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ABSTRACT
Background: Incorporating artificial intelligence (AI) into clinics brings the risk of automation bias, which potentially misleads the clinician’s
decision-making. The purpose of this study was to propose a potential strategy to mitigate automation bias.

Methods: This was a laboratory study with a randomized cross-over design. The diagnosis of anterior cruciate ligament (ACL) rupture, a common
injury, on magnetic resonance imaging (MRI) was used as an example. Forty clinicians were invited to diagnose 200 ACLs with and without AI
assistance. The AI’s correcting and misleading (automation bias) effects on the clinicians’ decision-making processes were analyzed. An ordinal
logistic regression model was employed to predict the correcting and misleading probabilities of the AI. We further proposed an AI suppression
strategy that retracted AI diagnoses with a higher misleading probability and provided AI diagnoses with a higher correcting probability.

Results: The AI significantly increased clinicians’ accuracy from 87.2%613.1% to 96.4%61.9% (P< .001). However, the clinicians’ errors in the
AI-assisted round were associated with automation bias, accounting for 45.5% of the total mistakes. The automation bias was found to affect
clinicians of all levels of expertise. Using a logistic regression model, we identified an AI output zone with higher probability to generate mislead-
ing diagnoses. The proposed AI suppression strategy was estimated to decrease clinicians’ automation bias by 41.7%.

Conclusion: Although AI improved clinicians’ diagnostic performance, automation bias was a serious problem that should be addressed in clini-
cal practice. The proposed AI suppression strategy is a practical method for decreasing automation bias.
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INTRODUCTION

In recent years, there have been significant advancements in the
application of artificial intelligence (AI) in the medical field, with
various algorithms being successfully integrated into clinical prac-
tice.1,2 This has led to a rapid transition towards an AI-driven
healthcare system, in which AI augments clinicians’ capabilities
and contributes to improved diagnostic accuracy and efficiency.3–7

However, this also brings the risk of automation bias5,8,9; that is,
the clinician over-accepts the inappropriate advice of an auto-
mated system, ignoring contrary data or conflicting human deci-
sions.10,11 The automation bias problem potentially affects
clinician decision-making for millions of patients.12

The causes of automation bias are complex and multifaceted,
including factors such as the robustness of the automated sys-
tem, task load and complexity, clinicians’ experiences, trust in
the system, and awareness of automation bias.11,13 To mitigate
this issue, both upgrading AI performance and improving user
practices are necessary. Currently, efforts to address automation

bias tend to focus on technological solutions, such as reducing
bias in algorithms, while neglecting the importance of user prac-
tice.14 Although algorithms can be optimized to have high area
under the receiver-operating characteristic curve (AUC) values,
such as 0.95 or 0.99, it is inevitable that AI systems produce
errors in real-world clinical environments with unpredictable
events, and clinicians are confronted with a potentially inaccu-
rate system output. Thus, it is important to support user practi-
ces that retain and promote the clinician’s initiative, as the
integration of AI algorithms into clinics and the increasing reli-
ance on these tools increases the risk of automation bias.

In this research, we utilized the diagnosis of anterior cruci-
ate ligament (ACL) rupture, a prevalent sports injury,15 as a
case study to evaluate the impact of automation bias on the
decision-making of clinicians with varying levels of expertise.
By analyzing the clinician-AI interaction, we proposed a
potential AI suppression strategy for mitigating automation
bias from the user perspective.
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MATERIALS AND METHODS

Our study was conducted with approval from the Peking Uni-
versity Third Hospital (PUTH) ethical committee
(IRB00006761-M2020243). Our Review Board waived the
requirement for informed consent from patients as this labo-
ratory study solely simulated clinicians’ interaction with
patient data, did not interfere with actual clinical practice,
and no patient-identifying information was collected through-
out the study. Additionally, consent from clinicians was also
waived by the ethics committee because this was a laboratory
study.

