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Abstract: Blood biomarkers hold potential for the early diagnosis of ischaemic stroke (IS). We aimed
to evaluate the current weight of evidence and identify potential biomarkers and biological pathways
for further investigation. We searched PubMed, EMBASE, the Cochrane Library and Web of Science,
used R package meta4diag for diagnostic meta-analysis and applied Gene Ontology (GO) analysis to
identify vital biological processes (BPs). Among 8544 studies, we included 182 articles with a total
of 30,446 participants: 15675 IS, 2317 haemorrhagic stroke (HS), 1798 stroke mimics, 846 transient
ischaemic attack and 9810 control subjects. There were 518 pooled biomarkers including 203 proteins,
114 genes, 108 metabolites and 88 transcripts. Our study generated two shortlists of biomarkers for
future research: one with optimal diagnostic performance and another with low selection bias. Glial
fibrillary acidic protein was eligible for diagnostic meta-analysis, with summary sensitivities and
specificities for differentiating HS from IS between 3 h and 24 h after stroke onset ranging from 73%
to 80% and 77% to 97%, respectively. GO analysis revealed the top five BPs associated with IS. This
study provides a holistic view of early diagnostic biomarkers in IS. Two shortlists of biomarkers and
five BPs warrant future investigation.

Keywords: biomarkers; ischaemic stroke; meta-analysis; diagnosis; systematic review

1. Introduction

Stroke is a major cause of death and disability worldwide, with a profound impact
on quality of life and a significant burden on families and society [1,2]. It results in
5.5 million deaths globally each year, with an estimated one in four adults experiencing
a stroke in their lifetime [1,2]. Stroke can be classified into two main types: ischaemic
stroke (IS) and haemorrhagic stroke (HS), with IS accounting for the majority of cases
(71%) [2]. IS results from cerebral blood flow obstruction, and prompt reperfusion can
significantly reduce mortality and disability [1]. Current reperfusion therapies include
intravenous thrombolysis within 4.5 h (h) and endovascular thrombectomy within 6 h of
symptom onset, which are time-critical [3]. Patients with evidence of salvageable brain
tissue on imaging can also receive these therapies within 9 h for thrombolysis and 24 h for
thrombectomy [3]. Whether patients within the time window can access either of these two
therapies depends on the speed of differentiation of IS from HS and stroke mimics (SM).
Currently, differentiation relies on clinical assessment and neuroimaging (brain CT/MRI).
Non-contrast CT is used to exclude HS from thrombolysis treatment [4], but it is generally
unavailable in prehospital settings and primary care hospitals. MRI is more sensitive for
detecting IS, but fast access to it is restricted, and some patients with contraindications
cannot undergo MRI scans [1]. Therefore, it is necessary to seek other approaches to
compensate for the limitations of neuroimaging.
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In recent years, with the advancement of point-of-care testing (POCT) technology,
rapid testing has gradually become a reality for molecules ranging from DNA, RNA, pro-
teins to metabolites, which could provide results within 5–20 min from blood sampling [5–7].
POCT devices are usually portable and user-friendly, leading to rapid expansion in ap-
plications across emergency departments, intensive care units, hospital wards, outpatient
departments, and primary healthcare institutions [8–10]. If excellent diagnostic biomarkers
of IS can be found, applying existing POCT technology would enable a rapid diagnosis of
IS, benefiting both developing and developed regions. Therefore, a blood biomarker test
has the potential to be a complement to neuroimaging and enhance the early management
of IS.

A growing number of studies have investigated potential diagnostic biomarkers of IS.
Previous systematic reviews of these studies have either evaluated single biomarkers [11]
or single levels of biomarkers, such as proteins [12], RNAs [13], metabolites [14], and
biomarker panels [15], separately. A comprehensive overview of multi-level biomarkers
is necessary for a better assessment of the current evidence. High-throughput techniques
have made it possible to evaluate vast quantities of molecules as biomarkers [16]. However,
these omics studies have not yet been systematically analysed. Circulating biomarkers
can also provide insights into pathophysiological changes related to brain injury [17].
Therefore, the aim of this study is: firstly, to identify all levels of early circulating diagnostic
biomarkers of IS reported by published studies; secondly, to conduct a diagnostic meta-
analysis to evaluate their pooled diagnostic performance if available; thirdly, to summarise
all high-throughput omics studies on early diagnostic biomarkers of IS; fourthly, to apply
bioinformatics to reveal pivotal biological processes (BPs) of IS.

