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Abstract: Genomic selection (GS) plays a pivotal role in hybrid prediction. It can enhance the selection
of parental lines, accurately predict hybrid performance, and harness hybrid vigor. Likewise, it can
optimize breeding strategies by reducing field trial requirements, expediting hybrid development,
facilitating targeted trait improvement, and enhancing adaptability to diverse environments. Leverag-
ing genomic information empowers breeders to make informed decisions and significantly improve
the efficiency and success rate of hybrid breeding programs. In order to improve the genomic ability
performance, we explored the incorporation of parental phenotypic information as covariates under
a multi-trait framework. Approach 1, referred to as Pmean, directly utilized parental phenotypic
information without any preprocessing. While approach 2, denoted as BV, replaced the direct use
of phenotypic values of both parents with their respective breeding values. While an improvement
in prediction performance was observed in both approaches, with a minimum 4.24% reduction in
the normalized root mean square error (NRMSE), the direct incorporation of parental phenotypic
information in the Pmean approach slightly outperformed the BV approach. We also compared these
two approaches using linear and nonlinear kernels, but no relevant gain was observed. Finally, our
results increase empirical evidence confirming that the integration of parental phenotypic information
helps increase the prediction performance of hybrids.

Keywords: hybrid prediction; parental information; integration; multi-trait

1. Introduction

Meeting the increasing global demand for food is an imperative challenge, especially
in the face of climate change and its subsequent impact on natural resources. Plant breeding
plays a crucial role in the human food chain by contributing to high and stable production
yields with minimal external inputs and environmental impact. In the last twenty years,
plant breeding has been revolutionized by Genomic Selection (GS), a predictive methodol-
ogy proposed by Meuwissen et al. (2001) [1], which has enabled the selection of superior
candidates based solely on genotypic information.

GS is important because it allows breeders to make more accurate and efficient selec-
tion decisions in plant and animal breeding programs. It involves the use of genomic data,
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such as DNA markers, to predict the genetic value of an individual or a population for
a given trait of interest. This prediction is based on the association between the genomic
data and the phenotype (observable characteristics) of the individuals [2–5]. Compared
to traditional breeding methods, GS has several advantages. Firstly, individuals with
desired traits can be selected earlier, reducing the time and cost of breeding programs.
Likewise, traits that are difficult to measure or are expressed late in the life cycle can
also be selected. Additionally, GS can increase the genetic gain per unit of time and cost,
leading to the development of more productive and resilient crops and livestock. Overall,
GS has revolutionized the field of plant and animal breeding, making it more efficient
and effective [6–8].

Nonetheless, the successful implementation of GS in plant breeding for predicting the
performance of hybrid combinations based on the genetic makeup of their parents poses
several challenges, which include: (1) Non-additive effects: Hybrid prediction assumes
additive genetic effects of parental lines, but in reality, non-additive effects, such as domi-
nance and epistasis, significantly influence hybrid performance. Accurately modeling non-
additive effects requires larger sample sizes for estimation; (2) Genotype-by-environment
(G × E) interaction: Hybrid performance varies across different environments due to
G × E interaction. This variation makes it challenging to predict hybrid performance accu-
rately across diverse environments; (3) Limited data: The availability of limited data poses
difficulties in accurately predicting hybrid performance, especially for new or untested
hybrid combinations. Insufficient data hinders accurate predictions of hybrid performance;
(4) Heterogeneous parental populations: Genetic diversity among parental lines used in
hybrid creation complicates the accurate prediction of hybrid performance. This challenge
is particularly prominent when dealing with open-pollinated populations or composite
crosses; and (5) Complex trait architecture: The accurate modeling of complex traits, such
as yield or disease resistance, is difficult, posing challenges in predicting hybrid perfor-
mance for these traits. In conclusion, hybrid prediction in plant breeding is a complex
and challenging task that requires careful consideration of the underlying genetic and
environmental factors influencing hybrid performance [9].

