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Abstract: Epithelial ovarian cancer (EOC) is the most lethal gynecological malignant tumor. Endo-
plasmic reticulum (ER) stress plays an important role in the malignant behaviors of several tumors.
In this study, we established a risk classifier based on 10 differentially expressed genes related to
ER stress to evaluate the prognosis of patients and help to develop novel medical decision-making
for EOC cases. A total of 378 EOC cases with transcriptome data from the TCGA-OV public dataset
were included. Cox regression analysis was used to establish a risk classifier based on 10 ER stress-
related genes (ERGs). Then, through a variety of statistical methods, including survival analysis
and receiver operating characteristic (ROC) methods, the prediction ability of the proposed classifier
was tested and verified. Similar results were confirmed in the GEO cohort. In the immunoassay,
the different subgroups showed different penetration levels of immune cells. Finally, we conducted
loss-of-function experiments to silence TRPM2 in the human EOC cell line. We created a 10-ERG risk
classifier that displays a powerful capability of survival evaluation for EOC cases, and TRPM2 could
be a potential therapeutic target of ovarian cancer cells.

Keywords: epithelial ovarian cancer; endoplasmic reticulum stress; risk classifier; TRPM2

1. Introduction

EOC is the most lethal gynecological malignant tumor and the fifth most common
cause of cancer deaths in women [1]. Although continuous improvements in drugs and
surgical techniques have emerged in recent years, the prognosis of EOC patients has not
improved significantly, mostly because of the characteristics of morbidity concealment and
complex pathogenesis [2]. Currently, the most frequently employed biomarker in clinical
diagnosis is CA125, which is neither sensitive nor specific enough to reflect early-stage
illness and prognosis [3]. Reliable prognosis prediction models are still needed to screen
high-risk patients for relatively early clinical intervention.

Recently, ER processes were found to be highly associated with tumor progression [4].
The ER, which is the largest protein processing organelle in cells, can precisely regulate the
whole process of protein synthesis and transportation [5]. ER function can be disrupted
by numerous abnormal cellular states, which causes ER stress [6]. Because of the accu-
mulation of misfolded/unfolded proteins resulting from ER stress, the unfolded protein
response (UPR) is triggered and disrupts the translation of proteins and degrades aggre-
gated misfolded/unfolded proteins. If the protein cannot maintain its homeostasis when
disturbed by the UPR, the cell will undergo apoptosis [7]. A growing number of studies
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have indicated that the regulation of ER stress is closely related to the growth, metastasis,
and recurrence of various tumors, and ER stress-related genes (ERGs) play critical roles in
tumor progression [8].

Several ER stress-related proteins (such as GRP78, ATF6, and PERK) are highly ex-
pressed in EOC patient tissues. For instance, increased protein expression of GRP78 is
associated with worse patient outcomes [9]. Recent studies have shown that susceptibility
to EOC cell apoptosis is modulated by PHLDA1 and OMA1 via the ER stress response
pathway [10,11]. Although an increasing number of studies have indicated that ER stress
plays an important role in the pathological processes of malignant tumors, ER stress has
not been adequately studied in EOC.

At present, prognostic models of EOC based on multiple biomarkers have attracted
increasing attention [12,13]. However, a prognostic classifier based on ERGs has not
yet been widely studied in EOC yet. Here, an ER stress-based risk classifier of EOC
stemming from a gene matrix was generated and validated in public EOC patient data.
The results in this paper are also helpful for understanding the role of ER stress in the
genesis and development of EOC. Additionally, transient receptor potential melastatin
2 (TRPM2), which was found to be a crucial factor in the ER stress-related risk classifier, was
functionally validated in a human EOC cell line. Our proposed classifier tool may benefit
personalized treatment for EOC patients, and TRPM2 could be a promising prognostic
biomarker and a potential therapeutic target.

2. Results
2.1. The Characteristics of the Differentially Expressed ERGs (DEERGs)

A brief flowchart of our study is shown in Figure 1. In total, 7617 significant differen-
tially expressed genes (DEGs) were identified in ovarian tumor samples compared with
normal tissues (Figure 2A). After overlapping the DEG and ERG sets, 422 DEERGs were
obtained (Figure 2B).