We conducted a systematic search and analysis of studies on circulating biomarkers
that distinguish IS from HS, SM, transient ischaemic attack (TIA), and controls within 24 h
of symptom onset. We selected the 24 h window because diagnostic biomarkers during
this early stage have the potential to expedite diagnosis and reperfusion treatment.

2. Methods
2.1. Design

We performed this systematic review and meta-analysis in compliance with the Pre-
ferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting
guideline [18] and the Diagnostic Test Accuracy (DTA) extension [19]. The protocol was
prospectively registered on PROSPERO (ID: CRD42022303870). Two reviewers indepen-
dently performed screening, data extraction, and quality assessment. Disagreements were
resolved by discussion between two reviewers (QL and one of YJ, CT, or LZ). We resorted
to a third reviewer for unresolved conflicts.

2.2. Search Strategy and Selection Criteria

A literature search was conducted in PubMed (1971-), EMBASE (1974-), the Cochrane
Library (1993-), and Web of Science (1900-). Our search included the following terms:
“blood”, “plasma”, “serum”, “biomarkers”, “diagnosis”, “differentiation”, “stroke”, “is-
chaemic stroke”, “hemorrhagic stroke” and their corresponding synonyms. The detailed
search strategies are presented in Supplementary Table S1. Searches were conducted on
4 June 2022. We imported all records from the literature search into Covidence systematic
review software (Veritas Health Innovation, Melbourne, Australia, www.covidence.org,
accessed on 29 September 2021), where screening, data extraction, and quality assessment
were performed. The reference list from all the included studies and related reviews
obtained from the screening process were also checked for any additional eligible articles.

Our inclusion criteria required all of five items: (1) studies that included at least two
groups of the following: IS, HS, TIA, SM, and controls; (2) blood samples collected within
24 h from symptom onset; (3) any biomarkers or panel of biomarkers which included
genes, RNAs, proteins, or metabolites; (4) patients aged ≥18 years; and (5) full-text articles
available in English. Some studies reported data both within and exceeding 24 h, but

www.covidence.org
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we only extracted data that were within 24 h. We included diagnostic test studies, case
control studies, and cohort studies. There were no restrictions on publication date. We
excluded review articles, editorials, comments, and conference abstracts; articles reporting
first blood samples collected longer than 24 h from symptom onset; biomarker levels tested
in cerebrospinal fluid, urine, saliva, or breath; non-blood markers such as neuroimaging
and clinical scores; and patients aged <18 years.

2.3. Data Extraction

We extracted general information (first author, publication year, title, country), char-
acteristics of the study (study design, included groups, sample size, validation cohort,
comparison, setting, reference standard, age, gender, specimen, sampling time, assay),
biomarkers (omics name, panel or not, biomarker name, number of biomarkers, biological
process), and outcomes (sensitivity, specificity, area under the curve (AUC), cut-off value,
biomarker concentration, fold change). We also extracted true-positive (TP), false-positive
(FP), false-negative (FN) and true-negative (TN) if data synthesis required. The extracted
data were finally exported from Covidence into a csv spreadsheet.

2.4. Risk of Bias Assessment

We used Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool [20] to
assess risk of bias and modified it for our study.

2.5. Statistical Analysis

We used R software (R 4.2.1, R core team) for qualitative and quantitative analysis. To
exhibit the synthesised temporal change of biomarker concentration, we used a linear mixed
model to acquire the combined median and 95% CI from multiple studies and then plotted
them. To synthesise summary sensitivity and specificity, we used R package meta4diag,
which implemented Bayesian bivariate meta-analysis of diagnostic test studies [21]. Com-
pared to classical statistics, Bayesian statistics are more flexible and can better handle small
sample sizes and unconventional data [22]. Bayesian bivariate meta-analysis considers
the heterogeneity and correlation among different studies, as well as incorporating prior
knowledge and uncertainty into the analysis, and providing more accurate estimation
results and confidence intervals [22]. Furthermore, the meta4diag package utilises the
newly proposed penalised complexity (PC) prior framework to enable users to specify prior
distributions for the hyperparameters in an intuitive manner [21]. We used the default
setting of meta4diag, which analysed a general diagnostic meta-analysis without detailed
covariate information (e.g., study design and quality, patient characteristics, setting, person
who performed the test, etc.) [21].