ACL rupture detection system

The ACL rupture detection system was developed using a
training dataset of 8484 magnetic resonance imaging (MRIs)
(Supplementary Table S1) and employed a deep learning
architecture incorporating ResNet5016 and Siamese17 algo-
rithms. In a preliminary evaluation, the system demonstrated
a sensitivity of 90.0%, a specificity of 85.3%, and an area
under the receiver-operating characteristic curve of 0.953
when tested on a validation dataset of 2273 prospectively col-
lected knee MRIs (Supplementary Table S1).

Dataset

Two hundred prospectively collected cases, including the
patient’s medical history, physical examination, and knee
MRIs, were collected from the sports medicine and orthope-
dics clinic of PUTH. All the data used in this study were ano-
nymized and used in the clinician-AI interaction test. Patient
identifying information, such as name, was replaced with a
code during medical history collection. Any identifying infor-
mation in the MRI, such as name, was erased using anonym-
ization software. The patient’s postsurgical diagnosis is
considered the gold standard for reference MRI. In cases
where the patient did not undergo surgery, the diagnosis of
anterior ACL injury was determined by a panel of 2 senior
sports medicine surgeons and 1 senior musculoskeletal (MSK)
radiologist with over 10 years of experience in diagnosing
ACL injuries. They independently made the diagnosis based
on the patient’s medical history, physical examination, and
MRI. Any inconsistencies in diagnosis were discussed among
the panel to arrive at a final diagnosis.

Clinician participants

Forty clinicians from 20 hospitals were invited to participate
in the clinician-AI interaction test (Table 1). They were div-
ided into 3 groups: the sports medicine expert group, the
sports medicine trainee group, and the nonsports medicine
clinician group.

The sports medicine expert group consisted of 9 senior
experts from PUTH. All of these clinicians were attending

physicians with a sports medicine fellowship and had 5–
10 years of experience in diagnosing ACL injuries.

The sports medicine trainee group consisted of 16 clinicians
from 12 hospitals (including PUTH). These clinicians were
sports medicine fellows undergoing sports medicine training,
with some limited exposure to ACL rupture cases.

The nonsports medicine clinician group consisted of 15
clinicians from 9 hospitals (including PUTH). These clinicians
were attending physicians with an orthopedics fellowship and
had 5–10 years of experience in general orthopedics, and
would encounter ACL patients in their daily work but did not
receive systematic sports medicine training.

Preparation for the clinician-AI interaction test

Previous research has shown that the end-user performs bet-
ter, and their trust in a machine is calibrated when an algo-
rithmic decision is presented with a low confidence index.18

The confidence index is related to the absolute value of the
model output, which ranges from 0 to 1. However, it can be
difficult for clinicians to decipher the model’s direct output
into a confidence level. To address this issue, we divided the
AI output range into 9 parts and calculated the accuracy (pos-
itive/negative predictive value) of the AI diagnosis for each
part, using a preliminary validation dataset of 2273 MRIs
(Supplementary Table S1), to represent the confidence.

The ACL rupture detection system processed the 200
MRIs, and AI diagnoses with confidence were prepared for
the clinician-AI interaction test. The clinician-AI interaction
test was conducted on a website. The user interface for the
clinician-AI interaction test is shown in Figure 1.

Prior to the test, user education was provided to the clini-
cians, including information on the model’s performance in
the preliminary study, the meaning of the model’s diagnosis,
and the confidence level. Examples of both correct and incor-
rect AI diagnoses were presented to the clinicians. It was
emphasized that they should not completely rely on the AI
system, particularly when the confidence level is low.

Clinician-AI interaction test

A randomized cross-over design was implemented. Clinicians
were assigned to either the AI-assisted group or the AI-
unassisted group using block randomization, stratified by
physician category. In the first round, clinicians were asked to
diagnose 200 MRIs with or without AI assistance. After the
completion of the first round, there was a washout period of
14 days, after which the clinicians switched to the AI-assisted
or AI-unassisted group and rediagnosed the previous 200
MRIs. In each round, clinicians were asked to select 1 of 4
choices for the status of the ACL: normal, rupture, mucoid
degeneration, and uncertainty.

