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The genetic analysis of oocysts recovered from the stools of humans and animals infected with Cryptospo-
ridium parvum has consistently shown the existence of two distinct genotypes. One of the genotypes is found
exclusively in some human infections, whereas the other genotype is found in human as well as in animal
infections. On the basis of these observations and the results of published epidemiological studies with single
polymorphic markers, the existence of two separate transmission cycles has been postulated, one exclusively
anthroponotic and the other involving both animals and humans. To test this hypothesis, C. parvum isolates
of different geographic and host origins were analyzed by using unlinked genetic polymorphisms. A total of 28
isolates originating from Europe, North and South America, and Australia were examined. Isolates clustered
into two groups, one comprising both human and animal isolates and the other comprising isolates only of
human origin. The absence of recombinant genotypes is consistent with two reproductively isolated populations
within the species C. parvum.

Apicomplexan parasites of the genus Cryptosporidium infect
the gastrointestinal or respiratory tracts of a wide range of
mammals, birds, reptiles, and fish. Cryptosporidium parvum, a
major cause of diarrhea in young livestock, has recently
emerged as a widespread enteric pathogen in humans (6, 21).
In immunocompetent adults the infection is generally acute
and self-limiting, whereas immunocompromised individuals
can develop chronic and potentially life-threatening diarrhea.
The significant prevalence of C. parvum in patients with op-
portunistic infections and recent reports of major outbreaks of
cryptosporidiosis in the United States and the United Kingdom
due to contamination of drinking water supplies (10, 17, 18)
indicate that C. parvum is a major public health problem. The
absence of effective treatment for cryptosporidiosis highlights
the need for preventive measures. To this aim, it is essential to
understand the epidemiology of the disease and to identify the
transmission routes accounting for human exposure and infec-
tions.

Recent studies on the intraspecific genetic variation in C.
parvum have shed new light on the population structure of this
parasite. Using isoenzyme analysis (1) or different DNA-based
techniques (3–5, 11–14, 19), several laboratories, including
ours, have found that C. parvum isolates can be divided into
two genetically distinct groups, one exclusively associated with
human infections and the other associated with both human
and animal infections. We refer to these genotypes as H and C,

respectively (24). The existence of two genotypes and the ap-
parent lack of recombinants has taxonomical and epidemio-
logical relevance. It implies that C. parvum may not be a
uniform species; rather, it may comprise two genetically dis-
tinct parasite subpopulations. It also suggests the existence of
two independent human transmission cycles.

Most of the C. parvum typing studies carried out to date are
based on the analysis of single polymorphisms. A multilocus
approach has the potential to better define the structure of the
C. parvum population and assess the degree of genetic isola-
tion of the H and C subpopulations. We report herein on the
genotyping of 28 C. parvum isolates of various host and geo-
graphic origins simultaneously analyzed at up to five polymor-
phic loci.

MATERIALS AND METHODS

Parasites. Isolates GCH1, GCH2, GCH3, GCH4, GCH5, H77, H78, P9, P12,
P16, P18, P27, P29, A1, S1, Moredun (MD), ICP, UCP, 58EF, 63H, LL, and 740
were described previously (see Table 2). Isolate GCH6 originated from a labo-
ratory worker accidentally infected with C. parvum. Isolates H83, H84, and H87
were isolated from human immunodeficiency virus-negative individuals from
Perth, Western Australia, Australia. Isolate UCP has been maintained in calves
for more than 8 years at ImmuCell Corp. (Portland, Maine) and was kindly
provided by Joe Crabb. Isolate OH originated from a human with an acute
infection and was obtained from Lucy Ward, Ohio State University, Wooster.
Isolate PC1 was isolated from a captive macaque at the New England Regional
Primate Center in Southboro, Mass., and was kindly provided by Keith Mans-
field.

DNA isolation, PCR, and restriction fragment length polymorphism (RFLP)
analysis. C. parvum genomic DNA (gDNA) was extracted either from purified
oocysts or from stool. Briefly, 100 to 200 ml of stool was diluted with equal
volume of water and incubated overnight in 0.2% sodium dodecyl sulfate (SDS)
and 200 mg of proteinase K per ml. After phenol-chloroform extraction, the
gDNA was purified by binding to glass milk (GeneClean; Bio 101). Alternatively,
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stools were processed as described previously (19). DNA from purified oocysts
was released either by three cycles of freezing-thawing or by proteinase K
digestion.