2.2. Construction and Verification of the ER Stress-Related Classifier

First, univariate logistic regression was performed, and 61 candidate DEERGs that
were significantly associated with overall survival in the TCGA-OV cohort were generated.
Then, LASSO regression was used to remove overfitted genes of candidate DEERGs, and
18 genes were obtained (Figure 2C,D). Finally, an ER stress-related classifier including
10 candidate DEERGs, which were screened out by multiple stepwise regression analysis of
the 18 genes selected by LASSO, was constructed (Figure 2E). The equation of the classifier
was as follows: risk score = 0.1295 × TRPV4 + 0.1862 × TRPM2 − 0.3113 × STAT1 − 0.2665
× RCN2 − 0.0760 ×MZB1 − 0.1118 × GPR37 + 0.1284 × GABARAPL1 + 0.2150 × FOXO1
+ 0.1338 × CDKN1B + 0.0914 × CACNA1C.

The generated predictive value of the ER stress-related classifier for prognostic out-
comes of EOC patients was also investigated. In the TCGA-OV cohort, there were signifi-
cant differences in the survival curves between the low-risk and high-risk groups, and the
patients with high risk scores presented poor prognostic outcomes (Figure 3A). In addition,
ROC curves indicated favorable predictive accuracy, in which the AUCs for the one-, three-,
five-, and seven-year survival rates were equal to 0.70, 0.66, 0.73, and 0.79, respectively
(Figure 3B). After analyzing the relationship between different risk scores, follow-up times,
and the expression of 10 candidate DEERGs, the results indicated that with increasing risk
scores the survival rate of patients decreased significantly (Figure 3C). Meanwhile, similar
outcomes were observed in the verification cohorts (GSE32062 and GSE140082) by the same
analysis (Figures 3D,E, and S1).
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Figure 2. (A) A total of 7617 DEGs in ovarian tumor samples. (B) Venn plot of DEGs and ERGs. 
(C,D) Lasso regression method according to the survival of patients. (E) Multiple stepwise regres-
sion of 10 candidate DEERGs. 

Figure 2. (A) A total of 7617 DEGs in ovarian tumor samples. (B) Venn plot of DEGs and ERGs.
(C,D) Lasso regression method according to the survival of patients. (E) Multiple stepwise regression
of 10 candidate DEERGs.
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Figure 3. (A) Survival analysis of the risk scores in the TCGA dataset (H: High risk score; L: Low risk
score). (B) ROC analysis of the risk scores in the TCGA dataset. (C) Layout of risk scores, survival
status, and expression level of 10 candidate genes in the TCGA dataset. (D,E) Similar results were
verified in the GSE32062 dataset (H: High risk score; L: Low risk score).
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2.3. Establishment of a Prognostic Nomogram

After univariate, LASSO, and multivariate COX analyses, the risk score of the ER
stress-related classifier was indicated to be a reliable indicator to predict the survival time of
EOC patients. Moreover, we selected two important clinical variables (R0/non-R0 and age)
from several clinical characteristics in the TCGA-OV dataset based on the multivariate COX
analysis results (Figure 4A). The two selected clinical variables were combined with the
risk scores to develop a nomogram that could calculate a value for each patient to predict
the survival outcome (Figure 4B). A higher value represented a better survival outcome
(Figure 4C). The ROC and calibration curves indicated that the classifier-based nomogram
had good reliability (Figure 4D,E).

2.4. Exploration of the Relationship between the ER Stress-Related Classifier and Clinical
Parameters

We compared differences in risk score levels based on several clinical parameters, such
as clinical stage, grade, and tumor type. In the TCGA-OV dataset, no discrepancy was
found between the two groups stratified based on tumor grade, except that patients with
advanced clinical stages and with primary tumors had higher risk scores (Figure 5A,B).

2.5. Analysis of Immune Cell Infiltration in the Two Groups

The immune infiltration levels of the 22 cell types according to the CIBERSORT
algorithm were also implemented. The results indicated that the infiltration ratios of
memory-activated CD4 T cells, follicular helper T cells, M1 macrophages, and plasma cells
in the high-risk score group were much lower than the corresponding infiltration ratios
in the low-risk score group. In contrast, the infiltration ratios of M2 macrophages and
monocytes in the high-risk score group were higher than the corresponding infiltration
ratios in the low-risk score group (Figure 5C). In addition, we checked the expression
level of 10 immunosuppressive checkpoints to better understand the differences in the
tumor microenvironment (TME) between the two groups. The expressions of BTLA, CD274,
CTLA4, LAG3, and TIGIT were significantly downregulated in the high-risk score group.
In contrast, the expression of CD160 was significantly upregulated in the high-risk score
group (Figure 5D).

