nodes labelled with gene symbol) in the hyperbolic
map are indicated; DTs were found in most clusters.

Drug Targets and Their Interactors in H2

We focused our analysis on the small cumulative network of all DTs and their di-
rect interactors. The DTs were observed to be involved in 1808 interactions (Figure 2A),
including, to our surprise, 153 interactions between them (Figure 2B). For example, the
MTB RNA polymerase (RNAP) responsible for transcription consists of multiple subunits
α2ββ’ω encoded by rpoA, rpoB, rpoC, and rpoZ, respectively. These subunits interact to
make the molecular assembly of RNAP and are reported as DTs targeted by rifampicin
and its derivatives (Figure 2) [27]. Figure 2 shows the DTs positioned in nine of the eleven
clusters and their direct interactors in ten of the eleven clusters. Cluster 2 “regulation
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of growth” (Figure 1, small green cluster at the top right) has no DT or direct interactor,
strengthening the idea that this function remains an unexplored area for drug targeting.
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Figure 2. Interaction network of 63 DTs in hyperbolic space. (A) The small cumulative network of
DTs making 1808 interactions. (B) A total of 153 direct interactions between DTs. DT interactors are
found located in the same and in different clusters. The DTs are positioned in nine of the eleven
clusters and labelled with their gene symbol—cluster colors as in Figure 1.

To understand the information contained in the latent geometry of the mtbPIN about
the mode of action of DTs and the possible role of their common interactors in bacterial resis-
tance and drug tolerance, we analyzed the DTs that are hyperbolically close by considering
the following cases: (i) DTs that are hyperbolically close and are involved in same, related,
or unrelated metabolic pathways or processes; (ii) DTs that share a common interactor (the
shortest path length between DTs is ds = 2); and (iii) DTs that are geometrically close but
connected by a longer shortest path (ds > 2).

2.4. Hyperbolically Close DTs

We looked for hyperbolically close DTs, irrespective of their interaction profile. Supple-
mentary Table S2 represents the list of DT pairs in order of increasing hyperbolic distance.
We found that DT pairs that are hyperbolically close were also making direct interactions
(ds = 1). In addition, the location of DT pairs in the relevant clusters was determined. A total
of 309 pairs of DTs were found to be located in the same protein clusters, and 64 pairs were
direct interactors, while 1644 DT pairs were found in different protein clusters, and among
them, 89 DT pairs were direct interactors (Supplementary Figure S2). We observed that DTs
making interactions with other DTs are highly interconnected and scattered throughout the
hyperbolic network (Figure 2B), except for the cluster 2 “regulation of growth” (compare to
Figure 1).

Next, we studied pairs of interacting DTs using the hyperbolic map and its properties
to locate pairs in proximity or within relevant clusters. In the hyperbolic map of MTB,
we found that DTs embB and embA are hyperbolically the closest. embA and embB are co-
transcribed and function together as a heterodimer [28,29]. Emb proteins are proposed to be
the target of the anti-tuberculosis drug ethambutol, which inhibits arabinosyltransferases
and, consequently, cell wall biogenesis [28]. The second DT pair on the list is fbiC and fbiB
(Figure 3), which are associated with activating the prodrugs delamanid and pretomanid.
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Both drugs are second-line TB drugs (SLTDs). They participate in inhibiting the biosynthesis
of methoxy and keto mycolic acid through the F420 mycobacterial system and nitrous
oxide generation. Mutations in fbiA, fbiB, and fbiC genes have been linked to altered
production of F420 and resistance to drugs targeting them [30]. The third DT pair on the list
is interesting because two different drugs target it. rpsA and rpsL are hyperbolically close
and in the same cluster (cluster 5 “gene expression”; Figure 3). rpsA is a molecular target of
pyrazinamide [31], and rpsL is a molecular target of aminoglycosides [32]. rpsL and rpsA
are ribosomal proteins involved in protein biosynthesis. The two different classes of drugs
acting on them produce their action by inhibiting protein synthesis. We hypothesize that
a combination of pyrazinamide and one of the aminoglycosides could have a synergistic
effect, given that they would target DTs closely related in the mtbPIN.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW  7  of  26 
 

 

 

Figure 3. Hyperbolically close DT pairs present in their relevant clusters. The members of each of 

the  two DT  pairs,  embA–embB  and fbiB–fbiC,  are  targeted  by  the  same  drugs  (ethambutol  and 

delamanid/pretomanid, respectively), whereas the members of the DT pair rpsA–rpsL are inhibited 

by different drugs: pyrazinamide and aminoglycosides—cluster colors as in Figure 1. 

To  find potentially  effective drugs  and drug  combinations  acting on DT pairs, we 

searched for hyperbolically close DT pairs (i) targeted by the same drug (Table 1; Figure 4A) 

or (ii) involved in the same pathway but targeted by different drugs (Table 2; Figure 4B). 

Figure 3. Hyperbolically close DT pairs present in their relevant clusters. The members of each
of the two DT pairs, embA–embB and fbiB–fbiC, are targeted by the same drugs (ethambutol and
delamanid/pretomanid, respectively), whereas the members of the DT pair rpsA–rpsL are inhibited
by different drugs: pyrazinamide and aminoglycosides—cluster colors as in Figure 1.

To find potentially effective drugs and drug combinations acting on DT pairs, we
searched for hyperbolically close DT pairs (i) targeted by the same drug (Table 1; Figure 4A)
or (ii) involved in the same pathway but targeted by different drugs (Table 2; Figure 4B).
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by linezolid and sutezolid; similarly, DT pairs part of the RNA polymerase complex targeted by
rifampicin and its derivatives. (B) DT pairs that are components of the same pathways and are
inhibited by two different classes of drugs. Drug classes and gene symbols are indicated—cluster
colors as in Figure 1.
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Table 1. List of DT pairs arranged in increasing hyperbolic distance involved in the same metabolic
pathways and inhibited by the same class of drugs.