Genotypic analysis. Four of the polymorphic loci used in this study were
analyzed by PCR-RFLP assays. The PCR primers used are listed in Table 1.
Selected endonucleases recognizing polymorphic cleavage sites within the am-
plified sequences were used to digest the PCR products and discriminate be-
tween alleles on the basis of alternative restriction profiles. PCR-RFLP analyses
of the polythreonine [poly(T)] and Cryptosporidium oocyst wall protein (COWP)
(16) loci were performed as described previously (5, 19). The gene encoding the
thrombospondin-related adhesive protein of Cryptosporidium (TRAP-C1) (20a)
was recently found to consist of at least two alleles, TRAP-C1R1 and TRAP-
C1R2, differentially associated with animal or human C. parvum isolates (20b).
Primers Cp.E and Cp.W were used to amplify a 506-bp fragment from the
TRAP-C1-coding sequence. Subsequent digestion of the PCR products with
endonuclease RsaI yielded two alternative restriction profiles consisting of two
bands for TRAP-C1R1 (455 and 51 bp) and three bands for TRAP-C1R2 (341,
114, and 51 bp). The PCR-RFLP assay for the ribonucleotide reductase (RNR)
locus was based on the amplification of a 441-bp fragment of the RNR R1
subunit located at positions 1364 to 1804 (GenBank accession no. AF043243)
(24). Digestion was performed with restriction endonuclease Tsp509I in 13 PCR
buffer (50 mM KCl, 10 mM Tris-HCl [pH 9.0], 2 mM MgCl2, 0.1% Triton X-100)
at 65°C. Extensive sequence polymorphism in the ribosomal internal transcribed
spacer region 1 (ITS1) (4) was exploited to design a genotype-specific PCR assay
with primers cry8 and cryITS1 (Table 1). Because this polymorphism is based on
the presence or absence of PCR products, this assay was always run in parallel
with a control PCR amplification.

Target sequences were amplified by 30 to 40 standard PCR cycles with 1 to 5
ng of gDNA/reaction mixture. Endonuclease treatments were carried out in 13
PCR buffer as indicated above. Restriction fragments and PCR products were
resolved on 2% agarose or 3.5% MetaPhor agarose (FMC Bioproducts, Rock-
land, Maine) gels and were visualized by ethidium bromide staining.

Karyotype analysis. The chromosomal locations of the COWP, RNR, and
TRAP-C1 loci were determined by contour-clamped homogeneous electrical
field (CHEF) electrophoresis as follows. Agarose blocks containing an amount of
C. parvum DNA equivalent to 2 3 107 oocysts of the MD strain or a DNA size
marker (Saccharomyces cerevisiae DNA Size Standard; Bio-Rad) were loaded
onto a 1% low-gelling-temperature agarose gel made in 0.53 TBE (Tris-borate-
EDTA) buffer. Chromosomal DNA was electrophoresed with the CHEF-DR II
Pulse Field Electrophoresis System (Bio-Rad) with recirculated 0.53 TBE buffer
maintained at 14°C. Electrophoresis was carried out at 120 V with a switch
interval of 240 s for 72 h. The gel was then stained with 0.5 mg of ethidium
bromide per ml and destained in distilled water, and the chromosomal bands
were visualized with a UV transilluminator. The poly(T) locus was mapped by
pulsed-field gel electrophoresis (PFGE) with the KSU-1 isolate as described
previously (9).

Chromosomal DNA was depurinated by soaking the gel in 0.25 M HCl for 15
min, transferred onto a nylon membrane by capillary absorption, and cross-
linked by UV irradiation. The membrane was hybridized sequentially to the
441-bp DNA fragment from the RNR R1 sequence and to the 4,420-bp COWP
probe cpMM1 (20). A second membrane was probed with a 1,782-bp DNA
fragment spanning most of the coding region of the TRAP-C1 gene (positions 70
to 1851). The poly(T) gene was located by using as a probe the 515-bp PCR
fragment defined by primers cry44 and cry37 (5). Probes were labelled by random
priming with [32P]dATP. Hybridizations were carried out at 65°C in 43 SSC (13
SSC is 0.15 M NaCl plus 0.015 M sodium citrate)–53 Denhardt’s solution–0.1%
sodium dodecyl sulfate in the presence of 50 mg of salmon sperm DNA per ml.
Washes were performed at 65°C in 0.13 SSC–0.1% sodium dodecyl sulfate.
Southern analysis of the poly(T) locus was performed as described previously (8).