In this regard, a valuable alternative to genomic prediction in plant breeding is multi-
trait hybrid prediction, which permits the simultaneous prediction of hybrid performance
for multiple traits, reducing both time and cost in breeding programs. Multi-trait hy-
brid prediction is advantageous for several reasons, including (1) Improved accuracy:
By considering trait correlations, multi-trait hybrid prediction enhances the accuracy of
performance prediction. Leveraging similarities in the genetic basis of traits, information
from one trait improves predictions for another; (2) Reduced bias: Traditional genomic
prediction methods may exhibit bias due to an uneven distribution of phenotypic data or
low heritability of traits. Multi-trait hybrid prediction mitigates such bias by integrating
genetic information from multiple traits to estimate hybrid genetic value; (3) Enhanced
hybrid selection: Multi-trait hybrid prediction facilitates the selection of hybrids with
desired combinations of traits, leading to more productive and resilient crops. This is
especially valuable for complex traits that are difficult to measure or expressed late in the
life cycle; and (4) Improved management of G× E interaction: Multi-trait hybrid prediction
assists breeders in effectively managing genotype-by-environment (G × E) interaction.
It considers trait correlations and their interaction with environmental factors, aiding
the identification of hybrids with consistent performance across diverse environments.
Overall, multi-trait hybrid prediction shows promise in improving the accuracy and effi-
ciency of plant breeding programs, resulting in the development of highly productive and
resilient crops [10,11].

Montesinos-López et al. (2022) [12,13] showed that multi-trait prediction using the
kernel method has the potential to enhance prediction accuracy as kernels are able to
capture nonlinear patterns when they are in the data. Kernel methods are important
for genomic prediction because they efficiently model complex, nonlinear relationships
between genetic variants and phenotypes. In genomic prediction, the goal is to predict
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phenotypic traits based on genetic information, and kernel methods provide a powerful
framework for achieving this. Kernel methods rely on the concept of a kernel function,
which can be thought of as a measure of similarity between two objects. In the context
of genomic prediction, the objects are typically genetic variants, and the kernel function
measures the similarity between two variants based on their genetic similarity [13]. By using
kernel methods, genomic prediction models can capture complex interactions between
genetic variants that may not be easily captured by linear models. This is important because
many phenotypic traits of interest are influenced by numerous genetic variants, each of
which may have a small effect. Kernel methods allow for these subtle interactions to be
captured, leading to more accurate predictions. Overall, kernel methods are a powerful
tool for genomic prediction, as they efficiently model complex, nonlinear relationships
between genetic variants and phenotypes [1,14,15].

Since the prediction of hybrids in plant breeding is very challenging, many approaches
have been studied to increase prediction accuracy. For example, some authors, such as
Xu et al. (2021) [16] and Wang et al. (2012) [17], proposed the incorporation as an input
of parental information to increase the prediction accuracy of hybrids because it provides
additional information about the genetic background of the offspring. The genetic makeup
of the offspring is a combination of the genetic makeup of the two parents, and this
information is used to improve predictions of the offspring’s performance. Other studies
proposed to incorporate phenotypic data or environmental data, among others.

For this reason, to evaluate if incorporating phenotypic parental information as an
additional input improves prediction accuracy in the context of multi-trait with kernel
methods, we utilized a wheat dataset provided by the International Maize and Wheat
Improvement Center (CIMMYT). We hypothesize that incorporating the phenotypic in-
formation of the parents as covariates in the multivariate genomic prediction model with
kernels will improve the prediction accuracy of the GS methodology. In this sense, we
aim to broaden our understanding of the genetics of the studied traits and maximize the
efficiency of hybrid prediction by exploring the multivariate kernel approach.

2. Results

The results presented for each trait and for each year are compared with the three
strategies of incorporating the parental phenotypic information (NO_Cov, BV, and Pmean)
in each of the six kernels, AC_1, AC_2, AC_3 AC_4, GK, and Linear. These comparisons
were carried out for each year and across years.

2.1. Trait DTF

The following Figure 1 shows the prediction performance of each kernel in each year
and across years (Global). For each kernel in each year, we compared the three strategies of
incorporating the parental phenotypic information (NO_Cov, BV, and Pmean).

In Figure 1, we can appreciate that in each year and across years, the best prediction
performance was observed incorporating the parental phenotypic information (BV and
Pmean). However, small differences are observed between the different kernels, and we
can appreciate that in year 1 under the strategy BV, the best prediction performance was
observed under a linear kernel that outperformed the remaining kernels by only 1.534%.
While under the Pmean strategy, also in year 1, the linear kernel was the best regarding
the remaining kernels but only by 0.706%. The same pattern was observed in years 2
and 3 under the BV strategy, where the best linear kernel outperformed the remaining
kernels by 2.125% and 2.33%, respectively, while under the Pmean strategy, the linear kernel
outperformed the other in years 2 and 3 by 0.062% and 0.106%, respectively (Figure 1).
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Figure 1. Prediction performance for trait DTF in each strategy of incorporating the parental pheno-
typic information (NO_Cov, BV, and Pmean) with six different kernel methods (AC_1, AC_2, AC_3,
AC_4, Gaussian Kernel (GK) and linear kernel measured by NRMSE in each year (1, 2, 3) and across
years (Global).