The clinicians’ sensitivity, specificity, accuracy, and reading
time in the 2 rounds were calculated and compared. The

Table 1. Demographics of clinician participants

Overall Sports medicine expert Sports medicine trainee Nonsports medicine clinician

Number 40 9 16 15
Age 36 (28–45) 38 (33–42) 34 (28–40) 37 (31–45)
Sex (male: female) 34:6 5:4 15:1 14:1
Sports medicine training – Completed Undergoing None
Year of expertise (beyond resident) – 5–10 1–3 5–10
Centers 20 hospitals PUTH only 12 hospitals 9 hospitals
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reading time for each MRI was defined as the period from
when the clinician opened the MRI to when they submitted
their diagnosis, and was recorded in seconds.

The clinician’s internal diagnosing threshold in terms of
probability was calculated using a binary logistic regression
model, as described by Plasencia et al.19 Briefly, the following
relationship existed between the probability that physicians
gave an ACL rupture diagnosis and the risk of ACL rupture
calculated by the AI:

ln
P

1� P

� �
¼ aþ br; (1)

where P indicates the clinician’s ACL rupture diagnosis prob-
ability, r indicates the risk of ACL rupture, a is the intercept
coefficient, and b is the regression coefficient for ACL rupture
risk. The clinician’s internal diagnosing threshold was defined
as the value of risk at which clinicians are equally likely to
diagnose normal ACL or ACL rupture. In such cases, P¼ .5
and r¼�a/b, according to Equation (1).

We also conducted a semistructured interview with 20 ran-
domly selected clinicians following the test (Supplementary
Table S3). Six open-ended questions were asked to investigate
the clinicians’ perceptions of AI and their strategies for utiliz-
ing it (see Supplementary Materials—Qualitative study). The
interviews were analyzed using the grounded theory method.
A total of 15 nominal codes were identified, and 5 subcatego-
ries were obtained.

Clinician-AI interaction analysis

We defined a clinician-AI interaction as one clinician diagnos-
ing one MRI with AI assistance. In total, there were 8000
clinician-AI interactions (200 MRIs�40 clinicians). Based on
the correctness of the clinician’s AI-unassisted and AI-assisted
diagnosis, each clinician-AI interaction had 3 outcomes: a cor-
recting event, a misleading event (automation bias), and a null
event. A misleading event (automation bias) was defined as
the clinician’s original correct diagnosis being misled by a
wrong AI diagnosis. A correcting event was defined as the
clinician’s incorrect diagnosis being corrected by a correct AI
diagnosis. A null event was defined as the clinician’s diagnosis
not being corrected or misled by the AI diagnosis.

The correcting, misleading, and null events among the
8000 clinician-AI interactions in the clinician-AI interaction
test were identified. We further calculated the proportion of
correcting and misleading events in the clinician-AI interac-
tions in 9 ranges with different AI diagnoses and powers in
Supplementary Table S2.

Correcting proportion¼

Correcting event number

Clinician� AI interaction number
� 100%:

Misleading proportion¼

Misleading event number

Clinician� AI interaction number
� 100%:

An ordinal logistic regression model was used to predict the
probability of correcting and misleading events with a given
model output value. We used data from the clinician-AI inter-
action test to build the logistic regression model. The inde-
pendent variables were the AI output value (X, continuous),
clinician group (G, categorical), and degree of difficulty of
each MRI (D, clinician average error rate of certain MRIs
without AI assistance, continuous). The difficulty of the MRI

was calculated as D ¼ Wrong diagnosis number from 40 clinicians
Total diagnosis number from 40 clinicians . The

dependent variables were misleading events (Y¼ 0), null
events (Y¼ 1), and correcting events (Y¼ 2), which were
assigned as ordinal variables because the outcomes of the mis-
leading, null, and correcting events varied from negative to
positive. As the association between the AI correcting/mis-
leading effect and the model output probability was poten-
tially nonlinear, we used cubic splines with 3 degrees of
freedom to fit.