DT_a DT_b dH2 Pathway of DT_a Pathway of DT_b Common Drug

embB/embA 4.95 mtu00572: Arabinogalactan
biosynthesis—Mycobacterium

mtu00572: Arabinogalactan
biosynthesis—Mycobacterium Ethambutol

fbiC/fbiB 9.49

mtu01100: Metabolic pathways,
mtu00680: Methane metabolism,
mtu01120: Microbial metabolism

in diverse environments

mtu01100: Metabolic pathways,
mtu01120: Microbial

metabolism in diverse
environments, mtu00680:

Methane metabolism

Delamanid, Pretomanid

ddl/alr 12.38

mtu00470: D-Amino acid
metabolism,

mtu00550: Peptidoglycan
biosynthesis,

mtu01502: Vancomycin
resistance,

mtu01100: Metabolic pathways

mtu01502: Vancomycin
resistance, mtu01100: Metabolic
pathways, mtu00470: D-Amino

acid metabolism

Cycloserine, Terizidone

rpoC/rpoB 14.21 mtu03020: RNA polymerase mtu03020: RNA polymerase
Rifabutin, Rifalazil,

Rifampicin, Rifamycin,
Rifapentine

rpoZ/rpoC 14.63 mtu03020: RNA polymerase mtu03020: RNA polymerase
Rifabutin, Rifalazil,

Rifampicin, Rifamycin,
Rifapentine

rpoB/rpoA 14.65 mtu03020: RNA polymerase mtu03020: RNA polymerase
Rifabutin, Rifalazil,

Rifampicin, Rifamycin,
Rifapentine

rplD/rplC 15.30 mtu03010: Ribosome mtu03010: Ribosome Linezolid, Sutezolid

rpoC/rpoA 16.85 mtu03020: RNA polymerase mtu03020: RNA polymerase
Rifabutin, Rifalazil,

Rifampicin, Rifamycin,
Rifapentine

rpoZ/rpoB 18.16 mtu03020: RNA polymerase mtu03020: RNA polymerase
Rifabutin, Rifalazil,

Rifampicin, Rifamycin,
Rifapentine

rpoZ/rpoA 20.68 mtu03020: RNA polymerase mtu03020: RNA polymerase
Rifabutin, Rifalazil,

Rifampicin, Rifamycin,
Rifapentine

folC/ribD 23.12

mtu00790: Folate biosynthesis,
mtu01240: Biosynthesis of

cofactors, mtu01100: Metabolic
pathways

mtu01240: Biosynthesis of
cofactors, mtu02024: Quorum
sensing, mtu00740: Riboflavin

metabolism, mtu01100:
Metabolic pathways, mtu01110:

Biosynthesis of secondary
metabolites

Aminosalicylic acid

glcB/menB 25.86

mtu01120: Microbial metabolism
in diverse environments,

mtu01200: Carbon metabolism,
mtu00630: Glyoxylate and
dicarboxylate metabolism,
mtu01110: Biosynthesis of

secondary metabolites,
mtu01100: Metabolic pathways,
mtu00620: Pyruvate metabolism

mtu01110: Biosynthesis of
secondary metabolites,

mtu00130: Ubiquinone and
other terpenoid-quinone
biosynthesis, mtu01240:

Biosynthesis of cofactors,
mtu01100: Metabolic pathways

Coenzyme A

fbiB/fbiA 25.96

mtu01100: Metabolic pathways,
mtu01120: Microbial metabolism

in diverse environments,
mtu00680: Methane metabolism

mtu01240: Biosynthesis of
cofactors, mtu01120: Microbial

metabolism in diverse
environments, mtu01100:

Metabolic pathways, mtu00680:
Methane metabolism

Delamanid, Pretomanid
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Table 1. Cont.

DT_a DT_b dH2 Pathway of DT_a Pathway of DT_b Common Drug

fbiC/fbiA 26.21

mtu01100: Metabolic pathways,
mtu00680: Methane metabolism,
mtu01120: Microbial metabolism

in diverse environments

mtu01240: Biosynthesis of
cofactors,

mtu01120: Microbial
metabolism in diverse

environments,
mtu01100: Metabolic pathways,
mtu00680: Methane metabolism

Delamanid, Pretomanid

Table 2. List of DT pairs involved in the same pathways inhibited by two different classes of drugs.
The DT pairs are arranged in increasing order of hyperbolic distances.

DT_a DT_b dH2 Common Pathway Common GO Term Drug_a Drug_b

rpsA/rpsL 9.89 mtu03010: Ribosome 5 gene expression
(GO:0010467) Pyrazinamide

Amikacin,
Kanamycin,

Ribostamycin,
Streptomycin

rpsL/rplC 13.80 mtu03010: Ribosome 5 gene expression
(GO:0010467)

Amikacin,
Kanamycin,

Ribostamycin,
Streptomycin

Linezolid, Sutezolid

rpsL/rplD 14.04 mtu03010: Ribosome 5 gene expression
(GO:0010467)

Amikacin,
Kanamycin,

Ribostamycin,
Streptomycin

Linezolid, Sutezolid

rpsA/rplD 14.32 mtu03010: Ribosome 5 gene expression
(GO:0010467) Pyrazinamide Linezolid, Sutezolid

rpsA/rplC 14.49 mtu03010: Ribosome 5 gene expression
(GO:0010467) Pyrazinamide Linezolid, Sutezolid

pbpB/ddl 17.04
mtu01501: beta-Lactam

resistance, mtu00550:
Peptidoglycan biosynthesis

1 aminoglycan
biosynthetic process

(GO:0006023)

Amoxicillin,
Imipenem,

Meropenem

Cycloserine,
Terizidone

Close DT pairs targeted by the same class of drugs (Table 1; Figure 4A) represent drugs
whose effects are potent because they affect many related genes that are probably involved in
related protein interactions (according to their short distances in the mtbPIN). These DTs are
functionally related proteins that are targeted by antibiotic compounds that bind to two or
more distinct DTs, e.g., DNA-directed RNA polymerase proteins are inhibited by rifampicin
and its derivatives. Similarly, ddl (alanine ligase) and alr (alanine racemase) are targeted by
cycloserine, which affects the peptidoglycan biosynthesis in the MTB cell wall (Figure 4A).