We performed the diagnostic meta-analysis when TP, FP, FN, or TN was available or
could be calculated from a given sample size, sensitivity, and specificity in at least two
studies on the same biomarker and at the same time point. Forest plots of summary sensi-
tivity and specificity and summary receiver operating characteristic (SROC) curves were
plotted. As a statistical inconsistency (e.g., I2) measurement was not typically applicable
in meta-analysis of diagnostic test accuracy (DTA) studies, we replaced it in compliance
with PRISMA-DTA by describing the term variability [19], which was the assessment of the
similarity of assay methods, specimens, and cut-off values in this study. Meta-regression
and sensitivity analysis were considered after variability assessment. A funnel plot was
planned to evaluate publication bias. The GRADE (Grading of Recommendations Assess-
ment, Development, and Evaluation) [23] system was considered for certainty assessment.

2.6. Bioinformatic Analysis

Gene Ontology (GO) enrichment analysis is a statistical method used to identify
overrepresented BP, molecular functions, and cellular components within a set of genes
or proteins [24,25]. The method is based on the GO, which is a standardised system of
functional annotations for genes and proteins. GO enrichment analysis involves comparing
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a set of genes or proteins of interest to a background or reference set, such as all genes or
proteins in a particular organism or cell type. The goal is to identify functional categories
that are significantly overrepresented in the set of interest compared to the background set.

The diagnostic biomarkers of IS are typically identified by comparing the levels of
specific molecules in patients with IS to those in other groups (HS/SM/TIA/controls).
These biomarker molecules identified are likely to play a role in the BPs that occur after IS
onset. By pooling all the protein and gene expression biomarkers from high-throughput
omics studies, we performed GO enrichment analysis to determine which BPs are most
likely to be implicated by these biomarkers. g:Profiler is a widely used web-based tool that
is designed for performing GO analysis [26]. We input gene and protein lists in g:Profiler
(accessed on 16 February 2023) which output the most significant BPs associated with the
input biomarkers.

3. Results
3.1. Qualitative Synthesis

We screened 8544 records and assessed 426 full texts for eligibility. Finally, 182 studies
were included (Figure 1), comprising IS (n = 15,675), HS (n = 2317), SM (n = 1798), TIA
(n = 846), and controls (n = 9810), a total of 30,446 participants from 38 countries. The
characteristics of the 182 included studies are presented in Supplementary Table S2. There
were 89 prospective, 85 case control, 3 retrospective, and 5 cross-sectional studies. Most
studies compared IS with controls (IS-control, n = 139), followed by IS-HS (n = 46), IS-SM
(n = 17), and IS-TIA (n = 8). No study compared IS with all other four groups (HS, TIA, SM,
and control) simultaneously. Half of the studies had a sample size less than 100 participants
(n = 91), then 100 to 400 participants (n = 78), and more than 400 participants (n = 13). The
majority of studies evaluated protein biomarkers (n = 127), followed by RNAs (n = 41),
metabolites (n = 11), and gene expression (n = 9), whilst nine studies reported several levels
of biomarkers simultaneously. A total of 19 (10%) studies had validation or replication
cohorts to verify diagnostic performance of biomarkers in their study design.

A total of 518 biomarkers were pooled, including 203 proteins, 114 genes, 108 metabo-
lites, and 88 transcripts. Transcript biomarkers consisted of 70 microRNAs, 7 circular-RNAs,
6 long-non-coding RNAs, 3 mRNAs, and 3 tRNAs. Of all pooled biomarkers, 427 biomark-
ers were from IS-controls, 135 from IS-HS, 36 from IS-SM, and 15 from IS-TIA comparisons
(Figure 2A). The two overlapped biomarkers in this Venn diagram of IS versus all other
conditions (HS/TIA/SM/control) were calcium-binding protein B (S100B) and Matrix
metalloproteinase-9 (MMP-9), which means that they were reported to differentiate IS
from all other conditions. Only a single assessment was conducted for 89% (444) of the
biomarkers. Biomarkers that were evaluated four or more times are presented in Figure 2B,
and they were the most frequently studied biomarkers. Brain-specific or brain-enriched
biomarkers are listed in Supplementary Table S3.

