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abstract

PURPOSEWe determined whether a large, multianalyte panel of circulating biomarkers can improve detection of
early-stage pancreatic ductal adenocarcinoma (PDAC).

MATERIALS ANDMETHODSWe defined a biologically relevant subspace of blood analytes on the basis of previous
identification in premalignant lesions or early-stage PDAC and evaluated each in pilot studies. The 31 analytes
that met minimum diagnostic accuracy were measured in serum of 837 subjects (461 healthy, 194 benign
pancreatic disease, and 182 early-stage PDAC). We used machine learning to develop classification algorithms
using the relationship between subjects on the basis of their changes across the predictors. Model performance
was subsequently evaluated in an independent validation data set from 186 additional subjects.

RESULTS A classification model was trained on 669 subjects (358 healthy, 159 benign, and 152 early-stage
PDAC). Model evaluation on a hold-out test set of 168 subjects (103 healthy, 35 benign, and 30 early-stage PDAC)
yielded an area under the receiver operating characteristic curve (AUC) of 0.920 for classification of PDAC from
non-PDAC (benign and healthy controls) and an AUC of 0.944 for PDAC versus healthy controls. The algorithm
was then validated in 146 subsequent cases presenting with pancreatic disease (73 benign pancreatic disease
and 73 early- and late-stage PDAC cases) and 40 healthy control subjects. The validation set yielded an AUC of
0.919 for classification of PDAC from non-PDAC and an AUC of 0.925 for PDAC versus healthy controls.

CONCLUSION Individually weak serum biomarkers can be combined into a strong classification algorithm to
develop a blood test to identify patients who may benefit from further testing.
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INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is one of
the most highly lethal diseases resulting in more than
47,000 deaths in the United States annually and
nearly 460,000 deaths worldwide.1,2 This number is
expected to rise3 with projections that PDAC will be
the second leading cause of cancer deaths by 2030.4

Surgical resection remains the mainstay of curative
therapy, with 5-year survival rising to 25% for patients
who present with resectable disease.5 Advances in
pancreatic surgery and the expanded use of neo-
adjuvant chemotherapy have increased the fraction
of patients eligible for surgery and decreased oper-
ative morbidity6-8; however, the majority of patients still
present with advanced, unresectable disease for which
treatments remain ineffective.9 Five-year survival for
PDAC remains around 10%, improved from 5% survival
rates 20 years ago.10

An accurate, cost-effective screening protocol could
substantially increase the number of patients eligible for

surgical resection of newly diagnosed PDAC and greatly
improve current PDAC-associated oncologic outcomes.
Available evidence suggests at least a 5-year period
between the development of malignant founder cells
and acquisition of metastatic capacity, offering a win-
dow of opportunity for identification of early-stage,
potentially curable disease.11 Screening for PDAC is a
controversial topic, however, with no currently effective
screening tool for detecting early tumors or asymp-
tomatic tumors in the general population.12 The US
Preventative Services Task Force recently discouraged
screening for pancreatic cancer in asymptomatic adults
as the risks of harm currently outweigh the benefits.13

A blood-based test may be useful as a primary screening
tool for assessing the need for secondary screening by
imaging. Limiting screening to groups with high-risk for
developing PDAC would increase the pretest probability
and reasonably offset the risk of false-positive diagnoses
and costs with the survival benefits of early detection.
Individual biomarkers, such as carcinoembryonic anti-
gen and cancer antigen (CA) 19-9, lack the accuracy to
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be used independently for early-stage PDAC screening;
however, a blood-based diagnostic panel relying on multiple
biomarkers could be developed to improve sensitivity and
specificity of a screening assay14,15 and could initially be
deployed as a prefilter to inform the need for secondary
screening by imaging in high-risk groups.