Close DT pairs involved in one pathway but targeted by different drugs highlight the
groups of drugs that could have a synergistic effect by acting in multiple proteins of the
same pathway (Table 2; Figure 4B). The first five hyperbolically close DT pairs are riboso-
mal proteins targeted by aminoglycosides, pyrazinamide, and repurposed anti-TB drugs
linezolid and sutezolid [33]. The sixth DT pair in the list is pbpB and ddl. pbpB inhibitors
are amoxicillin, imipenem, and meropenem, whereas ddl is inhibited by cycloserine and
terizidone (Figure 4B). Both proteins are part of the peptidoglycan biosynthesis pathway, a
bacterial cell wall component. These anti-TB drugs target different proteins in the same
pathway, possibly producing a synergistic effect [34].

Next, we highlight DT pairs that are not closely related components or part of the same
molecular pathway or process but are nevertheless inhibited by the same drug (Table 3;
Figure 5A). In such cases, the bacteria must deal with two different stress responses, hamper-
ing the bacterial ability for efficient antibiotic stress adaptability, providing these antibiotics
with an additional advantage. Ethambutol inhibits proteins (embABC) involved in arabino-
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galactan and lipoarabinomannan (LAM) biosyntheses. Other cases in this category are rpsA
and panD, which are direct interactors located in two clusters (4 “DNA metabolic process”
and 11 “small molecule metabolic process”, respectively), comparatively hyperbolically
distant (Table 3 and Figure 5A). However, the proposed mechanism of action of pyrazi-
namide by binding to rpsA and inhibiting the trans-translation process has been directly
questioned or contradicted [35], whereas it inhibits bacterial coenzyme A biosynthesis by
binding to aspartate decarboxylase (panD) [36].

Table 3. List of DT pairs at long hyperbolic distances, involved in different pathways and inhibited
by the same class of drugs. The DT pairs are arranged in increasing order of hyperbolic distances.

DT_a DT_b dH2 Pathway of DT_a Pathway of DT_b Common Drug

embC/embA 16.62 mtu00571: Lipoarabinomannan
(LAM) biosynthesis

mtu00572: Arabinogalactan
biosynthesis—Mycobacterium Ethambutol

embC/embB 16.63 mtu00571: Lipoarabinomannan
(LAM) biosynthesis

mtu00572: Arabinogalactan
biosynthesis—Mycobacterium Ethambutol

rpsA/panD 25.32 mtu03010: Ribosome

mtu01100: Metabolic pathways,
mtu01110: Biosynthesis of

secondary metabolites, mtu00410:
beta-Alanine metabolism,

mtu00770: Pantothenate and CoA
biosynthesis, mtu01240:
Biosynthesis of cofactors

Pyrazinamide

thyA/ribD 25.60

mtu01232: Nucleotide metabolism,
mtu01100: Metabolic pathways,

mtu00240: Pyrimidine metabolism,
mtu00670: One carbon pool by folate

mtu01240: Biosynthesis of
cofactors, mtu02024: Quorum
sensing, mtu00740: Riboflavin

metabolism, mtu01100: Metabolic
pathways, mtu01110: Biosynthesis

of secondary metabolites

Aminosalicylic acid

folC/thyA 27.73
mtu00790: Folate biosynthesis,

mtu01240: Biosynthesis of cofactors,
mtu01100: Metabolic pathways

mtu01232: Nucleotide metabolism,
mtu01100: Metabolic pathways,

mtu00240: Pyrimidine metabolism,
mtu00670: One carbon pool

by folate

Aminosalicylic acid

gmk/citE 28.53
mtu01100: Metabolic pathways,

mtu01232: Nucleotide metabolism,
mtu00230: Purine metabolism

mtu02020: Two-component system Formic acid

rmlA/tmk 28.96

mtu00541: O-Antigen nucleotide
sugar biosynthesis, mtu00521:

Streptomycin biosynthesis,
mtu00523: Polyketide sugar unit

biosynthesis, mtu00525: Acarbose
and validamycin biosynthesis,

mtu01250: Biosynthesis of
nucleotide sugars, mtu01110:

Biosynthesis of secondary
metabolites, mtu01100:

Metabolic pathways

mtu01100: Metabolic pathways,
mtu00240: Pyrimidine metabolism,
mtu01232: Nucleotide metabolism

Thymidine

The last category of DT pairs we considered are also not closely related components of
the same pathways and are targeted by different drugs (Table 4; Figure 5B). Ribosomal pro-
teins are mainly found hyperbolically close and making interactions with RNA polymerase
proteins rpoA and rpoB (Table 4). The first pair is rpoA and rplD. rpoA is the DNA-dependent
RNA polymerase subunit alpha, involved in the transcription of DNA to RNA, and it is
inhibited by rifampicin and its derivatives. rplD is the 50S ribosomal protein L4 participating
in the translation of proteins; the drugs linezolid and sutezolid prevent the assembly of the
functional 70S initiation complex by binding to the 23S ribosomal RNA of the 50S subunit.
This inhibits protein production, preventing the bacteria from multiplying [37].
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Table 4. List of DT pairs involved in different pathways and inhibited by different drugs. The DT
pairs are arranged in increasing order of hyperbolic distances.