Finally, across years (Global), we can appreciate that the linear kernel was also the
best under both strategies of incorporating the phenotypic parental information (Figure 1).
However, the gain in terms of NRMSE of the linear kernel regarding the other kernels was
1.982% under the BV strategy and 0.304% under the Pmean strategy. Under the linear kernel,
we can appreciate that the best strategy for incorporating the phenotypic information
(both for each year and across years) was the Pmean with an NRMSE = 0.626, followed by
the BV strategy with an NRMSE = 0.632 and without incorporating parental phenotypic
information. The NO_Cov strategy was the worst with an NRMSE = 0.666, meaning that
the Pmean and BV strategies were better than the NO_Cov by 6.4% and 5.4%, respectively.
See details in Table A1.

2.2. Trait DTH

Figure 2 demonstrates that including parental phenotypic information (BV and Pmean)
consistently resulted in the most accurate predictions across different years. Although
there were slight differences among various kernels, the linear kernel stood out in year
1, outperforming others by 1.577% using the BV strategy and 0.468% using the Pmean
strategy. This trend continued in years 2 and 3 under the BV strategy, with the linear kernel
leading by 1.875% and 2.448%, respectively. In year two, under the Pmean strategy, all six
kernels performed equally, while in year three, the linear kernel was slightly better, with a
0.142% advantage.
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Figure 2. Prediction performance for trait DTH in each strategy of incorporating the parental
phenotypic information (NO_Cov, BV, and Pmean) with six different kernel methods (AC_1, AC_2,
AC_3, AC_4, Gaussian Kernel (GK) and linear kernel measured by NRMSE in each year (1, 2, 3) and
across years (Global).

When considering all years together (Global), the linear kernel stood out as the top
performer in both the BV and Pmean strategies, improving NRMSE by 1.955% and 0.202%,
respectively, compared to other kernels. Interestingly, the best approach for integrating
phenotypic information, represented by the linear kernel, was the Pmean strategy, resulting
in an NRMSE of 0.610. The BV strategy followed closely with an NRMSE of 0.617. In
contrast, the strategy of not including parental phenotypic information (NO_Cov strategy)
performed the worst, with an NRMSE of 0.651. This means that the Pmean and BV strategies
outperformed the NO_Cov strategy by 6.7% and 5.5%, respectively. For more detailed
information, please refer to Table A2.

2.3. Trait YIELD

Figure 3 illustrates that including parental phenotypic data (BV and Pmean) consis-
tently led to the best predictive performance across different years. Nevertheless, there
were subtle differences among the various kernels. Specifically, in year one, the linear
kernel performed slightly worse than the other kernels by only 0.099% when using the BV
strategy. Meanwhile, under the Pmean strategy, the linear kernel performed equally as well
as the other kernels. This pattern persisted in years 2 and 3 under the BV strategy, where
the linear kernel showed slightly lower performance than the other kernels by 0.075% and
0.194%, respectively. Similarly, under the Pmean strategy, the linear kernel exhibited slightly
lower performance than the other five kernels, but the difference was minimal, with only
0.013% and 0.071% variations in years two and three, respectively.
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When considering all years collectively (Global), the linear kernel showed a slight
performance disadvantage compared to other kernels in both the BV and Pmean strategies,
resulting in a decrease in NRMSE of 0.120% and 0.026% relative to the other kernels
(Figure 3). Interestingly, the best strategy for incorporating phenotypic information, as
indicated by the top-performing kernels (AC_1, AC_2, AC_3, AC_4, and GK), was the
Pmean strategy, which achieved an NRMSE of 0.766. The BV strategy followed closely with
an NRMSE of 0.778. In contrast, the strategy of not incorporating parental phenotypic
information (NO_Cov strategy) showed the poorest performance, with an NRMSE of 0.796
(Figure 3). This demonstrates that the Pmean and BV strategies outperformed the NO_Cov
strategy by 3.9% and 2.3%, respectively. For more detailed information, please refer
to Table A3.