We identified 72 studies (39.6%) that reported both sensitivity and specificity and
acquired a list of biomarkers with the highest sensitivity and specificity (both over 90%)
from these studies, which are presented in Table 1. The table also showed that these
biomarkers have either not been validated or have only been validated in a few independent
cohorts. Furthermore, we summarised 12 proteomics, 12 transcriptomics, 7 metabolomics,
and 7 genomics high-throughput studies which are shown in Supplementary Table S4, and
pooled 103 genomic, 79 proteomic, 41 transcriptomic, and 97 metabolomic shortlisted omics
biomarkers with low selection bias, which are presented in Supplementary List S5. The
shortlists from Table 1 and Supplementary List S5 are summarised for future validation.

3.2. Quality Assessment

Supplementary Table S6 provides detailed results of our quality assessment using
QUADAS-2. Of the 182 studies included in our analysis, 92 (51%) had a low risk of bias in
patient selection, 180 (99%) had a low risk of index test, 145 (80%) had a low risk of bias
in their reference standard, 146 (80%) had low risk in flow and timing, and 166 (91%) had
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low concern about patient not matching with the review question regarding prior testing,
presentation, and setting. In addition, all included studies were found to have low concern
that the biomarker test, its conduct, or interpretation differed from the review question. In
total, 146 (80%) studies had low concern that the definition of stroke in the reference standard
did not match the review question.
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Figure 2. Venn chart for overlapped common biomarkers of IS versus control, HS, SM, and TIA
groups (A) and most frequently studied biomarkers (B). A total of 427 biomarkers were pooled from
IS-controls, 135 from IS-HS, 36 from IS-SM, and 15 from IS-TIA comparisons (A). The overlapped
2 common biomarkers were calcium-binding protein B (S100B) and Matrix metalloproteinase-9
(MMP-9). Overall, 16 biomarkers were studied ≥ 4 times among all studies included (B). S100B
(n = 18); GFAP, glial fibrillary acidic protein (n = 16); IMA, ischaemia-modified albumin (n = 11);
IL-6, interleukin 6 (n = 8); MMP-9, matrix metalloproteinase-9 (n = 8); CRP, C-reactive protein (n = 8);
hsCRP, high-sensitive C-reactive protein (n = 7); ICAM-1, intercellular adhesion molecule 1 (n = 5);
BNP, natriuretic peptides B (n = 4); NfL, neurofilament light chain (n = 4); NSE, neuron-specific
enolase (n = 4); NT-proBNP, NT-pro-natriuretic peptides B (n = 4); TNF-α, tumour necrosis factor α
(n = 4); vWF: von Willebrand factor (n = 4). IS, ischaemic stroke; HS, haemorrhagic stroke; SM, stroke
mimics; TIA, transient ischaemic attack.
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Table 1. Reported biomarkers with highest sensitivity and specificity for diagnosis of ischaemic
stroke in early stage.

Biomarkers Study ID Levels Sampling
Time Sensitivity Specificity AUC Comparison

Groups
Sample

Size
Biological

Process

Antibody to
NR 2A/2B

Dambinova
2003 [27] Protein 3 h 97% 98% 0.99 IS 1

HC 230 +
VC 25 +
ICH 18

304 Immune
response

BDNF Algin 2019
[28] Protein 4 h 100% 92% 0.983 IS 75 HC 28 103

Neuronal
survival and

growth

IMA index Ahn 2011 [29] Protein 6 h 95.8% 96.4% 0.99 IS 28 SM 24 52 Ischemia
response