This study describes the performance of a multianalyte,
blood-based primary screening test developed for detection
of early-stage PDAC to suitably inform the need for secondary
screening using imaging. Potential analytes were assembled
from a large body of prior studies that investigated circulating
biomarkers in early-stage disease.16-30,31-50,51-71 We used
statistical learning to develop classification algorithms using
the relationship between classes on the basis of the changes
across analytes. A diagnostic algorithmwas devised in a large
development cohort and subsequently validated in an in-
dependent sample set.

MATERIALS AND METHODS

Subjects and Sample Collection

This study retrospectively evaluated a continuous set of
prospectively collected samples from cases and controls
and used clinical diagnoses as the reference standard. All
patients presenting with suspicion of pancreatic disease
and accompanying adults to serve as healthy control
subjects were approached for enrollment in a research
protocol at the Huntsman Cancer Institute between 2005
and 2019. Blood was collected during normal clinic hours
from consenting adults and processed for serum, ali-
quoted, and frozen within 2 hours of collection. Fasting
status was not imposed. Serum samples were stored at
–80°C for ,5 years or –140°C for ,10 years before being
assayed. Available samples were periodically queried for
inclusion in this study, and samples from all patients
meeting the inclusion criterion were assayed. Cases were
chosen for inclusion if they had cytologically confirmed
stage IA, IB, IIA, or IIB PDAC with an available treatment-
naı̈ve serum sample. Control samples from patients with
benign pancreatic disease included patients with chronic

pancreatitis and intraductal papillary mucinous neoplasm
(IPMN, n = 94). Samples for IPMN cases were included if
the patient had 3 years of subsequent follow-up without
intervention for progression. Healthy control samples were
included from accompanying adults (independent of the
diagnosis of the primary case) and cases obtained from the
University of Salerno (n = 39). Additional control cases
included excess sera obtained from a regional reference
laboratory. Subject characteristics are provided in Table 1.
Informed written consent was obtained from each subject
enrolled in the research protocol, and all studies were
performed with the approval of the Institutional Review
Board at the University of Utah in accordance to the prin-
ciples of Declaration of Helsinki and the US Common Rule.

Enzyme-Linked Immunosorbent Assay

A total of 837 serum samples were assayed for 31 analytes
by enzyme-linked immunosorbent assay. Samples were
processed in four batches over the course of 5 years.
Commercially available kits (Supplementary Table S1, Data
Supplement) were used for analyte quantification according
to the manufacturers recommended protocols, including
primary antibody optimization, where appropriate. The raw
data were log transformed and adjusted for sex, age, and
batch (fitting a natural spline with 2 df ) using a linear model.
The resulting adjusted data were normalized by centering
and dividing by the standard deviation of the healthy
control data.

Data Analysis

Complete data were available for all predictors, and impu-
tation was not required. Statistical analyses and modeling
were performed using R version 3.6.1.72 For diagnostic
performance of individual analytes, areas under the receiver
operating characteristic (ROC) curve (AUC) were deter-
mined. Bootstrap resampling was used to estimate results
from repeated analyses. A random sampling with replace-
ment of calibration samples was performed 2000 times, and
the range of values was then recorded and compared with
the average result. Ensemble models were built using the

CONTEXT

Key Objective
To develop a blood-based screening tool to discriminate early-stage pancreatic adenocarcinoma from benign pancreatic

disease and healthy subjects.
Knowledge Generated
We demonstrate that a multianalyte panel of serum markers that are weak predictors individually could be combined using

machine learning into an effective classification tool. The tool showed high specificity and actionable sensitivity in an
independent validation cohort.