2.4. Across Traits

Since the linear kernel was the best in two out of three of the traits under study, in this
section, we present the results across traits only for this linear kernel.

Across traits and years, we can appreciate in Figure 4 that not incorporating the
parental phenotypic information as a covariate in the modeling process decreases prediction
accuracy by 4.24% when the parental phenotypic information is incorporated as breeding
values (BV) estimated from the parents, and by 5.59% when the parental phenotypic
information is incorporated directly as the blues of the parents. In other words, these
results point out that incorporating the phenotypic information helps to increase the
prediction accuracy of hybrid predictions by at least 4.24% under a multi-trait framework.
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3. Discussion

Hybrid prediction is of utmost importance in plant breeding as it harnesses the bene-
fits of hybrid vigor, improves yield potential, enhances genetic diversity, facilitates trait
selection, optimizes resource utilization, accelerates breeding progress, increases crop pro-
ductivity, promotes sustainable agriculture, addresses consumer preferences, and provides
economic advantages to stakeholders. However, as mentioned in the introduction, many
factors affect the efficient development of highly productive hybrids.

For these reasons, the GS methodology is crucial for hybrid development as it enhances
breeding efficiency, improves prediction accuracy, enables early-stage selection, aids in
complex trait prediction, manages genetic diversity, facilitates information transferability,
complements marker-assisted selection, enables selection for novel traits, supports data-
driven breeding decisions and can be integrated with other breeding approaches [1,9]. By
leveraging genomic information, breeders can optimize hybrid breeding programs and
accelerate the development of high-performing and genetically superior hybrids.

However, for a successful implementation of the GS methodology, high accuracy is
key for an efficient selection, increasing genetic gain, saving costs and time, utilizing genetic
resources effectively, selecting for complex traits, facilitating precision breeding, building
confidence in breeding decisions, adapting to changing years, managing genetic diversity,
and promoting industry acceptance and adoption. Achieving high accuracy in genomic
selection enhances the effectiveness and efficiency of plant breeding programs, ultimately
leading to the development of improved and high-performing hybrids.

For this reason, the prediction performance of the GS methodology was explored under
a multivariate framework with two strategies for incorporating the parental phenotypic
information in the modeling process as covariates. The first approach, denoted as Pmean,
directly used the parental phenotypic information without any preprocessing, while the
second, denoted as BV, used only the breeding values of the parents (gM,t and gF,t) instead
of the phenotypic values of both parents (PM,t and PF,t). Under both approaches, an increase
in prediction performance NRMSE of at least 4.24% was observed; however, the direct
approach of incorporating the parental phenotypic information (Pmean) was slightly better
than the BV approach. However, we do not have elements to say that the Pmean approach
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is statistically better than the BV approach; for this reason, the small difference between the
two approaches can be attributed in part to Monte-Carlo error since we implemented both
approaches under a Bayesian framework.

Likewise, under both strategies (Pmean and BV) of incorporating the parental pheno-
typic information, we explored the use of nonlinear inputs using different kernels (AC_1,
AC_2, AC_3, AC_4, and GK), which were compared to the conventional linear kernel.
We did not find relevant differences in prediction performance between the kernels using
the NRMSE as a metric. As such, findings suggest that, in general, for this data set, the
linear kernel is sufficient, for when nonlinear kernels were evaluated, no significant gain
in prediction performance was observed. However, even though the nonlinear kernels
were not better in terms of NRMSE than the conventional linear kernel, it is of paramount
importance to remember that in many data sets, the use of these nonlinear kernels still helps
to increase prediction performance since they can efficiently capture nonlinear patterns in
the input data when they are present.

In general, genomic prediction models under a multivariate context with nonlinear
kernels have the potential to capture complex relationships, improve prediction accuracy,
consider trait correlations, account for genetic pleiotropy and interactions, uncover hidden
patterns, offer flexibility and adaptability, allow for cross-species applications, support
better breeding decisions, and contribute to advancements in data science. By incorporating
these models, breeders can enhance the accuracy and efficiency of genomic prediction,
leading to improved plant breeding outcomes and the development of superior hybrids.