2.6. qPCR Assay of 10 Candidate DEERGs

Primers for 10 candidate DEERGs among the generated ER stress-related classifiers
(Table 1) were designed, and the gene expression of the 10 DEERGs was tested in cell lines.
The result of the qPCR assay was consistent with previous results, which showed that
10 candidate DEERGs were significantly expressed between normal ovarian epithelial cells
and cancer cells (Figure 6).

2.7. Knockdown of TRPM2 Inhibited Ovarian Cancer Cell Apoptosis, Invasion, and Migration

Among the 10 candidate DEERGs, a significant association between the expression of
TRPM2 and the survival of ovarian cancer patients in the TCGA database was discovered
(Figure 7A). To explore the role of TRPM2 in the progression of EOC, loss-of-function
experiments to silence TRPM2 in a human EOC cell line were performed. The efficiency
of shRNA knockdown was confirmed by qPCR (Figure 7B). Among the selected shRNAs,
shTRPM2-3 exhibited the highest level of gene silencing efficiency and was thus chosen for
subsequent experiments. The CCK-8 assay revealed that knocking down TRPM2 had no
significant effect on the proliferation of SKOV3 cells (Figure 7C). Compared to the control,
downregulation of TRPM2 resulted in G2/M cell cycle arrest in SKOV3 cells (Figure 7D)
and significantly upregulated the apoptosis rate of SKOV3 cells (Figure 7E). Moreover,
the findings from scratch assays (Figure 7F) and transwell invasion assays (Figure 7G)
provided additional evidence that silencing TRPM2 significantly reduced the migration
and invasion capacities of SKOV3 cells. The downregulation of TRPM2 levels resulted in
an elevation in intracellular reactive oxygen species (ROS) levels, indicating that TRPM2
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may have enhanced ovarian cancer cell activity by inhibiting ROS (Figure 7H). This result
is also similar to the conclusions of other studies [14].
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Figure 4. (A) Multivariate analysis of clinical characteristics in the TCGA dataset. (B) Construction
of a nomogram (* p < 0.05; ** p < 0.01; **** p < 0.0001). (C) Survival analysis of the risk scores of the
nomogram (H: High risk score; L: Low risk score). (D,E) ROC and calibration curves of the risk scores
of the nomogram.
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Table 1. The sequences of designed primers for 10 candidate DEERGs.

Gene Sequence (5′- > 3′)