NR2 peptide Dambinova
2012 [30] Protein 12 h 92.1% 96.5% 0.92 IS 50 SM 91 +

VC 48 +
HC 52

241 Brain cell
damage

GPBB
Park 2018

[31] Protein 12 h 93% 93% 0.96 IS 172 NSC 133 305 Ischaemia
responseAlgawwam

2021 [32] Protein 24 h N/A N/A N/A IS 40 HC 40 80

ADAMTS13 Sharma 2015
[33] Proteomics 24 h 90% 98% 0.96 IS 50 HC 35 85

Blood
haemostasis

and endothelial
function

regulation

S100A7 Sharma 2015
[33] Proteomics 24 h 97% 91% 0.912 IS 50 HC 35 85

Blood
haemostasis

and endothelial
function

regulation

VILIP-1

Stejskal 2011
[34] Protein 3 h 100% 100% 1.0 IS 16 HC 17 33 Brain cell

damageLaterza 2006
[35] Protein 24 h N/A N/A N/A IS 18 HC N/A 18

Algin 2019
[28] Protein 4 h No statistical significance IS 75 HC 28 103

miR-107 Yang 2016
[36] Transcript 24 h 93.8% 92.2% 0.97 IS 114 HC58 172

Cerebral
ischaemic

injury

miR-124

Zhou 2021
[37] Transcript 24 h 91.67% 93.52% 0.9527 IS 108 HC 108 216

Anti-
inflammationJi 2016 [38] Transcript 24 h N/A N/A 0.69 IS 65 NSC 66 131

Liu 2015 [39] Transcript 24 h N/A N/A 0.76 IS 31 HC 11 42

APOA1-UP Zhao 2016
[40] Protein 24 h 90.3% 97.14% 0.975 IS 168 HC 104 272 Cholesterol

metabolism
lncRNAs
LINK-A

Ewida 2021
[41] Transcript 24 h 92% 94% 0.914 IS 50 HS 25 75 Angiogenesis

ANTXR2 +
STK3 + PDK4

+ CD163 +
MAL + GRAP

+
ID3 + KIF1B +

PLXDC2 +
CTSZ

O’Connell
2017 [42] Gene 5 h, 24 h 95.7% 95.7% 0.997 IS 23 VC 23 46

Immune
response

O’Connell
2017 [42] Gene 3 h 91.3% 95.7% 0.991 IS 23 VC 23 46

O’Connell
2016 [43] Genomics 5.3 h 97.4% 100% N/A IS 39 NAC 24 63

O’Connell
2016 [43] Genomics 4.6 h 92.3% 100% N/A IS 39 NAC 24 63

O’Connell
2016 [43] Genomics 4.6 h 97.4% 90% N/A IS 39 SM 20 59

S100B +
BNGF +
vWF +

MMP9 +
MCP-1

Reynolds
2003 [44] Protein 3 h 98.1% 91.7% N/A IS 82 HS 103 +

HC 214 +
TBI 38

437 Brain cell
damage,
neuronal
survive,

coagulation,
inflammation

Reynolds
2003 [44] Protein 6 h 98.1% 93.1% N/A IS 82 HS 103 +

HC 214 +
TBI 38

437

GFAP+
antibody

against NR2

Stanca 2015
[45] Protein 12 h 94% 91% N/A IS 49 HS 23 72

Brain cell
damage,
immune
response

17-peptide-
panel

O’Connell
2019 [46] Proteomics 12 h 93.3% 90% 0.95 IS 19 HS 17 36 Immune

response

aAbs to NR2A/2B, autoantibodies (aAbs) to NR2A/2B subunit of N-methyl-D-aspartate receptor; BDNF, brain-
derived neurotrophic factor; IMA index, ischaemia-modified albumin index; NR2 peptide, NR2 subunit peptide
of N-methyl-D-aspartate receptor; GPBB, glycogen phosphorylase isoenzyme BB; ADAMTS13, von Willebrand
factor-cleaving protease; S100A7, S100 calcium-binding protein A7; VILIP-1, visinin-like protein 1; APOA1-UP,
apolipoprotein A1-unique peptide; HC: healthy control; VC: vascular risk control; NSC: non-stroke control; NAC:
neurologically asymptomatic control; IS: ischaemic stroke; HS: haemorrhagic stroke; SM: stroke mimics; TIA:
transient ischaemic attack; TBI: traumatic brain injury.
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3.3. Quantitative Analysis and Meta-Analysis

Ten studies reported Glial Fibrillary Acidic Protein (GFAP) was eligible for perfor-
mance of diagnostic meta-analysis (Supplementary Table S7). To investigate the temporal
change in GFAP concentration, we additionally included two studies [47,48] for the calcula-
tion of a combined median with 95% CI. Our preliminary analysis indicated that patients
with HS had higher circulating GFAP levels than those with IS at 3 h, 4.5 h, 6 h, and 24 h,
reaching a peak at 4.5 h before gradually declining. The temporal trend is displayed in
Figure 3.

Figure 3. Temporal change in circulating level of GFAP. The concentration of GFAP (combined
median with 95% CI) was plotted. This graph shows that GFAP increased rapidly from 3 h and
peaked at 4.5 h from symptom onset and decreased continuously afterwards till 24 h in patients with
HS. For patients with IS, GFAP had always been at a lower level than patients with HS. IS, ischaemic
stroke; HS, haemorrhagic stroke; GFAP, glial fibrillary acidic protein.