However, the efficacy of the multivariate model in comparison to the single-trait
analysis varies depending on the specific problem at hand. Conventional multivariate
models presuppose a uniform covariance of effects throughout the genome. In genomic
regions where the alignment of effects correlates closely with the average effect correlation
across the genome, leveraging information sharing among traits can enhance statistical
power. Conversely, in regions where the correlation of effects significantly deviates from
the genome’s average correlation pattern, the multivariate model might diminish statistical
power. This reduction can be attributed to the tendency of multivariate models to constrict
the magnitude of effects towards a shared covariance pattern [18].

Finally, our findings increase empirical evidence that integrating parental phenotypic
information improves prediction performance by integrating this information as covariates.
It is also important to point out that we did not find any improvement when adding this
information under a multi-trait framework versus a uni-trait framework. For this reason, by
incorporating parental phenotypic information, prediction models can make more accurate
predictions and support more effective breeding decisions in plant breeding programs.
However, we did not find an improvement in integrating this information as BV as opposed
to integrating it as Pmean.

4. Materials and Methods
4.1. Phenotypic Data

Field experiments were conducted at CIMMYT’s Campo Experimental Norman E.
Borlaug (CENEB) near Ciudad Obregon, Sonora, Mexico, over a period of three years.
A total of 1888 hybrids resulting from crosses between 667 females and 18 males were
evaluated. Specifically, the number of hybrids assessed during the winter growing seasons
of 2014–2015 (Year 1), 2015–2016 (Year 2), and 2016–2017 (Year 3) were 703, 655, and 1197,
respectively. Among these, 225 hybrids were common between consecutive years (Years 1
and 2), while 383 hybrids were common between Years 2 and 3. The selection of elite female
and male parents was based on their performance for desired traits, ability to produce
hybrids, and ancestral diversity, which was determined using a coefficient of parentage.

In order to produce the hybrids, a chemical hybridizing agent provided by
Syngenta Inc. (Wilmington, DE, USA) was utilized in alternate male and female strip
plots measuring 6.4 m. The parents and hybrids were evaluated in α-lattice trials, with two
replications conducted over a span of two years. Each 4.8 m yield trial plot consisted of
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1000 seeds to ensure uniform plant density. Standard agronomic practices, including four
supplementary irrigations, were employed in a high-yield-potential environment. All male
parents involved in the hybrids and the set of two advanced checks tested each year were
planted in all trials. The hybrids and female parents were planted side by side in all the
trials. For each entry, data on days to flowering (DTF), days to heading (DTH), days to
maturity (DTM), grain yield (GY), and plant height (PHT) per plot were recorded. Pheno-
typic data were analyzed using a mixed linear model implemented in META-R software
(V5.0). Best linear unbiased estimates (BLUEs) were estimated by fitting the model with
trial (as a random effect), genotype (as a fixed effect), replication nested within trials (as a
random effect), and sub-blocks nested within trials and replications (as random effects).
The obtained BLUEs for each hybrid and parent were utilized for subsequent analyses.
This paper focuses on the analysis of three traits: grain yield (GY), days to flowering (DTF),
and days to heading (DTH).

4.2. Genotypic Data

In the first year, 18 male and 667 female parents underwent genotyping using the
Illumina iSelect 90K Infinitum SNP genotyping array. In the second and third years, geno-
typing was performed using the Illumina Infinium 15K wheat SNP array (TraitGenetics
GmbH, Gatersleben, German). After combining the data from all three years, a total of
13,005 single-nucleotide polymorphisms (SNPs) remained. SNPs with less than 15% miss-
ing values were retained, and any remaining missing markers were imputed using the
naive method based on observed allele frequencies. Following imputation, markers
with a minor allele frequency below 0.05 were excluded from the analysis. A total of
10,250 markers were ultimately utilized for further analysis. Although a larger set of
hybrids and parents were assessed in the field experiments, only hybrids derived from
parents that had undergone SNP genotyping were considered for genomic predictions. The
number of hybrids included varied in each year of evaluation.