DT_a DT_b dH2 Pathway of DT_a Pathway of DT_b Drug_a Drug_b

rpoA/rplD 12.47 mtu03020: RNA polymerase mtu03010: Ribosome

Rifabutin, Rifalazil,
Rifampicin,
Rifamycin,
Rifapentine

Linezolid, Sutezolid

rpoA/rpsL 13.97 mtu03020: RNA polymerase mtu03010: Ribosome

Rifabutin, Rifalazil,
Rifampicin,
Rifamycin,
Rifapentine

Amikacin,
Kanamycin,

Ribostamycin,
Streptomycin

rpoA/rpsA 14.34 mtu03020: RNA polymerase mtu03010: Ribosome

Rifabutin, Rifalazil,
Rifampicin,
Rifamycin,
Rifapentine

Pyrazinamide

rpoA/rplC 14.72 mtu03020: RNA polymerase mtu03010: Ribosome

Rifabutin, Rifalazil,
Rifampicin,
Rifamycin,
Rifapentine

Linezolid, Sutezolid

rpoB/rplC 14.93 mtu03020: RNA polymerase mtu03010: Ribosome

Rifabutin, Rifalazil,
Rifampicin,
Rifamycin,
Rifapentine

Linezolid, Sutezolid

rpoB/rpsL 15.35 mtu03020: RNA polymerase mtu03010: Ribosome

Rifabutin, Rifalazil,
Rifampicin,
Rifamycin,
Rifapentine

Amikacin,
Kanamycin,

Ribostamycin,
Streptomycin

rpoB/rplD 15.73 mtu03020: RNA polymerase mtu03010: Ribosome

Rifabutin, Rifalazil,
Rifampicin,
Rifamycin,
Rifapentine

Linezolid, Sutezolid

rpoB/rpsA 15.87 mtu03020: RNA polymerase mtu03010: Ribosome

Rifabutin, Rifalazil,
Rifampicin,
Rifamycin,
Rifapentine

Pyrazinamide

thyA/katG 15.94

mtu01232: Nucleotide
metabolism, mtu01100:

Metabolic pathways,
mtu00240: Pyrimidine

metabolism, mtu00670: One
carbon pool by folate

mtu00360: Phenylalanine
metabolism, mtu00380:

Tryptophan metabolism,
mtu01110: Biosynthesis of

secondary metabolites,
mtu00983: Drug

metabolism—other
enzymes, mtu01100:
Metabolic pathways

Aminosalicylic
acid

Ethionamide,
Isoniazid

fas/rpoB 16.23

mtu01100: Metabolic
pathways, mtu00061: Fatty
acid biosynthesis, mtu01212:

Fatty acid metabolism

mtu03020: RNA
polymerase

Pretomanid,
Pyrazinamide

Rifabutin, Rifalazil,
Rifampicin,
Rifamycin,
Rifapentine

rpoC/rplC 16.57 mtu03020: RNA polymerase mtu03010: Ribosome

Rifabutin, Rifalazil,
Rifampicin,
Rifamycin,
Rifapentine

Linezolid, Sutezolid

In the case of rpoA and rplD, the corresponding drugs inhibit DTs located in the
same cluster but involved in unrelated processes. This results in a drug synergistic effect.
However, in the mtbPIN map, we can find DT pairs with very distant proteins such as fas
(fatty acid synthase) and RNA polymerase proteins (rpoC, rpoB), which are located in two
different clusters and are a part of two different pathways. fas are a component of fatty
acid biosynthesis and metabolism pathways, which pretomanid and pyrazinamide inhibit.
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The inhibition of fas by pyrazinamide has been contradicted [38], as in the case of rpsA. But
rifampicin and pyrazinamide are co-prescribed to treat resistant TB along with isoniazid
and ethambutol. The combination has shown to be effective in treatment outcomes, which
could result from a drug synergistic effect. On the other hand, the target specificity of
pretomanid is still elusive but inhibits mycolic acid synthesis [39]. We found other DT pairs
in the map with distant proteins rplC-fas and rplC-atpE, targeted by linezolid/pretomanid
and linezolid/bedaquiline, respectively. These groups of drugs inhibit components of
protein synthesis (linezolid) [40], ATP biosynthesis (bedaquiline) [41], and mycobacterium
cell wall biosynthesis (pretomanid) [39]. Figure 5B elaborates these cases, where synergistic
drug action is observed between drugs that inhibit unrelated pathways or processes.

Common Interactors between DTs

To study common interactors of DT pairs, we collected information related to DT pairs
that have ds = 2 and share an interaction with a protein that is not a DT. Anti-TB drugs
target different essential pathways, processes, and complexes in bacteria, but the current
drug resistance and tolerance have made TB treatment challenging. Therefore, we looked
for pairs of DTs that were hyperbolically close on the map and shared a common interactor
hinting at additional candidates for drug targeting that could work synergistically with
already existing DTs. Figure 6A,B show an overview of common interactors in the mtbPIN
hyperbolic map.
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Figure 6. Common interactors of DTs. (A) DT pairs (black gene labels) with their respective common
interactors (green gene labels) in the hyperbolic disc. dnaJ1 (labelled with red font), found hyper-
bolically close to dnaK, has been highlighted for discussion (see text for details)—cluster colors as
in Figure 1. (B) DT pairs and common interactors. Red diamonds highlight common interactors
discussed in the text. dnaK and ahpC impart resistance to their interacting DTs, whereas dprE1 and
fadB are involved in mycolic acid biosynthesis and fatty acid degradation, respectively.