Due to the limited number of available studies at each time point, with a maximum
of six and a minimum of two, it was challenging to conduct a diagnostic meta-analysis.
However, the R package meta4diag managed to mitigate these imperfections. As shown in
the forest plot, the summary sensitivities and specificities of GFAP for detecting HS from IS
were as follows: at 3 h, 73% (95%CI, 37–94%) and 97% (82–100%); at 4.5 h, 79% (62–91%)
and 95% (83–100%); at 6 h, 80% (70–87%) and 92% (81–98%); and at 24 h, 71% (46–90%)
and 77% (40–97%), respectively (see Figure 4). We also used SROC curves to evaluate the
classification performance of GFAP for differentiating HS and IS at 3 h, 4.5 h, and 6 h (see
Figure 5). The summary AUCs were 0.945 (95CI%, 0.641–0.999), 0.915 (0.835–0.996), and
0.849 (0.473–0.985) at 3 h, 4.5 h, and 6 h, respectively. However, we could not plot the SROC
curve at 24 h due to the limited number of eligible studies (only two).

The level of variability (heterogeneity) among the synthesised studies at each time point
was high, mainly due to differences in cut-off values, specimens, and assay methods. We were
unable to perform a meta-regression to statistically confirm the cause of heterogeneity because
there were too few studies available at each time point. Similarly, sensitivity analysis was not
applicable since there were not enough synthesised studies after exclusion of the outlier studies.
A funnel plot was also not applicable because of the small number of studies. Lastly, we could
not apply GRADE due to the inapplicability of publication bias.
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3.4. Biological Processes and GO Analysis

We extracted the BPs of proposed biomarkers reported in conventional non-high-
throughput studies. The top five BPs were inflammation, oxidative stress, immune response,
coagulation, and angiogenesis (see Figure 6A). We used GO analysis on gene and protein
biomarkers from high-throughput omics studies and identified the top five BPs associated
with IS, which were fibrinolysis, regulation of blood coagulation, regulation of haemostasis,
blood coagulation, and haemostasis (see Figure 6B). The BPs acquired from conventional
non-high-throughput studies and high-throughput studies were inconsistent.
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inflammation, oxidative stress, immune response, coagulation, and angiogenesis (A). GO analysis
showed the top 5 pivotal BPs of ischaemic stroke from other conditions which were fibrinolysis,
regulation of blood coagulation, regulation of haemostasis, blood coagulation, and haemostasis (B).
BP: biological processes.
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4. Discussion

Our study presents a holistic view of early diagnostic circulating biomarkers in IS
and summarises all high-throughput omics studies in this field for the first time. We
analysed a total of 182 studies and pooled 518 multi-level biomarkers, which included
genes, transcripts, proteins, and metabolites. We identified a shortlist of biomarkers with
highest sensitivity and specificity, as well as a shortlist of high-throughput multilevel omics
biomarkers with low selection bias for further validation. Moreover, we identified the
top five vital BPs after IS onset. We also made a preliminary synthesis of the temporal
change of GFAP within 24 h after stroke onset for the first time and synthesised summary
sensitivity, specificity, and AUCs of GFAP in differentiating HS and IS according to different
time points.

4.1. The Shortlist of Biomarkers with Optimal Diagnostic Performance

The shortlist of biomarkers with highest diagnostic performance is identified for
further validation (Table 1). Biomarker research for IS remains wide-ranging and lacks
depth, with the majority of biomarkers lacking sufficient independent validation cohorts.
Although research teams frequently identify new potential biomarkers, the lack of adequate
validation hinders their implementation in clinical settings. We list these biomarkers to
encourage research teams to participate in their validation, improving their dependability
and reproducibility. For example, as listed in Table 1, only three studies have investigated
the circulating level of glycogen phosphorylase isoenzyme BB (GPBB) in the early stages of
IS and two studies did not provide sensitivity and specificity. Therefore, rigorous validation
is needed to evaluate the true value of these biomarkers.