FOXO1 F primer TCGTCATAATCTGTCCCTACACA
R primer CGGCTTCGGCTCTTAGCAAA

TRPM2 F primer TCCCCGCCGAGTACATACTG
R primer GTCTGCTCCGATATGAACTTCTC

RCN2 F primer TTCAGGTCCCGGTTTGAGTCT
R primer TCAAGCCTGCCATCGTTATCT

MZB1 F primer AGTTGGTCTACACGGATGTCC
R primer CTTGGTCCACTTCTCGAACTC

GPR37 F primer ATGTCGCGGCTACTGCTTC
R primer GCAGAACGTCTCTTGCAGAAT

GABARAPL1 F primer ATGAAGTTCCAGTACAAGGAGGA
R primer GCTTTTGGAGCCTTCTCTACAAT

CDKN1B F primer ATCACAAACCCCTAGAGGGCA
R primer GGGTCTGTAGTAGAACTCGGG

STAT1 F primer CAGCTTGACTCAAAATTCCTGGA
R primer TGAAGATTACGCTTGCTTTTCCT

TRPV4 F primer TCCACCCTATATGAGTCCTCGG
R primer TAGGTGCCGTAGTCAAACAGT

CACNA1C F primer TGATTCCAACGCCACCAATTC
R primer GAGGAGTCCATAGGCGATTACT
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Figure 6. The outcome of qPCR assay in cell lines (IOSE, A2780, HEY and SKOV3) for 10 can-
didate DEERGs ((A): CDKN1B; (B): FOXO1; (C): STAT1; (D): RCN2; (E): TRPM2; (F): GPR37;
(G): GABARAPL1; (H): TRPV4; (I): MZB1; (J): CACNA1C) among the generated ER stress-related
classifiers. Error bars indicate standard errors, ns p > 0.05, * means p < 0.05, ** means p < 0.01,
*** means p < 0.001, **** means p < 0.0001 versus the control group.
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down of TRPM2 significantly reduced the migration ability of SKOV3 cells. (G) Transwell cell mi-
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Figure 7. Loss-of-function experiments to silence TRPM2 in the human SKOV3 cell line.
(A) The survival curve of ovarian cancer patients grouped by TRPM2 expression (H: High risk
score; L: Low risk score). (B) Quantitative detection results of three different shTRPM2 mRNA levels
in the SKOV3 cell line (*** indicates p < 0.01). (C) The CCK-8 assay showed that knocking down
TRPM2 had no significant effect on the proliferation of SKOV3 cells. (D) Specific knockdown of
TRPM2 resulted in cell cycle arrest at the G2/M phase in SKOV3 cells. (E) Specific knockdown
of TRPM2 significantly increased the apoptosis rate of SKOV3 cells. (F) The scratch assay results
demonstrated that knockdown of TRPM2 significantly reduced the migration ability of SKOV3 cells.
(G) Transwell cell migration experiments indicated that knockdown of the TRPM2 gene significantly
reduced the migration ability (above) and invasive ability (below) of SKOV3 cells. (H) The ROS
measurement of SKOV3 cells.
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3. Discussion

EOC is a lethal gynecologic malignancy with dismal patient outcomes due to the com-
plexity of its tumor heterogeneity [15]. To date, several previous studies have made efforts
to predict the prognosis of EOC and have made encouraging achievements. However,
the predictive abilities of these biomarkers are limited, and more effective and accurate
classifiers need to be developed [12,13,16–18]. Several experimental studies have shown
that ER stress and the unfolded protein response are associated with the occurrence, de-
velopment, and invasion of EOC [19]. However, few studies have been implemented to
illuminate the exact role of ER stress in EOC. To date, few studies have investigated the
role of TRPM2 in ovarian cancer. In this study, we established a novel prognostic classifier
of EOC and conducted a preliminary exploration of the potential regulatory role of TRPM2
in the development and progression of EOC.

Here, we created a novel prognostic classifier based on 10 ER stress-related genes
(TRPV4, TRPM2, STAT1, RCN2, MZB1, GPR37, GABARAPL1, FOXO1, CDKN1B, and
CACNA1C) (Figure 2). The overall survival of the low-risk group was significantly higher
than that of the high-risk group. The results (Figures 2 and 3) showed that our new classifier
possessed excellent performance in the prognostic prediction of EOC. Li et al. used GEO
datasets to validate ferroptosis-related and necroptosis-related prognostic models; how-
ever, they focused on survival analysis and lacked further experimental-level validation,
such as gene functional analysis [12]. Hu et al. focused on five regulators of G protein
signaling genes and constructed a risk score to predict prognosis. The ROC curve of the
risk score was not outstanding enough compared to ours [13]. One of the reasons that our
model demonstrated excellent performance is that ERs, which are affected by much of the
intracellular and environmental damage related to cancer, may play a crucial role in clinical
prognosis [20].

Among the prognostic classifiers in this study, the Forkhead box O1 (FOXO1) protein
plays an important role in carcinogenesis [21]. The abnormal expression or activity distur-
bance of the FOXO1 transcription factor is related to multiple gynecological diseases, such
as endometrial cancer, endometriosis, and ovarian dysfunction, which in turn highlights
its potential as a therapeutic target [22,23]. It has been proven that FOXO1 is associated
with resistance to cisplatin and targeted specific drugs [19]. The FOXO1 downstream
effector participates in the process of signal transduction [24]. Recently, FOXO1 began
to be used as a potential target area for antitumor effects. For example, interfering with
FOXO1 localization has been proposed as a possible prospective approach to improving
cell sensitivity to cisplatin because nuclear retention of FOXO1 may be beneficial for the
induction of proapoptotic genes [19].

Transient receptor potential vanilloid 4 (TRPV4) is a nonselective calcium-permeable
cation channel that has been indicated to play many important physiological roles, and
various disease states are attributed to the absence or abnormal function of this ion chan-
nel [25]. TRPV channels are overexpressed in breast cancer. Ca2+ influx mediated by TRPV4
may help to enhance cancer cell proliferation and other important processes in tumor
progression, such as angiogenesis [26].