4.3. Multivariate Statistical Model

This model is given by

Y = ZEβE + ZMgM + ZFgF + ZHh + uM + uF + uH + XACβAC + ε (1)

where Y is the matrix of response variables of order n× nT (with nT = 3 since the traits
under study were GY, DTF, and DTH); n denotes the total number of observations; ZE is
the design matrix for environments (year); βE is the matrix of year effects of order I× nT,
and I denotes the number of years, and it is assumed as random effects since model (1)
was implemented under a Bayesian framework; βE ∼ MNI×nT

(
0,σ2

EII, InT

)
, that is, with

a matrix-variate normal distribution with parameters M = 0, U = σ2
EII and V = InT ,

and gM is the matrix of random effects due to the general combining ability (GCA) of
markers from paternal lines (males, M); gF is the matrix of random effects due to the GCA
of markers for maternal lines (females, F), and h is the matrix of SCA random effects for
the crosses (hybrids, H). The incidence matrices ZM, ZF, and ZH relate Y to gM, gM, and
h with gM ∼ MNM×nT(0, GM, ΣM), M denotes the male parents; gF ∼ MNF×nT(0, GF, ΣF),

F denotes the female parents, and h ∼ MNH×nT

(
0, H = ZMGMZT

M
⊙

ZFGFZT
M, ΣH

)
, H

denotes the hybrids resulting from combining the M males and F females,
⊙

denotes the
Hadamard product, where, ΣM, ΣF, and ΣH are variance-covariance components associ-
ated with GCA and SCA, and GM, GF, and H are relationship matrices for parental and
maternal lines and hybrids, respectively. While uM ∼ MNME×nT

(
0, VM, ΣME

)
, denotes the

random effects of males-year combinations, uF ∼ MNFE×nT

(
0, VF, ΣMF

)
, denotes random

effects of females-year combinations, uH ∼ MNHE×nT

(
0, VH, ΣMH

)
; denotes the random

effects of hybrids-year combinations, ΣME , ΣMF , and ΣMH are variance-covariances matrices
of components associated with male × year, female × year, hybrid × year interactions,
respectively; and VM, VF, and VH are the associated variance–covariance matrices. These
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variance-covariance matrices are given by VM = ZMGMZT
M
⊙

ZEZT
E, VF = ZFGFZT

F
⊙

ZEZT
E

and VH = ZHHZT
H
⊙

ZEZT
E. Finally, ε is the residual matrix of dimension n × nT dis-

tributed as ε ∼ MNn×nT(0, In, R), where R is the residual variance-covariance matrix of
order nT × nT.

The relationship matrices GM and GF were computed using markers (Van Raden,
2008). Let Xm, m ∈ {Male, Female} be the matrix of markers and let Wm, be the matrix of
centered and standardized markers. Then Gm = WmWT

m
p [5,19] where p is the number of

markers. XAC is the matrix that contains the parental covariates of the trait to be predicted
and of correlated traits. The parental information was used under two approaches. The first
one (Pmean) directly used the parental phenotypic information without any preprocessing.
Under this approach, from each trait, we computed two covariates using the parental
phenotypic information. One covariate that captured the additive part is computed as

XAC,t,a =
(PM,t + PF,t)

2
(2)

where PM,t denotes the male parental phenotype for trait t, PF,t denotes the female parental
phenotype for trait t, with t = GY, DTF, and DTH; while a denotes the additive effects. The
other covariates captured the dominance part, and it is computed as

XAC,t,d =
|PM,t − PF,t|

2
(3)

where d denotes dominance. The matrix XAC contains six columns since two covariates
(one for a and the other for d) were computed for each of the three traits under study. The
second approach is denoted as BV. To incorporate the parental phenotypic information
in place of using directly the phenotypic values of both parents (PM,t and PF,t) we used
the breeding values of the parents (gM,t and gF,t) and these were computed with the
following predictor:

P = 1µ+ g + e (4)

where P is the vector of the response variable for each trait of order np × 1, 1 is a vector of
ones of order np × 1, µ denotes a general mean, g is the random effects of both parental
lines distributed as g ∼ Nnp×1(0, G), with G representing the genomic relationship matrix,

and e are the residual errors distributed as g ∼ Nnp×1

(
0, Inpσ

2
e

)
. After fitting model (4),

we estimated the breeding values, g, that contain the breeding values of males (gM,t) and
females (gF,t). Then, with these breeding values, we computed the covariates XAC,t,a and
XAC,t,d with Equations (2) and (3), but instead of using PM,t and PF,t, gM,t and gF,t were
used. Finally, to compare both approaches for using the phenotypic information, Pmean
and BV were evaluated with and without the phenotypic information as covariates. For
this reason, three strategies resulted in incorporating or ignoring the parental phenotypic
information. These strategies are the Pmean, the BV, and the NO_Cov method that ignored
the parental phenotypic information. The implementation of these models was carried out
in the R statistical software (V.6) using the BGLR library [20].