4.2. The Synthesis of GFAP

GFAP is an intracellular class-III intermediate filament that is mainly expressed in the
soma and end-feet of astrocytes throughout the brain [49]. After stroke onset, the blood–
brain barrier (BBB) is disrupted, leading to the release of GFAP into the bloodstream [49].
Our tentative synthesis of GFAP circulating levels reveals that patients with HS have
significantly higher levels of GFAP than those with IS all through the first 24 h. This
difference may be due to the earlier disruption of BBB in patients with HS compared to
those with IS. Our diagnostic meta-analysis of GFAP indicates that its diagnostic ability
within 4.5 h is the best. However, this evidence of GFAP is inadequate for immediate
clinical application. Nevertheless, GFAP could serve as an independent or complementary
test for excluding HS from intravenous thrombolysis treatment, especially when CT is not
routinely available [50]. More evidence is required to evaluate GFAP’s performance in
differentiating IS from SM within 4.5 h time window. GFAP could also be a promising
panel member when combined with other biomarkers, such as autoantibodies to NR2A/2B
subunit of N-methyl-D-aspartate receptor (Abs to NR2), which achieved a sensitivity and
specificity of 94% and 91% for differentiating IS from HS [45]. Our finding also suggests
that the diagnostic performance of GFAP varies among different time points, indicating the
importance of time points in evaluating the diagnostic capability of biomarkers.

4.3. High-Throughput Omics Studies

High-throughput omics studies are a promising approach to identifying stroke biomarkers,
generating substantial data and information at various molecule levels [16]. In this regard,
we systematically pooled these studies and the results are presented in Supplementary
Table S4. We established a workflow for reference, starting with high-throughput methods
to test gene expression/RNAs, proteins, or metabolites in the discovery stage. Differential
molecules were then identified, and advanced methods such as machine learning/deep
learning were applied to reduce the data dimension to a small number of molecules [43,51].
In the validation stage, shortlisted molecules were replicated/validated in a second or third
independent cohort. Biomarkers obtained in this way had low selection bias and were often
unimaginable from a conventional point of view. The cost of these studies was generally
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high, but they could provide new opportunities for the diagnosis and management of
IS patients. To maximise the use of these findings, we pooled 79 proteins, 103 genes,
97 metabolites, and 41 RNAs omics biomarkers, which are listed in Supplementary List
S5. This list of biomarkers could serve as a platform for future targeted omics studies,
contributing to a better understanding of IS pathophysiology.

The integration of multi-omics studies will uncover comprehensive interaction net-
works between multiple molecular levels and provide a deeper insight into stroke patho-
physiology and biomarker discovery [16]. Among the included omics studies, there was
one multi-omics study that combined transcriptomics and proteomics together [52]. More-
over, advanced AI algorithms for integration analysis of multi-omics data are increasingly
maturing. For instance, Multi-Omics Graph cOnvolutional NETworks (MOGONET), which
allowed the joint exploration of omics-specific learning by graph convolutional networks
and cross-omics correlation learning by view correlation discovery network, could iden-
tify more significant biomarkers from multiple omics data types [53]. Bringing together,
understandings of IS will be moved forwards through emerging high techniques.

4.4. Pivotal Biological Processes

A thorough understanding of the pathophysiology of IS is essential for its optimal
management [16]. In acute IS, the sudden decrease in cerebral blood flow initiates a series
of cascade reactions and processes [54], leading to the alteration in thousands of molecules.
Some of these molecules may serve as useful diagnostic biomarkers of IS [16]. Conversely,
the reported diagnostic biomarkers might reveal the underlying BPs of IS. To identify the
possible BPs implicated by these biomarkers, we conducted a GO enrichment analysis.
This is the first systematic review of stroke biomarkers using GO analysis. We identified
the top five enriched BP, including fibrinolysis, regulation of blood coagulation, regulation
of haemostasis, blood coagulation, and haemostasis. These processes are consistent with
our basic understanding of stroke pathology, confirming that they are critical pathophys-
iological processes that should be given greater attention when investigating diagnostic
biomarkers and therapeutic targets. For instance, the commonly used alteplase for intra-
venous thrombolysis is a recombinant form of tissue plasminogen activator (t-PA) that
mimics the endogenous t-PA involved in the natural fibrinolysis process [1]. Therefore, we
speculate that the key diagnostic molecules of IS might exist in these processes.