Relevance
This approach could be used as the basis of a primary screening test developed for detection of early-stage pancreatic ductal

adenocarcinoma to suitably inform the need for secondary screening using imaging, particularly in groups at high risk for
developing pancreatic adenocarcinoma.
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caretEnsemble package in R73 by stacking using gradient
boosting. For modeling, all data with known class in the
837-sample data set were adjusted together before ran-
domly separating into training (80%) and test (20%) sets.
Discriminate algorithms were developed from the training
data set for dichotomous classification of controls (including
healthy, chronic pancreatitis, and benign IPMN patients)
and early-stage PDAC cases. Using the training data set,
multiple models were sequentially built to optimize AUC,
sensitivity, and specificity, and the resulting probabilities

averaged for all models. Method selection and tuning pa-
rameters for individual modeling methods were evaluated in
an intermediate data subset consisting of 74 healthy control,
60 chronic pancreatitis, 76 IPMN, and 122 early-stage
PDAC cases. Individual model performance was assessed
by 10-fold cross validation. Ensemble classification models
involved first optimizing submodels using individual classi-
fication methods (’glmnet’, ’svmRadial’, ’rf’, ’nnet’, ’knn’
packages in R, Supplementary Table S2, Data Supplement)
and then optimizing classification by combining the

TABLE 1. Subject Characteristics
Data Set PDAC Controls IPMN Chronic Pancreatitis

Development data set

Cases, No. 182 461 94 100

Age, years, median (IQR) 67 (61-75) 57 (53-65) 66 (57-72) 58 (51-64)

Male sex, No. (%) 105 (58) 193 (42) 39 (41) 57 (57)

Stage, No. (%)

I 26 (14)

IIA 63 (35)

IIB 93 (51)

80% training set

Cases, No. 152 358 77 82

Age, years, median (IQR) 67 (60-75) 57 (52-65) 65 (54-70) 58 (50-65)

Male sex, No. (%) 87 (57) 152 (42) 32 (42) 44 (54)

Stage, No. (%)

I 22 (14)

IIA 55 (36)

IIB 75 (49)

20% test set

Cases, No. 30 103 17 18

Age, years, median (IQR) 69 (64-73) 58 (53-64) 73 (67-76) 60 (53-64)

Male sex, No. (%) 18 (60) 41 (40) 7 (41) 13 (72)

Stage, No. (%)

I 4 (13)

IIA 8 (27)

IIB 18 (60)

Validation set

Cases, No. 73 40 41 32

Age, years, median (IQR) 69 (61-74) 57 (51-67) 67 (57-73) 50 (39-62)

Male sex, No. (%) 34 (47) 20 (50) 16 (39) 17 (53)

Stage, No. (%)

I 17 (23)

IIA 7 (10)

IIB 8 (11)

III 19 (26)

IV 17 (23)

Unknown 5 (7)

Abbreviations: IPMN, intraductal papillary mucinous neoplasm; PDAC, pancreatic ductal adenocarcinoma.
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individual methods by stacking (gbm package in R). Again,
performance of the ensemble models was assessed by
10-fold cross validation. Ensemble classification models
were then used to predict class probabilities to the samples
in the test set using a probability of 0.5 as the classification
threshold. The final classification model was then applied to
the 186-sample validation set after data adjustment.

RESULTS

Analyte Selection and Performance

Potential analytes were identified from prior studies that
evaluated serum or plasma biomarkers in premalignant le-
sions, prediagnostic samples, or early-stage disease (Supple-
mentary Table S3, Data Supplement). Candidate biomarkers
were selected for inclusion in the panel if identified in two or
more independent experiments from blood products in early-
stage PDAC clinical samples. A subset of promising candi-
dates that did not meet this standard were evaluated in pilot
studies, and candidate biomarkers were included for further
analysis if the analyte was significantly elevated in early-stage
PDAC cases relative to healthy control subject (Supplemen-
tary Table S4, Data Supplement). A total of 31 analytes were
selected for inclusion in the biomarker panel (Table 2).Most of
the analytes are secreted and/or function within the extra-
cellular space, and many participate in diverse biological
processes associated with cancer (Supplementary Table S5,
Data Supplement).