The primary model was as follows:

ln
P Y � ið Þ

1� P Y � ið Þ

� �
¼ b0i � b1Dþ b2jGj þ f Xð Þ

� �
þ E; (2)

where i¼ 0, 1, and 2 indicate a misleading, null, and correct-
ing event, respectively. j¼ 0, 1, and 2 indicate the sports medi-
cine expert group, sports medicine trainee group, and

Figure 1. The user interface of the clinician-AI interaction test. The MRI images with patient’s medical history were displayed. The AI diagnosis part with

both the AI diagnosis and the confidence was shown in the AI-assisted round. An indicator color was introduced to offer the clinicians perceptual intuition

of the AI diagnosis and its confidence. In the AI-unassisted round, the AI diagnosis part was hidden while other parts remained unchanged.
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nonsports medicine clinician group, respectively. f(X) repre-
sents a cubic spline function of the output probability of the
model with 3 degrees of freedom. b0 represents a fixed inter-
cept. E represents a random intercept. The model was con-
ducted using R (version 4.1.0; R Development Core Team)
with the packages “rms” and “segmented.”

In the logistic regression model, we first calculated the
probability of Y switching from 1 to 2 (correcting event, rep-
resented by a green point) and 1 to 0 (misleading event, repre-
sented by a red point). The cubic splines were used to fit the
correcting and misleading probability (green and red lines).
By calculating the intersection point between the 2 lines, we
were able to identify the model output range where the pre-
dicted misleading event probability exceeded the correcting
probability.

Based on the logistic regression model, we proposed an AI
suppression strategy. Under this strategy, AI diagnoses with a
higher misleading probability would be retracted, and clini-
cians would be allowed to make their own decisions in order
to decrease automation bias, while AI diagnoses with a higher
correcting probability would be retained to augment clini-
cians’ capabilities.

We simulated a third-round clinician-AI interaction test
with this AI suppression strategy to examine whether it would
decrease automation bias. It was assumed that the clinicians’
diagnoses would switch to their AI-unassisted diagnoses when
the AI suppression strategy was used. The third-round test
results were simulated by combining the clinician’s AI-
assisted diagnosis when the AI diagnosis had a higher correct-
ing probability and the clinician’s AI-unassisted diagnosis
when the AI diagnosis had a higher misleading probability in
the 2 rounds above.

Statistics

A paired t test was used to compare the clinicians’ accuracy,
sensitivity, specificity, and interpretation time between the AI-
assisted and AI-unassisted rounds. The logistic regression
model of the clinician’s internal diagnosing threshold and
clinician-AI interaction was described earlier. A post hoc anal-
ysis was used to calculate the power of the subgroup sample
size in terms of accuracy (sports medicine expert, 1�b¼ 0.98;

sports medicine trainee, 1�b¼ 0.92; nonsports medicine clini-
cian, 1�b¼ 0.99).

RESULTS
AI increased clinicians’ overall accuracy

The application of AI significantly increased the clinicians’
accuracy from 87.2%613.1% to 96.4%61.9% (P< .001)
(Table 2). The clinicians’ sensitivity and specificity were
improved, which increased the utility of the MRI in the ACL
diagnosis.20 The assistance of AI changed the clinicians’ inter-
nal diagnostic threshold from 0.531 to 0.563.

Although the AI increased the overall accuracy of the clini-
cians, this benefit usually occurred at both ends of the AI out-
put, with the clinicians’ accuracy reaching 100% (Figure 2).
However, when the AI output probability was approximately
3.4� 10�3 to 9.9� 10�1, their AI-assisted accuracy dropped,
and it was even below the AI-unassisted accuracy of approxi-
mately 5.3� 10�2 to 5.3�10�1 (Figure 2, Overall).

AI provided both correcting and misleading effects

We identified 833 (10.4%) correcting events and 132 (1.7%)
misleading events among the 8000 clinician-AI interactions in
the test (Table 3). The clinicians’ mistakes in the AI-assisted
round were associated with misleading events, accounting for
45.5% (132/290) of the total mistakes, indicating widespread
automation bias. However, all clinicians denied that the AI
had any misleading effect on themselves in the interviews (eg,
“The mistakes of the AI are obvious. I don’t think the AI mis-
leads me.”). They only reported the positive aspects of the AI
in the interview (Supplementary Table S2).