4.5. Compare with Previous Related Studies

Previous systematic reviews on circulating diagnostic biomarkers of IS just assessed
single biomarkers or single levels of biomarkers [11–15]. By contrast, we gathered genes,
RNAs, proteins, and metabolite biomarkers together. There was a very recent systematic
review which performed a meta-analysis for 25 protein biomarkers of IS based on their
concentration [12]. However, synthesised concentration could not reveal the diagnostic per-
formance and provide recommendations on clinical translation. Similarly, we also acquired
a list of frequently studied protein biomarkers (Figure 2B) with reported concentrations
that could be synthesised for conventional meta-analysis. However, we paid more attention
to compare or synthesise diagnostic accuracy to find potential candidates. There were two
previous diagnostic meta-analyses of GFAP, which mixed synthesised sensitivity and speci-
ficity of all time points together [55,56]. The difference was that our study distinguished
multiple time points, as the circulating level of GFAP underwent obvious perturbation
following time after stroke onset, which affected diagnostic performance substantially.

4.6. The Current Status and Recommendations for Future Research

Decades of research on hundreds of biomarkers for the early assessment of IS have not
led to any translation, which might be due to the following flaws. Firstly, regarding study
design, only half of the studies recruited consecutive patients prospectively. The most
commonly used comparative group was healthy controls, which did not accurately reflect
the clinical context. Only 9.3% of studies used a SM group, which is the most meaningful
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and challenging comparative group, even when MRI was available. Moreover, there were
inconsistencies in settings, reference standards, sampling time points, specimens, and
assays. A second issue was the small sample sizes in many studies, with 50% enrolling
fewer than 100 participants. These sample sizes were too small to draw any convincing
conclusions about the utility of the biomarker. The third concern was the challenge of
comparing the diagnostic performance of the proposed biomarkers. Almost half (46.7%) of
the studies only reported the concentration of biomarkers but without reporting sensitivity,
specificity, or AUC. Most proposed biomarkers (89%) were only reported once, making
comparisons impossible. There were indeed a few biomarkers that were reported more than
once, and with reporting sensitivity and specificity, but they were measured at different
time points, resulting in unavailable synthesis. Consequently, only the studies of GFAP
was found to be available for synthesis, surprisingly at four time points: 3 h, 4.5 h, 12 h,
and 24 h.

In future research, we recommend using prospective study designs, enrolling SM
groups, establishing validation cohorts, and paying attention to dynamic changes in circu-
lating biomarkers, with reporting items consistent with the START statement [57]. When
exploring new biomarkers, studies should simultaneously validate or compare them with
previously reported optimal biomarkers, enabling data synthesis and comparison to iden-
tify highly useful candidates. Researchers should aim to increase sample size through
multi-centre cooperation and identify biomarkers for IS versus HS, SM, TIA, and healthy
and patient controls. If blood biomarkers are to be used in accelerating diagnosis for
reperfusion therapies, sampling time focused within 6 h of symptom onset would be more
applicable. Furthermore, it is preferable to select molecules as candidate biomarkers that
exhibit significant changes within the time window and have sufficient blood concentration
to be detected.

5. Limitations

Firstly, we did not exclude studies with subarachnoid haemorrhage, as these few
studies had a minor impact on the overall analysis. Secondly, we grouped all types of
controls into a single category, including healthy controls, vascular risk factor controls,
non-neurological disease controls, and other neurological disease controls. Thirdly, most
studies included were not standardised diagnostic test studies, but we included them to
gain an overview of all the potential biomarkers reported. Fourthly, considering the small
quantity and great variability in the studies included in our diagnostic meta-analysis, it
appears premature to perform a meta-analysis of GFAP, and more research is necessary to
establish its actual efficacy in the future. Fifthly, although we conducted a careful quality
assessment of the article, it is still possible that it may be influenced by some potential
errors present in the original studies. These factors are beyond our control and cannot be
addressed in this research.

6. Conclusions

The findings of this study have established a summarised platform for the future
development of diagnostic biomarkers for IS. This platform includes a list of biomarkers
with highest reported diagnostic performance, a list of unbiased omics biomarkers, potential
BPs in which diagnostic biomarkers would most likely to be found, as well as an exploration
of the issues existed in previous studies and future research directions. GFAP would be
a potential biomarker for intravenous thrombolysis in patients with IS within 4.5 h from
symptom onset at pre-hospital settings. These findings provide a foundation for future
research that could have a significant impact on the augmentation of IS management.
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