Levels of the selected analytes were measured in a de-
velopment set of 837 serum samples from treatment-naı̈ve
patients with resectable PDAC, subjects with benign
pancreatic disease, and subjects who were apparently
healthy (Table 1). The diagnostic performance of the in-
dividual biomarkers was evaluated by ROC analyses
(Supplementary Table S6, Data Supplement). Twenty-nine
of the 31 analytes yielded significantly higher area under
the ROC curve than predicted by chance for at least one of
the comparisons between PDAC and benign IPMN, chronic
pancreatitis, or healthy controls demonstrating their po-
tential for diagnostic discrimination of early-stage PDAC.
Two analytes (ANG and MMP2) did not yield significant
discrimination in this data set despite compelling evidence
in the literature. Since the approach allows for interactions
between analytes and because elevation of an individual
analyte may occur in some PDAC cases, but not reach
significance in aggregate data, ANG and MMP2 were in-
cluded in the data sets for algorithm development, testing,
and validation. In general, the individual analytes were
weak classifiers for discriminating PDAC from controls.

Diagnostic Development and Performance

In an attempt to identify a stronger classifier, we used a
machine learning approach to combine the information
from the individual analytes (Fig 1). The approach pro-
ceeded in two steps. First, age, sex, and the 31 analyte
levels in samples were provided as predictors to individual
machine learning methods. The methods were chosen to

represent dissimilar learning techniques,74 and pilot
studies indicated that all predictors were used to some
extent by one or more of the methods (Supplementary
Table S7, Data Supplement). The individual methods
were used to assign two-class probabilities (early-stage
PDAC or non-PDAC control) for each case by optimizing
ROC AUC via bootstrap resampling. Second, the outputs
of the individual methods were combined by re-sampling
into an ensemble model to assign the final class proba-
bilities. The ensemble model was robust to sequential
elimination of the individual methods, but each method
contributed to model accuracy when specific combina-
tions were considered (Supplementary Table S8, Data
Supplement).

TABLE 2. Analytes Included in Final Panel
Analyte Name

ALCAM Activated leukocyte cell adhesion molecule

ANG Angiogenin

AXL AXL receptor tyrosine kinase

BAG3 BCL2-associated athanogene 3

BSG Basigin (EMMPRIN, CD147)

CA 19-9 Cancer antigen 19-9

CEA Carcinoembryonic antigen

CEACAM1 Carcinoembryonic antigen-related cell adhesion
molecule 1

COL18A1 Collagen, type XVIII, alpha 1 (endostatin)

EPCAM Epithelial cell adhesion molecule

HA Soluble hyaluronic acid

HP Haptoglobin

ICAM1 Intercellular adhesion molecule 1

IGFBP2 Insulin-like growth factor binding protein 2

IGFBP4 Insulin-like growth factor binding protein 4

LCN2 Lipocalin 2 (NGAL)

LRG1 Leucine-rich alpha-2-glycoprotein 1

MMP2 Matrix metallopeptidase 2

MMP7 Matrix metallopeptidase 7

MMP9 Matrix metallopeptidase 9

MSLN Mesothelin

PARK7 DJ-1 protein

PPBP Platelet basic protein

PRG4 Proteoglycan 4

SPARCL1 SPARC-like 1 (hevin)

SPP1 Secreted phosphoprotein 1 (osteopontin)

TGFBI Transforming growth factor, beta-induced,
68 kDa

THBS1 Thrombospondin 1

TIMP1 TIMP metallopeptidase inhibitor 1

TNFRSF1A Tumor necrosis factor receptor superfamily,
member 1A

VEGFC Vascular endothelial growth factor C
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The development set of 837 serum samples were randomly
split into a training set representing 80% of the cases and a
hold-out test set of 20% of cases. The two-step machine
learning approach was applied to the training set to develop
a diagnostic algorithm. The probabilities assigned by the
algorithm to the training set resulted in a sensitivity of
92.8%, correctly identifying 141 of 152 PDAC cases. The
algorithm yielded a specificity of 100%, correctly identifying
all 358 healthy control cases. For benign pancreatic dis-
ease, the algorithm correctly identified all 82 chronic
pancreatitis cases but misidentified 1 of 77 IPMN cases
for an overall specificity of 99.8% for identification of
non-PDAC subjects (Table 3). The high specificity of the
algorithm was a desirable result, given the rarity of the
disease, but is likely a consequence of the higher ratio of
controls to cases rather than a design feature since overall
diagnostic accuracy (case versus control) was used to
optimize the algorithm.