The distributions of correcting and misleading events were
different (Figure 3). More correcting events occurred below
the probability of 6.9� 10�4 and over the probability of
9.9� 10�1, while more misleading events occurred in the
range of 5.3� 10�2 to 5.3� 10�1, where the AI diagnosis
confidence was 25%. Although we warned that the AI diag-
nosis might be unreliable when the confidence was low before
the test, clinicians still made more mistakes under these
circumstances.

The level of expertise of the clinician also influenced the
likelihood of being corrected or misled. Clinicians with less

Table 2. Clinicians’ performances with and without AI assistance

Overall Sports medicine expert Sports medicine trainee Nonsports medicine clinician

Accuracy (%)
AI-unassisted 87.2 6 13.1 96.5 6 1.1 89.8 6 9.0 79.0 6 15.7
AI-assisted 96.4 6 1.9 98.2 6 0.9 96.2 6 1.8 95.5 6 1.7
P value <.001 .006 .002 .001

Sensitivity (%)
AI-unassisted 90.9 6 12.1 92.5 6 2.1 92.9 6 6.0 87.7 6 18.3
AI-assisted 93.8 6 4.2 96.1 6 1.9 93.6 6 3.7 92.6 6 5.1
P value .135 .015 .844 .683

Specificity (%)
AI-unassisted 86.8 6 15.5 97.6 6 1.4 89.4 6 11.6 77.4 6 18.1
AI-assisted 97.4 6 2.1 98.8 6 1.2 97.2 6 2.2 96.8 6 2.0
P value <.001 .011 <.001 .002

Interpretation time (in seconds)
AI-unassisted 14.0 6 5.3 8.8 6 2.0 14.9 6 3.2 16.1 6 6.2
AI-assisted 9.4 6 4.6 8.4 6 2.6 10.3 6 4.3 8.9 6 5.6
P value <.001 .722 .011 .003

Data are shown as the mean6SD. Accuracy, sensitivity, and specificity: Wilcoxon matched-pair signed-rank test.
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experience tended to rely more on the AI and were more vul-
nerable to AI mistakes (sports medicine expert baseline odds
ratio [OR]: 1; sports medicine trainee OR: 1.92, 95% CI:
1.37–2.71; and nonsports medicine clinician OR: 4.73, 95%
CI: 3.36–6.67).

The AI suppression strategy reduced the

automation bias

Given that the correcting and misleading events were highly
associated with the AI output, we built an ordinary logistic
regression model to predict the correcting and misleading
probability of the AI output (green and red points in Figure 4).
The regression curves of the predicted correcting (green line)

and misleading (red line) probabilities had 2 intersection
points (x¼ 0.1019 and 0.8843) that divided the output range
into the “benefit” zone with higher correcting probability and
the “risk” zone with higher misleading probability. In addi-
tion, we found that the “risk” zone varied among the clinician
groups (Table 4 and Supplementary Figure S1). The AI sup-
pression strategy could be customized according to the fea-
tures of the users and the working environment.

Sixteen MRIs (8%) had a high-risk AI diagnosis in this
study. If we had retracted the AI diagnosis of these 16 MRIs
while providing AI diagnosis of the rest as the AI suppression
strategy suggested, the misleading events were estimated to be
decreased by 41.7%, while the correcting events only

Figure 2. The AI’s and clinician’s accuracy in different AI output probability ranges. The clinician’s AI-assisted accuracy was highly associated with the AI

output range. Clinicians’ AI-assisted accuracy might drop below the AI-unassisted accuracy in a certain range.