The closest DT pair is fatty acid synthase (fas) and Ser/Thr protein kinase (pknB),
sharing functionally similar MTB enoyl coA hydratase (Ech homologs) proteins and
fatty acid degradation (fadB) protein as common interactors (Supplementary Table S3).
FAS/polyketide synthase biosynthetic pathways are responsible for mycolic acid synthesis,
a unique main constituent of the mycobacterial cell wall. The MTB ech proteins and fadB are
components of the fatty acid degradation process. This DT pair and its common interactors



Int. J. Mol. Sci. 2023, 24, 14050 14 of 23

are components of related pathways, fatty acid metabolism and degradation, in cluster 10
“cellular lipid metabolic process”.

Another DT pair, embC and embB, share similar proteins as common interactors, which are
involved in lipoarabinomannan (LAM) biosynthesis, such as dprE1 (Decaprenylphosphoryl-
beta-D-ribose oxidase). embC–dprE1–embB are participating in the related pathway, and
all shared common interactors of this DT pair are located in cluster 9 “cellular metabolic
process”. Our results suggest that other members of this pathway, such as dprE1, could be
potentially efficient DTs.

tlyA (16S/23S rRNA (cytidine-2′-O)-methyltransferase) is one of the targets of capre-
omycin and shares ahpC (Alkyl hydroperoxide reductase C) as a common interactor with
the DT rpoC (DNA-directed RNA polymerase subunit beta). ahpC overexpression imparts
resistance to isoniazid [42]. This protein protects MTB against oxidative stress during
in vitro and in vivo infections and is a virulence factor. It also enables bacteria to grow
within the host macrophages (by resisting ROS/RON) and regulates the host immune
responses [43].

We found that dnaK is a common interactor of the DT pair RNA polymerase (rpoB)
and pknB. DnaK is a chaperone involved in protein folding and maintaining protein in-
tegrity with the help of its cochaperones (DnaJ1 and DnaJ2) in MTB [44]. dnaK and dnaJ1
are hyperbolically close and found in the same cluster of the mtbPIN map (Figure 6A).
dnaK is part of the RNA degradation pathway, while rpoB is associated with the RNA
polymerase pathway targeted by Rifampicin, a first-line TB drug (FLTD). Recently, a study
showed that dnaK associates with MTB DTs and proteins in metabolic pathways targeted
by antimicrobial agents [44]. They were found to directly stabilize the stress imparted by
resistance-conferring amino acid substitutions in DTs. dnaK was found to be associated
with mutant alleles in MTB with clinically relevant amino acid substitutions in the rpoB
gene. MTB chaperones can be studied further as potential DTs by inhibiting the dnaK
system to prevent or sensitize drug resistance in MTB [44].

2.5. DTs Geometrically Close with ds > 2

Finally, we checked for DT pairs lying hyperbolically close but with the shortest paths
between DT pairs of higher length (ds > 2). We only studied four cases selected from each
group of ds (ds = 3, ds = 4, ds = 5, ds = 6) with the smallest value of hyperbolic distance.
Table 5 and Figure 7 elaborate on these cases. Other cases can be easily found in the
Supplementary Tables.

The closest DT pair with ds = 3, atpE-blaC, is linked by two proteins: blaI and Rv1303.
blaC is targeted by beta-lactamase inhibitors (amoxicillin + clav), resulting in the inhibition
of peptidoglycan biosynthesis and atpE, which is the Fo unit of the ATP synthase, targeted
by bedaquiline [45]. Amoxicillin (a beta-lactam antibiotic) shows anti-mycobacterial activity
in combination with beta-lactamase inhibitors (clavulanic acid), referred to as augmentin.
From the literature, we found that the blaI, along with whiB4 (a protein involved in detecting
when cells are under stress and that regulates the expression levels of mycothiol and
enzymes responsible for breaking down the antibiotic drugs), are responsible for providing
underlying tolerance to beta-lactamase inhibitors [46]. This example illustrates that even a
two-step connection between DTs could result in interesting novel DT suggestions. A factor
that could be a positive influence, in this case, is that the hyperbolic distance between the
DT pair is low, as well as the distances between the proteins in the connecting path, and all
the proteins involved remain within the same cluster (see Figure 7 for an overview). The
longer the paths, the more we expect the hyperbolic distances to be greater with positions
in different clusters and lower the chances that the proteins in the connecting path will be
relevant DTs. The following examples illustrate this for the best possible case regarding the
distance between the DTs for a given connection path length.
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Table 5. List of four shortlisted DT pairs selected from each group of shortest path length (ds) with
the smallest hyperbolic distances. NA = not available.

DT_a DT_b dH2 ds Pathway of DT_a Pathway of DT_b Drug_a Drug_b

atpE/blaC 18.19 3

mtu01110: Biosynthesis of
secondary metabolites,

mtu00311: Penicillin and
cephalosporin

biosynthesis, mtu01501:
beta-Lactam resistance

mtu00190: Oxidative
phosphorylation,

mtu01100: Metabolic
pathways

Bedaquiline Amoxicillin

aac/fas 20.29 4

mtu01100: Metabolic
pathways,

mtu00061: Fatty acid
biosynthesis,

mtu01212: Fatty acid
metabolism

NA Coenzyme A,
Ribostamycin

Pretomanid,
Pyrazinamide

lsr2/rmlC 25.44 5

mtu00521: Streptomycin
biosynthesis,

mtu00523: Polyketide
sugar unit biosynthesis,
mtu00541: O-Antigen

nucleotide sugar
biosynthesis,

mtu01100: Metabolic
pathways, mtu01250:

Biosynthesis of nucleotide
sugars,

mtu01110: Biosynthesis of
secondary metabolites

NA Pretomanid
S,S-(2-

Hydroxyethyl)
Thiocysteine

fbiA/ponA1 27.19 6 NA

mtu01240: Biosynthesis of
cofactors, mtu01120:

Microbial metabolism in
diverse environments,
mtu01100: Metabolic
pathways, mtu00680:
Methane metabolism

Delamanid,
Pretomanid Amoxicillin

For a path of ds = 4, the closest DT pair is aac–fas linked by accD1/accE5/Rv0200
proteins. Aminoglycoside 2’-N-acetyltransferase (aac) modifies aminoglycosides through co-
enzyme A-dependent acetylation of the 2- hydroxyl or amino group, conferring resistance
to the DT pair [47]. The linking proteins accD1 and accE5 are acetyl-CoA carboxylases
(ACC) that catalyze the α-carboxylation of acetyl-CoA to produce malonyl-CoA, which
serves as a building block for fatty acid biosynthesis [48], whereas Rv0200 is a possible
transmembrane protein. All these proteins remain in a relatively similar region of the
hyperbolic map, which could mean that a protein of unknown function, such as Rv0200,
could be a good DT.

For a path of ds = 5, the closest DT pair is Isr2–rmlC linked by galE3/pks5/msl3/phoP
proteins. Lsr2 is a nucleoid-associated protein (NAP) of MTB and RmlC is dTDP-4-
dehydrorhamnose 3,5-epimerase, both identified as high confidence DTs. For a path of
ds = 6, the closest DT pair is fbiA–ponA1 linked by dacB2/pknI/echA19/ltp3/Rv3520c. This
DT pair is inhibited by pretomanid and amoxicillin, respectively. We found no evidence in
the literature that these two drugs are in use as a combination. In these two last cases, while
the DT pair belongs to a similar region of the hyperbolic map, the steps connecting them
involve proteins of the large clusters 10 “cellular lipid metabolic process” and 11 “small
molecule metabolic process”. We suggest that these connections are not very specific and
that their importance for the regulation of cellular processes in which the DTs are involved
will not be very relevant, not supporting the intermediate proteins as DTs.
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Figure 7. The four shortlisted DT pairs hyperbolically close and connected by the shortest paths
ds = 3 to 6. The DT nodes are labelled with a gene symbol (bold) and highlighted with a large size.
Each path and the nodes connecting the DT pairs are represented by different colors with nodes
labelled with gene symbols (not bold) and surrounded by a blue circle—cluster colors as in Figure 1.

3. Discussion

The two-dimensional hyperbolic embedding of different networks is both useful and
relevant. The hyperbolic embedding of biological networks, such as human protein inter-
action networks, has been studied to uncover their biologically relevant latent hyperbolic
geometry. Our previous study showed that the two components of the PSM, i.e., the radial
coordinates of the proteins (nodes), correlate with their evolutionary age, with proteins that
evolved earlier (older) in the evolutionary process tending to be closer to the center of the
hyperbolic plane, while younger proteins lie on the plane’s periphery. Proteins with related
biological functions and cellular localizations cluster along the angular coordinates [17].
These distributions have useful meaning in terms of protein networks as the older proteins
tend to have a more significant number of interactions and are shifted closer to the center
of the map, while proteins with similar functions tend to be part of the same pathways
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and complexes, meaning that they are more interconnected, and tend to cluster in the same
region of the map.

In this work, we performed the two-dimensional hyperbolic embedding of a bacterial
protein interaction network. The embedding of the mtbPIN behaved similarly to the hPIN,
allowing us to study the mapping of MTB (drug-resistant XDR1219 strain) protein–protein
interactions with biological relevance. We focused on the map properties of proteins
that are validated DTs. The 63 DTs were found distributed in nine clusters of the MTB
hyperbolic network (Figure 1). The underlying hyperbolic geometry of DT pairs and their
common interactors were used to study their functionality in their mode of action and
antibiotic tolerance and resistance, respectively. We considered the cases where DT pairs
are (i) hyperbolically close, (ii) located in the same or different clusters, (iii) part of the
same or related or different metabolic pathway or processes, and (iv) targeted by the same
or different drugs. We found that the current anti-TB agents produced their action by
inhibiting proteins involved in metabolic processes or pathways vital for bacterial survival.
The antimycobacterial drugs rifampicin, ethambutol, delamanid, pretomanid, cycloserine,
and terizidone produce their action by inhibiting DT pairs of functionally related proteins
of the same molecular processes or metabolic pathways. Rifampicin and ethambutol are
part of the first line of TB drug regimen to manage the infection.

TB is managed with drug combinations; we found that two different classes of drugs
target DT pairs involved in more than one metabolic pathway. Drug combinations are
always designed to have a synergistic effect. Cycloserine inhibits the D-alanine pathway
for peptidoglycan biosynthesis, increasing susceptibility to beta-lactam inhibitors [49].
However, drug antagonism is also reported when linezolid is given in combination with
pyrazinamide and isoniazid due to their harmful interaction that reduces absorption [50].
We found that drugs like ethambutol and pyrazinamide target DT pairs that are part of
different metabolic pathways, producing an efficient antibiotic effect [34]. On the other
hand, DT pairs in different pathways are targeted by two different drug classes, resulting
in synergistic effects. Pretomanid is given in combination with linezolid and bedaquiline to
treat XDR-TB, and this combination has demonstrated a high treatment success rate [51].