For objective assessment of algorithm accuracy, the resulting
algorithm was applied to unused samples from the hold-out
test set resulting in a sensitivity of 63.3%, correctly identifying
19 of 30 PDAC cases and a specificity of 97.1% (100 of 101
healthy controls). All 17 IPMN cases were correctly identified,
as were 16 of 18 chronic pancreatitis cases, yielding an overall
specificity of 96.4% for identification of non-PDAC cases
(Table 3). ROC analysis illustrates that the diagnostic ability of
the analyte panel for discrimination of PDAC from healthy
controls (AUC= 0.944, Fig 2A) was greater than that of CA 19-

9 alone (AUC = 0.878, Fig 2C) and for discrimination of PDAC

fromnon-PDAC controls (analyte panel AUC=0.920, Fig 2B v

CA 19-9 AUC = 0.861, Fig 2D).

Diagnostic Validation

The experimental design required that clinical information
be available for model development, but the validation set
was evaluated in the fixed algorithm in a blinded manner.
Additional samples, collected over a period of 18 months
after the final analyte panel algorithm was constructed
using the development set (Table 1), were used to evaluate
the diagnostic utility of the algorithm in a real-world setting.
The 31 analytes were measured in 186 additional serum
samples representing 73 PDAC, 32 chronic pancreatitis,
and 41 cystic lesions (27 IPMN, 5 mucinous cystic neo-
plasm, and 9 serous cystadenoma) cases and 40 samples
from healthy control subjects. These data, when supplied to
the analyte panel algorithm, correctly identifying 53 of the
73 PDAC cases resulted in a sensitivity of 72.6%, which
was better performance than the test set. Classification of
controls in the validation set was consistent with results in
the test set with a specificity of 95% (38 of 40) for healthy
controls and 95.6% (108 of 113) for non-PDAC controls. In
a rigorous validation using only those cases that satisfied
the same inclusion criterion used for the development set
(32 early-stage PDAC, 32 chronic pancreatitis, 40 healthy
controls [cystic lesions had less than the required 3 years
follow-up]), the algorithm yielded a sensitivity of 81.5%
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FIG 1. Machine learning
schematic for diagnostic clas-
sification. Predictors were fed
to individual machine learning
methods and used to assign
two-class probabilities (early-
stage PDAC or non-PDAC
control) for each case. Out-
puts of the individual methods
were combined into an en-
semble model to assign the
final class probabilities. GBM,
generalized boosted regres-
sion model; GLMnet, lasso
and elastic-net regularized
generalized linear model;
KNN, k-nearest neighbors;
NNET, neural network; PDAC,
pancreatic ductal adenocarci-
noma; RF, random forest;
SVM, support vectormachines
with radial basis function
kernel.
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(26 of 32) and specificity of 95% (38 of 40) for healthy
controls and 95.8% (69 of 72) for non-PDAC controls.

For the validation set, all cases presenting with pancreatic
disease were evaluated. Although the development set only
included early-stage resectable PDAC cases, the validation
set included .50% late-stage cases (Table 1), reflecting
the expected distribution of stages at presentation. For
cases with known stage, the analyte panel sensitivity was
higher for stage I-II cases (81.3%) than for stage III-IV cases
(63.9%), although the comparison was not significant
(P = .27 by Fisher’s exact test). The development set also

had the requirement that IPMN cases have at least 3 years
of follow-up with no evidence of progression or high-grade
dysplasia, which was not required for the validation set.
Thus, cases with cystic lesions in the validation set may
have included cases with more advanced disease, which
cannot be excluded for the two cystic lesion cases in the
validation set, both IPMN, that were classified as PDAC by
the algorithm.