The activator of transcription 1 (STAT1) is a protective factor in our classifier. Several
studies have indicated that activation of STAT1 plays a tumor suppressor role in cancer
cells [27]. STAT1 is a tumor inhibitor, and its possible mechanism may be related to its sub-
type, STAT1β. In addition, reticulocalbin 2 (RCN2) is also a protective factor. Reticulocalbin
is a kind of Ca2+ binding protein, and multiple EF-hand proteins are mainly located in the
endoplasmic reticulum. The function of reticulocalbin in tumor progression has not been
indicated. Some studies have shown that reticulocalbin may affect tumor progression and
platinum resistance by regulating Ca2+ homeostasis [28,29].

We divided the EOC patients into two ER stress-related groups, in which different
penetration levels of immune cells were investigated (Figure 5). The results revealed that
various immune cells, such as macrophages, CD4+ T cells, and T follicular helper (Tfh)
cells, were greatly suppressed in the high-risk score group. Macrophages and monocytes
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are important components in the tumor microenvironment. In our results, monocytes
were downregulated and M1 macrophages were upregulated in the low-risk score group.
A previous study indicated that monocytes can differentiate into macrophages, which
further differentiate into M1 and M2 macrophages under the stimulation of cytokines and
chemokines. M1 macrophages release a large number of proinflammatory cytokines, which
are conducive to tumoricidal activity and antigen presentation [30]. According to our
model, it was indicated that the poor prognosis in the high-score group of patients may be
attributed to the downregulation of M1 macrophages, leading to a weakened antitumor
effect. In addition, we observed that memory-activated CD4+ T cells and Tfh cells were
upregulated in the low-risk group. T–B-cell aggregation and interaction sometimes forms
tertiary lymphoid structures (TLSs) in the area around malignant tumors. Tfh cells produce
robust CXCL13 23, 24, 27, 44, 55, which may contribute to the formation of TLSs in tumors.
The presence of CXCL13-producing CD4+ T cells and the formation of TLSs were associated
with improved survival in patients with several malignant tumors [31]. The favorable
prognosis in the low-risk group may be attributed to TLS. In addition, we found that
suppressive immune checkpoint genes were upregulated in the low-risk score group. These
outcomes indicate that ER stress-related processes may play an important role in tumor
microenvironment regulation. Tumor immune escape (TIE) is the driving force of tumor
development. Immunosuppressive signals are transmitted to immunosuppressive cells
through receptor–ligand interactions, restraining the tumoricidal effect [32]; thus, patients
with high expression of immune checkpoint genes may benefit from immunotherapy.
Based on our analysis, we speculate that patients in low-risk groups tend to benefit from
immunotherapy.

Moreover, gene ontology and pathway analysis of 422 DEERGs was performed based
on IPA analysis. The results indicated that the DEERGs were closely related to cytoactivity
and apoptosis (such as cellular maintenance, cell survival, and organismal abnormalities)
(Figure 8). Through IPA analysis, the significantly regulated signaling pathways affected by
ERGs were analyzed (Figure 8A). Acute phase response signaling was upregulated, and the
ribonucleotide reductase signaling pathway was downregulated. Reticulum stress triggers
the UPR, which leads to excessive production of acute phase proteins and inflammation in
ovarian tumor tissue. Ribonucleotide reductase (RR) participates in the process of DNA
synthesis and repair [33]. ER stress may inhibit the process of DNA synthesis by restraining
RR activity and can eventually lead to cell cycle arrest and apoptosis. Moreover, based
on the IPA analysis of 422 DEERGs, it was shown that TP53 may be a potential upstream
regulatory factor of ER stress in ovarian cancer (Figure 8B). The TP53 tumor suppressor
gene is a key factor in regulating cell growth, homeostasis, and survival [34]. The abnormal
expression of TP53 results in cell cycle disorder, which leads to a stress phenotype.