Table 3. List of the requirements and proportions for correcting, misleading, and null events in the clinician-AI test

AI diagnosis Clinician’s AI-unassisted diagnosis Clinician’s AI-assisted diagnosis Event Proportion (%)

Right Right Right Null 79.9
Right Wrong Wrong Null 0.3
Right Right Wrong Null 0.3
Right Wrong Right Correcting 10.4
Wrong Right Right Null 5.3
Wrong Wrong Wrong Null 1.3
Wrong Right Wrong Misleading (automation bias) 1.7
Wrong Wrong Right Null 0.8
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decreased by 3.2%. The clinician’s AI-assisted mistakes were
estimated to be decreased by 8.6% (Table 4).

DISCUSSION

In summary, our study highlights the importance of consider-
ing the potential for automation bias when incorporating AI
into clinical practice. The use of AI can greatly improve clini-
cians’ diagnostic accuracy and efficiency and the utility of
MRI,20 but it is crucial to also address the potential for auto-
mation bias by implementing strategies such as identifying
high-risk zones for misleading AI diagnoses and allowing
clinicians to make their own decisions for these cases. Our
findings suggest that the AI suppression strategy can decrease
automation bias and promote effective interaction between
clinicians and AI systems.

Widespread automation bias has been well recognized since
clinical decision support systems were introduced.11 In the era
of AI, AI technology provides a higher form of automation
than other technologies, implying that AI can reinforce the
risks of automation bias. This phenomenon is being realized
by researchers and clinicians.5,8,9 Automation bias causes
clinicians to have higher diagnostic error,5,21 and the entire

spectrum of clinicians, including experts, could be the vic-
tims.8 In this study, we found that clinicians of all expertise
levels were vulnerable to automation bias, even though AI
improved their overall diagnostic accuracy and efficiency.
Nonsports medicine clinicians with less experience were
found to be 4.73 times more likely to be influenced by the AI,
highlighting the importance of addressing automation bias for
these individuals who also benefited the most from AI assis-
tance. Considering the potential risk of automation bias in the
clinician-AI interaction, simply evaluating the performance of
the AI algorithm is not sufficient to ensure patient safety. It is
important to evaluate the clinician-AI interaction in order to
ensure that the algorithm is being used to benefit patients.

Many factors contribute to automation bias by AI. The pri-
mary cause of automation bias is the algorithm generating
faulty conclusions. Inappropriate human-AI interaction
would retain the errors of the algorithm and pass them to the
user side. Efforts to address automation bias have often
focused on technological solutions, such as reducing bias in
the algorithm, while neglecting the role of user practice.14

Most medical AI algorithms are built without involving the
end user and without considering how the end user will use
them. If we are using AI to augment clinician abilities and not

Figure 3. The correcting and misleading proportion of the AI output range. The correcting effect of the AI was accompanied by the misleading effect.
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replace them, human-AI interaction should be considered in
the product’s design. Another possible reason is that clinicians
overlook the automation bias risk. In this study, we found
that 45.5% (132/290) of clinicians’ mistakes in the AI-
assisted round were related to the misleading effect. However,
all the clinicians in the interview held an optimistic attitude
toward their AI-assisted performances. They denied that the
AI had a misleading effect on themselves, even though they
were aware that AI would generate faulty diagnoses. This
lack of recognition of the problem may lead to a failure to

balance self-confidence and trust in AI. Therefore, particular
emphasis should be placed on user training to familiarize
clinicians with the reliability of AI and the risks of accepting
incorrect information.

In this study, we designed a user interface including infor-
mation on AI diagnosis and confidence to help clinicians bet-
ter calibrate their trust in AI.18 An indicating color bar was
added to warn of the low certainty index. We also provided
user education before the test and emphasized that the AI
diagnosis with 25% and 50% confidence was highly

Figure 4. An ordinary logistic regression model was used to predict the correcting and misleading probability of the AI output (green and red points). The

2 intersection points of the regression curves divided the output range into the “benefit” zone with higher correcting probability and the “risk” zone with

higher misleading probability.