As with the test set, ROC analyses of the validation set
showed greater diagnostic ability of the analyte panel for
discrimination of PDAC than that of CA 19-9 alone. The
analyte panel yielded an AUC of 0.925 for binary discrimi-
nation of PDAC from healthy controls (Fig 3A) comparedwith
an AUC of 0.891 for CA 19-9 (Fig 3C). For discrimination of
PDAC from all non-PDAC controls, the analyte panel had an
AUC of 0.919 (Fig 3B) with CA 19-9 yielding an AUC of
0.874 (Fig 3D). For those PDAC cases that had CA 19-9
levels below the diagnostic threshold of 37 U/mL, the al-
gorithm correctly classified 8 of 25 cases. These results
confirm that the algorithm devised by machine learning in
the development set was consistent in an independent
sample set, show improvement over individual biomarkers,
and suggest that the test may be useful for routine screening
for early-stage disease in susceptible populations.

Our approach was to use machine learning to uncover the
interactions and structure of the data that would indicate
the presence of early-stage disease. Changes in levels in
individual analytes because of age or sex could potentially
mask this structure. Despite adjusting for these factors in
individual analytes, it was still possible that age and sex
would contribute as effective predictors in the ensemble
model, which seems to be justified by our variable importance
subanalysis (Supplementary Table S7, Data Supplement).
Diagnostic performance without age/sex preprocessing had
slightly poorer overall performance (Supplementary Table S9,
Data Supplement), although the results were reasonable and
probably actionable.

DISCUSSION

Potential biomarkers evaluated for this study were previ-
ously identified as elevated in premalignant or early-stage
PDAC and largely validated in an extensive development
sample set. The selected biomarkers participate in diverse
biological processes, including angiogenesis, apoptosis,
immune response, inflammatory response, and extracel-
lular signal transduction. One barrier to diagnostic accuracy
is that biomarker elevation may indicate unrelated condi-
tions, but since these processes are also relevant to cancer,
a large combined panel should be less ambiguous. A serial
screening tool, deployed annually or biannually, would tend
to obviate any unrelated acute condition that would be
expected to resolve over the course of months unless it was
also related to a chronic condition such as cancer. A
second barrier to diagnostic accuracy is heterogeneity that
may arise from biological, behavioral, and temporal

TABLE 3. Diagnostic Performance

Data Set

Prediction

PDAC CON

Training set

CON 0 358

ChPT 0 82

IPMN 1 76

PDAC 141 11

Accuracy 0.982

Sensitivity 0.928

Specificity

CON only 1.0

CON + IPMN + ChPT 0.998

Test set

CON 3 100

ChPT 2 16

IPMN 0 17

PDAC 19 11

Accuracy 0.905

Sensitivity 0.633

Specificity

CON only 0.971

CON + IPMN + ChPT 0.964

Validation set

CON 2 38

ChPT 1 31

Cystic lesions (IPMN, MCN, SCA) 2 39

PDAC 53 20

Accuracy 0.866

Sensitivity 0.726

Specificity

CON only 0.950

CON + CL + ChPT 0.956

Abbreviations: ChPT, chronic pancreatitis; CL, cystic lesion; CON,
healthy control; IPMN, intraductal papillary mucinous neoplasm;
MCN, mucinous cystic neoplasm; PDAC, pancreatic ductal
adenocarcinoma; SCA, serous cystadenoma.
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differences between cases and controls. Attempts to find
single or small sets of biomarkers would be more prone to
the confounding of unrelated conditions and disease
heterogeneity.

All predictors that met initial selection criterion were in-
cluded throughout training, testing, and validation phases
with the expectation that different subsets of biomarkers
would more effectively discriminate cases and controls by
accommodating disease heterogeneity.14,75 The fact that all
predictors contributed to diagnostic models supports this
expectation (Supplementary Table S7, Data Supplement)
and the differential utilization of predictors by the individual
methods illustrate that different combinations of bio-
markers contributed to discrimination. Derivation of the
diagnostic algorithm was designed to be representative, not
exhaustive, with the intent of minimizing overfitting and
devising an extensible algorithm.