Finally, loss-of-function experiments were implemented to investigate the biological
function of TRPM2, which played an important role in the prognostic classifier (Figure 2E).
TRPM2 is a nonselective Ca2+-permeable cation channel that is highly sensitive to the
activation of oxidative stress and is widely distributed throughout the body [35]. Recently,
several studies have indicated that TRPM2 plays an important role in mediating cell death
induced by miscellaneous oxidative stress-inducing pathological factors [36]. The activation
of TRPM2 channels changes the homeostasis of intracellular ions, leading to abnormal
activation of various cell death pathways. TRPM2 is highly expressed in many cancers, such
as breast cancer, prostate cancer, and pancreatic cancer. The TRPM2 protein has also been
proven to maintain the viability of tumor cells in various cancers. Activation of TRPM2
results in the expression of transcription factors and kinases that are critical for tumor cell
proliferation and survival, such as CREB, HIF-1/2α, Nrf2, and Src phosphorylation [37].
The results in this study also confirmed a similar conclusion in ovarian cancer (Figure 7).
For instance, TRPM2 was significantly upregulated in ovarian cancer cells compared to
normal cells, and TRPM2 promoted intracellular ROS and the invasion and migration of
ovarian cancer cells (Figure 7). Flow cytometry analysis showed that TRPM2 plays a crucial
role in the cell cycle of ovarian cancer cells and inhibits apoptosis (Figure 7).
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lation [37]. The results in this study also confirmed a similar conclusion in ovarian cancer 
(Figure 7). For instance, TRPM2 was significantly upregulated in ovarian cancer cells com-
pared to normal cells, and TRPM2 promoted intracellular ROS and the invasion and mi-
gration of ovarian cancer cells (Figure 7). Flow cytometry analysis showed that TRPM2 
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7). 

Ovarian cancer is a highly malignant tumor characterized by a poor prognosis for 
patients. One of the crucial factors contributing to this outcome is the occurrence of distant 
metastasis during the initial stages of ovarian cancer cell growth [38]. These metastatic 
lesions typically manifest as tiny infiltrative metastases, making complete eradication 
through surgery challenging. The staging and prognosis of ovarian cancer closely corre-
late with the extent of cancer cell dissemination within the pelvic and abdominal cavities, 

Figure 8. (A) The potential signaling pathways that were significantly affected by ER stress-related
genes. In this figure, the height of the histogram shows the significance of this pathway, and the
higher the column, the higher the significance. The orange column indicates that the pathway is
predicted to be activated, the blue column indicates that the pathway is predicted to be inhibited,
the gray column indicates that the pathway cannot be predicted temporarily, and the white column
indicates that it is not predicted to be activated or inhibited. (B) The signaling pathways of the
potential upstream regulatory factor, TP53. In this figure, the genes in orange grids are predicted to be
activated and the genes in blue are predicted to be inhibited. The orange line represents activation of
downstream molecules, the blue line represents inhibition of downstream molecules, and the yellow
line shows inconsistent relationships with downstream molecules.

Ovarian cancer is a highly malignant tumor characterized by a poor prognosis for
patients. One of the crucial factors contributing to this outcome is the occurrence of distant
metastasis during the initial stages of ovarian cancer cell growth [38]. These metastatic
lesions typically manifest as tiny infiltrative metastases, making complete eradication
through surgery challenging. The staging and prognosis of ovarian cancer closely correlate
with the extent of cancer cell dissemination within the pelvic and abdominal cavities, as
well as distant metastasis, while the size of the primary ovarian tumor plays a secondary
role. In clinical practice, some patients present with relatively small primary ovarian tumors
but have already developed distant metastases. Such cases often experience unfavorable
prognoses, as achieving R0 resection becomes arduous during surgical intervention, and
rapid postoperative recurrence is common. The results of bioinformatics research revealed
a significant association between decreased expression of TRPM2 and improved prognosis
in ovarian cancer patients (Figure 7A). Additionally, in vitro experiments demonstrated
that although knocking out the TRPM2 gene did not affect the proliferation of SKOV3
cells, it diminished their invasive and migratory capabilities. These findings indicate that
the TRPM2 gene may influence the metastasis of ovarian cancer and subsequently impact
patient prognosis.

Moreover, we chose the IMvigor210 cohort of urothelial cancer from Mariathasan et al.
as an immunotherapeutic dataset to further validate the prognostic significance of using
TRPM2 as a biomarker for immune checkpoint blockade (ICB) therapies, such as anti-PD-
L1 immunotherapy [37]. The results indicated that TRPM2 exhibited significantly higher
expression in the immune-infiltrated phenotype than in the immune-deserted phenotype,
suggesting that TRPM2 is potentially involved in the immune response of tumor tissues
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(Figure 9) and may be a promising target for future immunotherapy. Therefore, we claim
that TRPM2 has a promoting effect on the development and metastasis of ovarian cancer
and could be a potential therapeutic target.
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compared among distinct tumor immune phenotypes in the IMvigor210 cohort. (B) Distribution
of TRPM2 in distinct anti-PD-L1 clinical response groups. (C) The correlation of TRPM2 with
immunotherapy response. SD, stable disease; PD, progressive disease; CR, complete response; PR,
partial response.