Table 4. The effect of the AI suppression strategy on automation bias

Overall

(n¼40)

Sports medicine

expert (n¼9)

Sports medicine

trainee (n¼16)

Nonsports medicine

clinician (n¼15)

AI “risk” zone 0.1019–0.8843 0.0345–0.7889 0.0804–0.8968 0.1299–0.8949
Clinician’s mistake (per person) in AI-assisted round

Without AI suppression strategy 290 (7.3) 33 (3.7) 123 (7.7) 134 (8.9)
With AI suppression strategy 265 (6.6) 29 (3.2) 109 (6.8) 127 (8.5)
Decrease by 8.6% 12.1% 11.3% 5.2%

Correcting event (per person)
Without AI suppression strategy 833 (20.8) 40 (4.4) 251 (15.7) 542 (36.1)
With AI suppression strategy 806 (20.1) 37 (4.1) 240 (15.0) 529 (35.3)
Decrease by 3.2% 7% 4.4% 2.3%

Misleading event (per person)
Without AI suppression strategy 132 (3.3) 14 (1.6) 50 (3.1) 68 (4.5)
With AI suppression strategy 77 (1.9) 7 (0.8) 29 (1.8) 41 (2.7)
Decrease by 41.7% 50.0% 42.0% 39.7%
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unreliable. However, these efforts were insufficient to com-
pletely solve the automation bias. Clinicians were vulnerable
to faulty AI conclusions once they built up the trust that was
necessary to benefit from AI support. Additionally, it was
found that faulty AI diagnoses with low confidence can still
cause misleading events, even when the probability of the AI
diagnosis was far below the clinician’s internal threshold for
diagnosing ACL rupture. The study suggests that the problem
of automation bias may become more severe when the AI pro-
vides a faulty diagnosis with high confidence, as humans tend
to show a strong preference for options with certainty,
according to prospect theory.22 Further efforts are needed to
decrease automation bias and promote clinician-AI
interaction.

Inspired by the handover strategy in the autopilot and the
driver of an autonomous vehicle,12 we designed an AI sup-
pression strategy to switch the clinician-AI-assisted model to
the clinician-alone working model to decrease the automation
bias. The correcting and misleading probability of the AI
diagnosis was predicted based on the clinician-AI interaction
test and the AI suppression was triggered when the misleading
probability was higher than the correcting probability. With
this strategy, the misleading events were estimated to be
decreased by 41.7%, while the correcting events only
decreased by 3.2%. This AI suppression strategy was estab-
lished by sampling and statistics. The disease distributions,
clinician characteristics, and clinician-AI interactions should
represent the real working environment. Then, the high-risk
misleading range could be representative and applied to the
clinical practice without post hoc analysis. Compared to
investing in improving the algorithm, making adjustments to
user practice is more economical and efficient. This study pro-
vides a framework for future studies and AI products.

This study has several strengths: (1) A diverse group of 40
clinicians with varying specialties and levels of experience
from different hospitals participated in the study, providing a
comprehensive examination of the clinician-AI interaction.
(2) We used mixed methods to investigate the impact of AI on
clinician decision-making and to understand the mechanisms
underlying this impact. (3) The study conducted a systematic
evaluation of clinician-AI interaction and proposed a strategy
to enhance this interaction, which can be applied to other AI
models in the future.

The study also has some limitations: (1) This study was not
conducted in a real clinical setting, where a doctor would per-
form a physical examination and be responsible for making
an accurate diagnosis. Although real patient documents
including medical history and physical examination results
from the clinic were used, no patients participated in the test.
The test settings, which involved reading 200 MRIs and diag-
nosing only ACL, do not reflect real-world practice. (2) To
avoid causing a heavy burden to the clinicians and decreasing
their concentration, we controlled the MRI sample size to
200, which was a relatively small sample size. (3) The third-
round clinician-AI interaction test was a simulation and the
reading session was not repeated. Instead, the clinician’s AI-
unassisted diagnosis was used to estimate the AI suppression
strategy.

CONCLUSION

Although AI improved clinicians’ diagnostic performance,
automation bias was a serious problem that should be

addressed in clinical practice. The proposed AI suppression
strategy is a practical method for decreasing automation bias.
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