The goal of machine learning is to reveal underlying structure
of the data, in this case to assign binary probabilities for
designation as either case or control classification. Selection of
a single method optimized on one data set may emphasize
set-specific or spurious aspects of the data organization that

may not faithfully represent the data structure for a different
data set. Ensemble methods seek to overcome the limitations
of a single machine learning method by using resampling to
evaluate performance of multiple machine learning models
and then generate a combination of themodels that optimizes
test performance. This approach has been proven to be as
accurate or better than the best individual component.76 A
general risk for machine learning approaches is overfitting to a
data set that is unrepresentative to the general population;
however, we found that our model gave almost identical AUC
between test and validation, indicating that this algorithmmay
be generalizable. That bootstrap accuracy of the test set was
0.920 (AUC), and the accuracy of the independent validation
set was nearly identical (AUC = 0.919), suggesting that the
tradeoffs between undercomputing and overfitting were
reasonable. Consistent with expectation, the algorithm per-
formance was greater than the best individual biomarker,
CA 19-9, although CA 19-9 performed very well in our sample
sets as CA 19-9 assays achieved the highest range of historical
accuracy.60

Ultimately, proof of efficacy will require prospective eval-
uation in a larger population demonstrating not only im-
proved survival but also decreased mortality. In addition, as
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FIG 2. Diagnostic performance
in the test set. Receiver operating
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this study was largely a single institution investigation, the
results will require validation in a multi-institutional cohort
to increase external validity. Any screening test for PDAC
must be highly specific to avoid false-positive screens
leading to increased morbidity, cost, and emotional distress
associated with secondary screening tests and treatment.77

The recommendation that screening be limited to high-risk
groups78 would increase pretest probability and reduce the
number of false-positive diagnoses as PDAC has a far lower
prevalence in the general population than other commonly
screenedmalignancies. Screening with imaging is relatively
low risk.79,80 However, screening with primary imaging is
expensive.81-83 The analytes and algorithms devised in this
study may be useful as a primary screening tool for
assessing the need for secondary screening by imaging
while limiting concerns of unnecessary morbidity caused
by false-positive determinations. The analyses routinely
yielded the desirable high specificity, although with lower,

but actionable sensitivity. In a serial screening program, the
test will have the opportunity to increase overall sensitivity
by re-evaluation of negative initial tests.

The analyses show that the general approach to PDAC
screening is valid, that our samples generate reproducible
signals, and that novel analytes contribute to disease
classification. This 31-biomarker assay may be helpful in
developing a useful tool for identifying early-stage,
asymptomatic PDAC, particularly for screening in high-
risk patient populations to guide the use of screening
imaging. The results also serve to illustrate the proposed
analytical methods which allows for interaction between
analytes, subsets, and heterogeneous biological response
among subjects. Finally, the approach allows for im-
provement through incorporation of additional bio-
markers, including signals from cell-free DNA, circulating
tumor cells, and demographic factors.
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FIG 3. Diagnostic performance
in the validation set. Receiver op-
erating characteristic curves de-
scribing the ability of the analyte
panel for discrimination of (A)
early-stage PDAC cases from (B)
healthy controls and all non-PDAC
controls including chronic pan-
creatitis, cystic lesions (IPMN,
MCN, SCA), and healthy controls
(C and D) compared with similar
discrimination by CA 19-9 alone
in the independent validation
sample set. Bars represent 95%
CIs from 2000 bootstrap itera-
tions. AUC, area under the curve;
CA, cancer antigen; ChPT,
chronic pancreatitis; CL, cystic
lesion; CON, healthy control;
IPMN, intraductal papillary mu-
cinous neoplasm; PDAC, pan-
creatic ductal adenocarcinoma.
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