RESULTS

Recent studies that used PCR-based methods for the anal-
ysis of C. parvum genetic variation at single loci have coher-
ently demonstrated the existence of two main parasite sub-
populations characterized by distinct genotypes (3–5, 12–14,
19, 23). The aim of this study was a multilocus analysis of a
broad and heterogeneous collection of C. parvum isolates. We
chose for our study five genetic markers defined by the PCR
primers listed in Table 1. These loci have been shown to consist
of at least two alleles differentially associated with animal or
human C. parvum isolates. The copy numbers of two markers,
RNR and ITS1 (type A), were determined to be 1 and 4,
respectively (data not shown; 9).

Chromosomal locations of polymorphic markers. The chro-
mosomal locations of four RFLP markers were determined by
Southern analysis of CHEF- or PFGE-separated oocyst DNA
(Fig. 1). The chromosomal profiles obtained by these electro-
phoretic techniques with DNA from the MD and KSU-1
strains (Fig. 1a, c, and e) were analogous to each other and to
the profile described by Blunt et al. (2). Accordingly, the five
chromosomal bands are numbered from 1 to 5, where band 1
is the largest band (1.54 Mb) and band 5 is the smallest band,
which is estimated to be 1.03 Mb. Bands 1 and 3 are thought to
comprise multiple comigrating chromosomes (2). Southern
blot analysis showed that the markers are located on different

FIG. 1. Chromosomal locations of three C. parvum RFLP markers. Oocyst
DNA (a, c, and e) was fractionated by CHEF electrophoresis (COWP and
TRAP-C1) or PFGE [poly(T)] in parallel with S. cerevisiae DNA standards (a
and c, left lanes; e, right lane) and Hansenula wingei chromosomes (e, middle
lane). The locations of C. parvum chromosomal bands are indicated with hori-
zontal lines. The molecular sizes of these bands are 1.54, 1.44, 1.24, 1.08, and 1.03
Mb from top to bottom, respectively (2). Panels b, d, and f show the results of
Southern analyses with the corresponding probes.

TABLE 1. Polymorphic loci analyzed

Locus Primer (sequence) Typing method Reference

COWP cry15 (59-GTAGATAATGGAAGAGATTGTG-39) PCR-RFLP analysis 19
cry9 (59-GGACTGAAATACAGGCATTATCTTG-39)

poly(T) cry44 (59-CTCTTAATCCAATCATTACAAC-39) PCR-RFLP analysis 5
cry39 (59-GAGTCTAATAATAAACCACTG-39)

ITS1 cry8 (59-AACATGAACAAGAATTTAATTG-39) PCR 4
cryITS1 (59-CTT TTCACTTCTTCCTTCCC-39)

TRAP-C1 Cp.E (59-GGATGGGTATCAGGTAATAAGAA-39) PCR-RFLP analysis This study
Cp.W (59-CAATTCTCTCCCTTTACTTC-39)

RNR SEQ1 (59-GACCTATTGTTTCAAGTAAC-39) PCR-RFLP analysis 24
UP3 (59-GTAAAATACCCTTACTCTCAGGCG-39)
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chromosomes, namely, COWP and RNR on band 2 (Fig. 1b;
data not shown), TRAP-C1 on band 5 (Fig. 1d), and poly(T)
on band 1 (Fig. 1f). This analysis demonstrates that our RFLP
markers fall into at least three distinct linkage groups.

Multilocus genotype analysis. By using the primers listed in
Table 1, 28 C. parvum isolates of disparate geographic and host
origins were genotyped. Seventeen isolates originated directly
from humans, three isolates (GCH1, LL, and 740) were de-
rived from humans and propagated in calves, and eight isolates
were from various animals. Human isolates were both from
patients with sporadic cases of infection (H77-87, P12, and
GCH2 to GCH6) and from documented outbreaks (P9, P16,
P18, P27, and P29). GCH2 and GCH3 were from AIDS pa-
tients. Animal isolates included the widely used MD and
GCH1 isolates.