However, there are still limitations in the study. This study adopted a retrospective
experimental design. To partially compensate for the limitations of this study, two inde-
pendent datasets were employed to verify the outcomes. It is still necessary to verify the
reliability of the prognostic risk model by using prospective clinical studies based on a
large sample size. Furthermore, further research and exploration are needed to investigate
the exact role of TRPM2 in the pathogenesis of ovarian cancer and its potential therapeutic
value.

4. Materials and Methods
4.1. Data Collection

A brief flowchart of our study is shown in Figure 1. We collected the gene sequencing
data and clinical features of three sets (TCGA-OV, GSE32062, and GSE140082) from the
TCGA database and GEO database. Then, 1350 ERGs with relevance scores > 5 from
GeneCards (https://www.genecards.org/, accessed on 28 December 2022) were included
in this study. DEGs in EOC tissues from the TCGA database and normal controls from
the GTEx database were analyzed by the R software “limma” package (|log2(FC)| > 1
and p < 0.01) on the website (http://gepia.cancer-pku.cn/, accessed on 28 December 2022)
ext, we integrated the lists of ERGs and DEGs, obtaining DEERGs.

https://www.genecards.org/
http://gepia.cancer-pku.cn/
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4.2. Development of an ER Stress-Related Classifier Related to Prognosis

First, univariate regression analysis was conducted using the R package to screen
DEERGs with significant prognostic value (p < 0.05). Then, the selected DEERGs were
subsumed into LASSO regression, which was used to minimize the overfitting impact of
the signature. LASSO regression was illustrated by the “glmnet” package in R. Finally,
multivariate analysis was used to construct the ER stress-related classifier. The prognostic
gene classifier was established based on the linear combination of the coefficient of Cox
regression multiplied by the expression level of the gene. The prognostic gene classifier
equation was as follows: risk score = (coefficient 1 × expression level of Gene 1) + (coeffi-
cient 2 × expression level of Gene 2) + (coefficient N × expression level of Gene N). The
patients in the training and validation cohorts were classified into high-risk and low-risk
groups according to the risk scores.

4.3. Survival Analysis

Kaplan–Meier survival curves were drawn using the “survival” package in R to evaluate
the survival rates in the high-risk and low-risk groups. We used the ROC curve and the area
under the curve (AUC) over time to evaluate the predictive value in predicting survival at
one, three, five, and seven years. The risk map was illustrated by the “heatmap” package in R.
Excluding samples without survival information, we retained a total of 378 EOC patients in
the TCGA database. We assessed the overall survival (OS) of EOC patients by Kaplan–Meier
survival analysis and calculated the p value using the log-rank test.

4.4. Determination of a Nomogram

A nomogram was drawn by the “rms” package in R, which integrates the various
clinical traits and risk scores in the TCGA dataset. Calibration curves were used to evaluate
the consistency of the predicted and actual survival outcomes.

4.5. Levels of Infiltration of Immune Cells

The CIBERSORT algorithm (permutation counts: 1000; threshold: p < 0.05) was used
to evaluate the differences in immune infiltration levels of 22 immune cell types in the
high-risk and low-risk groups [39]. We selected 10 potential inhibitory immune checkpoint
genes, and the “edgeR” package in R was used to study the differential expression between
the two groups.

4.6. qPCR Assay

The human ovarian epithelial cell line (IOSE) (as a control) and three different ovarian
cancer cell lines (A2780, HEY, SKOV3) were used in our study. Cells were cultured in RPMI
1640 medium with 10% FBS and 1% penicillin–streptomycin (Gibco, Waltham, MA, USA)
at 37 ◦C with 5% CO2. Experiments were performed with cells in the logarithmic growth
period. We designed and constructed primers for partial selected genes and checked the
sequence specificity by using BLAST (NCBI) (Table 1). GAPDH was used as a housekeeping
gene, and the expression of the genes was quantified by the ∆∆Ct method after correction
for PCR efficiency.

4.7. Cell Line

The SKOV3 human cell line was purchased from Jinyuan Biological Technology Inc.
(JY147; Shanghai, China). The cells were maintained in RPMI-1640 medium supplemented
with 10% FBS and 1% penicillin–streptomycin (Gibco, Waltham, MA, USA) at 37 ◦C in a 5%
CO2 atmosphere. All experiments were conducted using cells in the logarithmic growth
phase.