Despite decades of intensified research to understand TB and its cure, the disease
continues to burden the world population. TB treatment requires the administration of
multiple antibiotics for a longer duration (several months). Approved anti-TB drugs treat
drug sensitive (DS), MDR, and XDR TB. Drug resistance phenotypes and drug-tolerant
bacterial populations complicate treatment outcomes. Therefore, we searched for common
interactors of DT pairs that could be studied as alternative and new stronger DTs with
robust modes of action. Mycolic acid biosynthesis involves numerous key enzymes such
as the FAS system, fatty-acid-modifying enzymes, fatty-acid-activating and condensing
enzymes, along with transporters and transferases that are potential drug targets [1]. In
the case of resistant MTB strains causing MDR-TB and XDR-TB, mycolic acid biosyn-
thesis pathways offer a great source of alternative potential drug targets for developing
antimicrobial drugs [1]. The regulation of the MTB cell wall biogenesis needs to be better
understood. Recently, Ser/Thr protein kinases (STPKs) have appeared in the molecular
picture of cell wall biogenesis as a major regulatory mechanism [52]. The phosphorylation
mediated by STPKs has been reported to inhibit many enzymes involved in the synthesis
of mycolic acids [53]. pknB is among the major regulators of STPK-mediated signaling
in the MTB [52]. dprE1 is identified as a common interactor of the DT pair embC–embB,
involved in lipoarabinomannan (LAM) biosynthesis. LAMs are glycolipids in the bacterial
cell wall that contribute to virulence, support bacterial survival, and prevent host defense
mechanisms in several ways (phagosome maturation, immune cell activation, antigen
presentation, and regulation of cytokines). DprE1 has been extensively exploited as a
potential new stronger DT in the field of anti-TB drug development [1]. Expression levels
of many bacterial genes increase in response to drug-induced stress. Capreomycin targets
the mechanism of protein synthesis by inhibiting ribosomal proteins. A study performed
by Miryala et al. [42] showed that exposure to capreomycin upregulated a set of genes,
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including ahpC, which codes for an alkyl hydroperoxide reductase that implicates resistance
to reactive nitrogen and oxygen intermediates, making it easier for the bacteria to develop
resistance against isoniazid [54]. It is reported that the overexpression of genes like ahpC,
kasA, ndh, and efflux pumps such as mmpl7, mmpl3, efpA, and mmr, along with mutations
in katG, contribute resistance toward FLTDs. Eighty-five percent of rifampicin resistance
strains are also resistant to isoniazid [55]. Rifampicin resistance is mainly due to mutations
in the rpoB gene [56]. These rpoB, katG, and ahpC genes are interrelated. Hence, targeting
any of their products in the early stages of infection could increase the extent of infection
control [57].

Antimicrobial agents often target and inhibit enzymes that catalyze essential cellular
processes, leading to selection pressure that results in the emergence of mutants with
resistance conferring amino acid substitutions in targets. These mutations provide a selective
advantage to bacteria in the presence of drugs, but can also lead to protein instability, changes
in enzyme activity, or result in the development of additional stress, compromising bacterial
fitness [58]. Bacteria with antimicrobial resistance mutations might be fit enough to divide,
grow, and survive through compensatory mutations, but other general mechanisms may
also alleviate the fitness cost of mutations [59,60]. Fay et al. found that protein chaperones
dnaK (hsp70 homolog) with its cochaperones dnaJ1 and dnaJ2 support the mutations in rpoB
by directly stabilizing the mutant RNA polymerase [44]. dnaK is a common interactor of
different DTs (gyrA, gyrB, rpoB, and pknB) in the mtbPIN, but DNA topoisomerases are not
found to be its direct clients. This could mean that either mutations in them do not alter the
bacterial physiology enough to require chaperone buffering or that other chaperone systems
could be responsible for buffering the mutational effects. Accordingly, in the mtbPIN,
gyrB, rpoB, kasA, katG, and pknB share groEL2 (homolog of Hsp60) as a common interactor
(Supplementary Table S3). Experimental studies are desired to validate these points. Many
studies have reported the role of protein chaperones in supporting amino acid substitutions
in diverse organisms and cell types [61–65]. Hence, protein chaperone systems can be
targeted for inhibition to sensitize or prevent drug resistance in MTB.

Furthermore, by exploiting the hyperbolically closest DT pairs with ds > 2, we found
the role of blaI in drug tolerance. When MTB is exposed to augmentin, cell wall damage oc-
curs, perturbing membrane integrity and thereby affecting various cellular processes, such
as the respiratory chain, ATP generation, and redox balance. These imbalances in cellular
processes result in metabolic instability and effective drug-induced killing. To tolerate aug-
mentin, the bacteria shift their respiration to an energetically poor route involving NADH
dehydrogenase 2 (NDH2) and cytochrome BD oxidase (CyBD). This redirection causes the
generation of ROS (reactive oxygen species), which is neutralized by intramycobacterial
redox buffer (mycothiol) to protect MTB from augmentin. This oxidative shift in the MTB
is a signal to calibrate the expression levels of beta-lactamases, peptidoglycan synthesis
enzymes, antioxidants, carbon metabolism, and alternative respiration via WhiB4. A study
by Mishra et al. found that oxidized WhiB4 binds and represses blaC and blaR, whereas
reduction reversed this effect [46]. The blaI (transcriptional regulator BlaI) binds to the pro-
moter of blaC and of the genes encoding CyBD and ATP synthase [66], and their expression
levels were high in the absence of WhiB4. They found that a loss of WhiB4 derepressed
blaR and stimulated as well as expressed blaC, possibly through the proteolytic cleavage
of BlaI by BlaR (having protease activity). Their findings indicated that the presence of
WhiB4 made the bacterial cell more susceptible to augmentin therapy by reducing the
production of enzymes that break down beta-lactam drugs and mycothiol. They suggested
that the cross-talks between whiB4 and blaI pathways result in antibiotic tolerance. It is
suggested that augmentin could be more effective against MDR and XDR tuberculosis if
combined with drugs that can change the levels of ROS (reactive oxygen species) inside
the MTB cells [46]. We found a DT geometrically close to blaC in the hyperbolic map, atpE,
which is targeted by bedaquiline, one of the antibiotics that disturbs ATP homeostasis.
Hence, bedaquiline could be an effective combination to produce a synergistic effect by
potentiating the action of beta-lactams and beta-lactamases in MTB.
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With our work, we have illustrated how to use the hyperbolic mapping of a pathogen’s
PIN to study the synergistic effects of drugs. Intriguingly, several of the proteins we
identified are already being investigated for their drug therapy potential [67–70], which
endorses the usefulness of interpreting the mtbPIN in searching for biologically meaningful
interactions and interactors of DTs.