Consistent with previous reports, we observed for each locus
two electrophoretic profiles (Fig. 2). The absence of reassorted
genotypes is indicative of two reproductively separated sub-
groups in the species. With the exception of isolate PC1, which
originated from a captive macaque, C. parvum of genotype H
was exclusively associated with human infections. Genotype C
was associated with isolates from animals and a minority of
human isolates (LL, 740, H78, GCH6, and P9) (Table 2). The
PCR and PCR-RFLP profiles obtained for three representa-
tive isolates, two from humans (H78 and P12) and one from an
animal (MD), are shown in Fig. 2. For isolates GCH4 and
GCH5, RFLP profiles indicative of mixed genotypes at the
poly(T) locus were detected (5).

DISCUSSION

Published studies on C. parvum genotypic heterogeneity rely
on the analysis of single loci (3–5, 12, 14, 19, 22). Morgan et al.
(13) recently applied two polymorphic markers. From that
work, it appears that isolates of C. parvum segregate into two
groups, designated H and C.

The use of multiple polymorphisms described in this report
confirmed the occurrence of two genotypes. The absence of
recombinant isolates indicates reproductive isolation between
H and C isolates. This is surprising considering that both ge-
notypes can be found simultaneously in the same host (5) and

the fact that C. parvum undergoes an obligatory sexual cycle.
With the notable exception of isolate PC1, the host specificities
of C. parvum genotypes H and C were confirmed by the pres-
ent study. PC1, identified as belonging to genotype H, is the
first nonhuman H isolate described.

The genomic locations of the RFLP markers on three C. par-
vum chromosomal bands demonstrate that at least three inde-
pendent linkage groups were sampled. Because COWP and
RNR are both located on chromosomal band 2, and at least
two of the five ribosomal genes colocalize with poly(T) and
TRAP-C1 (9), the degree of linkage between these loci is
unknown.

At first glance, the population structure of C. parvum emerg-
ing from this study is reminiscent of that observed in Toxo-
plasma gondii, in which three clonal lines were identified (7). In
apparent contrast to C. parvum, rare mixed genotypes were
observed in T. gondii. However, it cannot be excluded that
recombinant genotypes will eventually be identified in C. par-
vum as more isolates are analyzed. Even if such mixed geno-
types are identified in future studies, our data suggest that
genetic exchange between genotypes is at best a rare event.

Further advances in our understanding of the population
structure of C. parvum will come from the application of poly-
morphisms capable of differentiating among isolates belonging
to the same genotypic group. Heterogeneity within each group
has been observed. Peng et al. (14) described the presence of
three TRAP-C2 alleles defined by five polymorphic nucleotide
positions. Similarly, a total of four alleles, each defined by one
or several point mutations, were identified within a 145-bp
region of the poly(T) locus (23). These observations indicate
that genetic fingerprints capable of differentiating among
C. parvum isolates or groups of isolates will soon be available
and allow us to improve the resolution of C. parvum genotypes.
The relevance of this work lies in the potential for identifying
clinically relevant markers. From an environmental point of
view, high-resolution fingerprints could assist in identifying the
source of oocysts found in surface water, facilitating the im-
plementation of measures to reduce the access of oocysts to
drinking water.

The potential for each C. parvum genotype to cause different
clinical symptoms is unknown. Differences in infectivity for

FIG. 2. PCR and PCR-RFLP fingerprints of three C. parvum isolates obtained with five markers. Isolates MD and H78 are of ovine and human origin, respectively,
and are examples of isolates displaying the C genotype, whereas isolate P12 is a human isolate of genotype H. Fractionation of DNA fragments was performed in 3.5%
agarose (lane M, 100-bp DNA ladder).
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laboratory animals were reported (14, 15) and were also ob-
served among isolates originating from people with AIDS in
laboratory animals and in tissue culture (24). Characterization
of larger numbers of isolates from humans with chronic and
acute infections is in progress. Together with improved finger-
printing methods, this work will lead to a better understanding
of cryptosporidiosis.
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