4.8. shRNA Knockdown of TRPM2 In Vitro

To achieve shRNA knockdown of TRPM2 in vitro, sh-TRPM2 and negative control
(sh-NC) oligonucleotides were obtained from RiboBio (RiboBio, Guangzhou, China). The
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specific sequences for si-PRRX1 were as follows: Si1: GATCCGGACAAGCTCTGTCT-
GCAAATTTCAAGA GAATTTGCAGACAGAGCTTGTCCTTTTTTG; Si2: GATCCGA-
CAAGCTCTGTCTG CAAATCTTCAAGAGAGATTTGCAGACAGAGCTTGTCTTTTTTG;
Si3: GATCCGCAAA TCTAGACAGTTCCTGCTTCAAGAGAGCAGGAACTGTCTAGATTT
GCTTTTTTG. Stable transfection of the shRNAs was performed by lentiviral transfection
using PEI (Polyscience, Niles, IL, USA) according to the manufacturer’s protocol.

4.9. CCK8 Cell Proliferation Assay

In the CCK8 assay, a 96-well plate was seeded with 2000 cells/well, and six replicate
wells were included along with blank controls. The next day was designated as the 0 h
time point. At 0 h, 24 h, 48 h, and 72 h, 10 µL of CCK8 reagent was added to each well,
followed by incubation for 30 min. After incubation, the absorbance values were measured
at 450 nm.

4.10. Cell Cycle Assay

Six-well plates were seeded with 1 × 105 cells per well. The next day, the cells were
collected and washed twice with PBS. After that, they were fixed overnight in 75% ethanol.
On the following day, the cells were washed twice with PBS and stained with propidium
iodide for 30 min before being analyzed using a flow cytometer.

4.11. Cell Migration and Invasion Assays

The migration and invasion capabilities of SKOV3 cells were evaluated using two
different assays. The migration of UM cells was evaluated using the wound healing scratch
assay. SKOV3 cells were seeded in six-well plates at a density of 5 × 105 cells per well and
allowed to reach full confluence. After serum starvation overnight, an artificial scratch
wound was created at the center of each well. The scratch areas were photographed at 0,
24, and 48 h. The migration index was calculated using the following formula: Migration
Index = [(original scratch width-scratch width at 24/48 h)/(original scratch width)]× 100%.
The assay was repeated three times to ensure accuracy and reproducibility.

To assess cell invasion, transwell invasion assays were performed. Twenty-four-well
Millicell hanging cell culture inserts with a pore size of 8.0 µm (Millipore, Billerica, MA,
USA) coated with Matrigel (BD Biosciences, San Jose, CA, USA) were used as per the
manufacturer’s protocol. Approximately 2 × 105 cells in serum-free medium were added
to the upper chamber, while the lower chamber contained 500 µL of complete medium with
10% FBS as a chemoattractant. After 48 h of incubation, cells that had invaded through the
Matrigel were fixed and stained with 0.1% crystal violet for counting. Three separate fields
were counted for each filter under a microscope. The assay was also repeated three times
to ensure the reliability of the results.

4.12. ROS Measurements

For the detection of intracellular ROS levels, the H2DCFDA ROS-sensitive probe (MCE,
HY-D0940) was used. SKOV3 cell lines were incubated with 5 µM staining solution in PBS
in the dark at 37 ◦C, and confocal laser scanning microscopy (FV1000, Olympus Company,
Tokyo, Japan) was used to detect the intracellular ROS generation during incubation for
1 min, 10 min, and 30 min.

4.13. Statistical Analysis

R software (4.2.1) was applied for statistical analysis. The qualitative variables were
analyzed by Pearson’s χ2 test and Fisher’s exact test. A p value < 0.05 was considered sta-
tistically significant. Ingenuity pathway analysis (IPA) software (Qiagen, Hilden, Germany)
was used to analyze the RNA-seq data to find the signaling pathways significantly affected
by the regulation of ERGs in ovarian cancer and to find the key regulatory upstream factors
of the differentially expressed genes.
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5. Conclusions

In this study, we successfully generated a new ER stress-related prognostic risk classi-
fier that yielded good accuracy in patient datasets. We further constructed a nomograph
that combined the prognostic risk model and clinical parameters and could provide a
good prediction of the survival outcome of EOC patients. In addition, TRPM2 could be
a potential therapeutic target of ovarian cancer cells. In total, our outcomes provide new
insight into the identification of novel prognostic biomarkers and the development of
therapeutic strategies for EOC.
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