4. Materials and Methods
4.1. Dataset Construction

The proteome of MTB-resistant strain XDR1219 was retrieved from the FTP site of
the NCBI RefSeq [71]. The model resistant strain MTB H37Rv protein–protein interactions
were obtained from the STRING v11.5 database (https://string-db.org/ (accessed on 1 July
2023)) [72].

Available DTs of the current therapeutic anti-TB regimen of MTB and information
on their respective drugs were retrieved from the DrugBank Database v. 5.1.8 (https:
//go.drugbank.com/ (accessed on 1 July 2023)) [73] and Therapeutic Target Database
(http://db.idrblab.net/ttd/ (accessed on 1 July 2023)) [74].

4.2. Prediction of the MTB Protein–Protein Interaction Network (mtbPIN)

The PPI network was generated based on information obtained from the model organ-
ism MTB H37Rv. The interactions were predicted based on high throughput experimental
evidence (>0) and combined score (≥0.7) obtained from the STRING database v 11.5.
STRING aims to harbor all known and predicted associations between proteins. These
associations include both physical and functional associations [72]. The interaction data
were processed to remove redundancy. The proteome of MTB XRD1219 was retrieved from
the NCBI RefSeq server (ftp://ftp.ncbi.nlm.nih.gov/ (accessed on 1 July 2023)). Interologs
were defined based on sequence similarity to proteins of the model strain MTB H37Rv
(using BLASTp) to predict the interactions of this resistant strain of MTB. Interologs are
the conserved interaction between a pair of proteins whose orthologs interact in another
species. Orthology relations were used to derive interologs in MTB XDR1219 to interact-
ing proteins in MTB H37Rv [75]. The resulting network consisted of 2916 nodes (out of
3883 MTB XDR1219 proteins) and 20,500 interactions, excluding self-loops and duplicate
edges (interactions).

4.3. Mapping of the mtbPIN in Hyperbolic Space

The mtbPIN was embedded in two-dimensional hyperbolic space (H2). The network
embedding was performed with the R package “NetHypGeom” [76]. It implements the
LaBNE + HM algorithm, an approach that combines maximum likelihood estimation [26]
and manifold learning [76] to decipher the underlying hyperbolic geometry of networks.
The popularity–similarity model (PSM) interprets the hidden geometrical meaning of the
network in hyperbolic space. All nodes lie in the hyperbolic disc with polar coordinates
(r and θ), where hyperbolic distance represents the popularity dimension (r) and angular
distance, the similarity (θ). The popularity dimension of radial coordinates r of nodes
determines that the nodes that joined the system first tend to be closer to the center of
the hyperbolic plane [18,26]. The largest component of the resultant mtbPIN consisted
of 2880 proteins and 20,487 protein–protein interactions between them. The hyperbolic
coordinates (r and θ) of each protein in the network were inferred with parameters γ = 2.763,
T = 0.519, and w = 2π.

4.4. Protein Clustering in the Angular Similarity Dimension

The protein clusters in the angular similarity dimension were identified by large gaps
separating the protein groups. The nodes were arranged by their increasingly angular
coordinate θ, and the difference between θi and θi+1 was computed to identify the largest
gaps between protein clusters in the similarity dimension. Gap size g (g = 0.03398) was
chosen to separate the proteins in 16 clusters (Supplementary Figure S1A). Two clusters

https://string-db.org/
https://go.drugbank.com/
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(clusters 12 and 15) with only one protein and 5 clusters (clusters 1, 2, 5, 12 and 15) that
had no Gene Ontology (GO) enrichment (see below) were merged with the next cluster
clockwise. This resulted in 11 clusters with GO enrichment.

4.5. Gene Ontology Functional Enrichment Analysis

Gene Ontology (GO) enrichment analysis [77] of each protein cluster was performed
with the Gene Ontology resource (http://geneontology.org/ (accessed on 1 July 2023)).
Only top biological process (BP) terms with a significance level (p-value < 0.05) were kept.

4.6. Computation of Hyperbolic Distances

The hyperbolic coordinates (r and θ) were used to compute the hyperbolic distances
(dH2) between the DTs and each protein in the hyperbolic map. Similarly, the shortest path
distance (ds) between the DTs and each protein in the network was computed. DTs were
sorted by their increasing hyperbolic distance (Supplementary Table S2).

5. Conclusions

The embedding of mtbPIN in two-dimensional hyperbolic space (H2) resulted in a better
understanding of mapped protein interactions, leading to results of biological relevance.
We focused on the DT pairs hyperbolically close, located in the same or different clusters,
involved in the same or different metabolic pathways or molecular processes, and targeted
by the same or different drugs. We also investigated the role of common interactors of
hyperbolically close DT pairs. We found that proteins targeted by anti-microbial drugs make
153 direct interactions between them, suggesting the mode of action of TB drug combinations,
as they target the protein complexes involved in pathways (cell wall biosynthesis, translation,
transcription, replication, etc.) essential to bacterial survival. We also found that some
common interactors of hyperbolically close DT pairs imparted resistance and provided
tolerance to available drugs through different mechanisms that can be considered as potential
drug candidates. Our results provide datasets that could be used to find mechanisms of
existing and novel DTs, illustrating a procedure that could be applied to other bacteria and
resistant strains using the interolog approach. We propose our approach as a contribution to
developing new sets of combined drugs to make bacterial resistance increasingly difficult.
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