4.4. Evaluation of Prediction Performance

In each of the three methods evaluated (Pmean, BV, and NO_Cov), we employed
a type of cross-validation that emulates real breeding strategies, referred to as untested
lines in tested years, using a seven-fold cross-validation [13]. In this approach, the training
set was allocated to 7-1 folds, while the remaining fold was assigned to the testing set.
This process was repeated until each of the seven folds had been utilized at least once in
the testing set. The average performance across the seven folds was then reported as the
prediction performance, using the normalized root mean square error (NRMSE) as the
evaluation metric. In order to compare the prediction accuracies between models of the
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same type (Pmean and BV), the relative efficiencies in terms of NRMSE were computed
as follows:

RENRMSE =
NRMSEMx

NRMSEMx_z

where NRMSEMx and NRMSEMx_z denote the NRMSE of model x = Pmean and BV and
z = NO_Cov respectively. if RENRMSE > 1, the best prediction performance in terms of
NRMSE was obtained using method Mx_z, but when RENRMSE < 1, the best method was
Mx. When RENRMSE = 1, both methods were equally efficient.

4.5. Kernel Methods

Kernel functions (kernel methods or kernel tricks) are mathematical functions used
in various machine learning algorithms. These functions enable the algorithms to operate
in a high-dimensional feature space without explicitly computing the coordinates of the
data points in that space [15]. Kernel functions could uncover complex, nonlinear rela-
tionships between data points by projecting them into a higher-dimensional space, where
the relationships become more apparent and easier to separate. This process is called the
“kernel trick”, which avoids the explicit computation of the higher-dimensional feature
space, saving computational resources and memory.

The kernel functions efficiently represent data and perform the kernel trick where
the kernel functions take pairs of data points in the original space and calculate the inner
product (similarity) between them in a higher-dimensional space. A popular kernel function
is the linear one that, in genomic prediction, is basically represented by the Genomic Best
Linear Unbiased Predictor (GBLUP). The nonlinear Gaussian kernel (GK) function, also
known as the radial basis function kernel, depends on the Euclidean distance between the
original attribute value vectors rather than on their dot product, K

(
xi, xj

)
= e−γ‖xi−xj‖2

The
Gaussian kernel method is very popular, but it is sensitive to the choice of the γ parameter
and may be prone to overfitting.

The Arc-cosine (AC) kernel function uses the idea of forming artificial neural networks
with more than one hidden layer (l). Cho and Saul [21] proposed a recursive relationship
of repeating l times the interior product. It is important to point out that this kernel
method is like a deep neural network since more than one hidden layer can be used. In this
study, we have represented the AC with 1,2,3,4 hidden layers as AC_1, AC_2, AC_3, and
AC_4, respectively.

5. Conclusions

In this paper, the integration of parental phenotypic information under a multi-trait
framework with different kernels was explored. We evaluated two approaches for the
integration of parental phenotypic information. We found an increase in prediction perfor-
mance in the normalized mean square error of at least 4.24% by integrating the parental
phenotypic information, but no relevant differences were observed between the two ap-
proaches for integrating the parental phenotypic information. Furthermore, we did not
find a significant increase in prediction performance using nonlinear kernels regarding
linear kernels. Finally, our findings increase empirical evidence that integrating parental
phenotypic information as covariates helps to increase the prediction performance of
hybrids prediction.
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Appendix A

In this section, the data used in the elaboration of the different figures are presented.

Table A1. Prediction performance of the DTF trait measured by NRMSE by type, kernel, year, and
predictive ability gain measured by Relative Efficiency.

Type Kernel Year NRMSE RE__Ker RE_Env

BV AC_1 1 0.675 0.000 0.000

BV AC_2 1 0.675 0.000 0.000

BV AC_3 1 0.675 0.000 0.000

BV AC_4 1 0.675 0.000 0.000

BV GK 1 0.675 0.000 0.000

BV Linear 1 0.665 1.534 0.000

NO_Cov AC_1 1 0.703 0.000 0.000

NO_Cov AC_2 1 0.703 0.000 0.000

NO_Cov AC_3 1 0.703 0.000 0.000

NO_Cov AC_4 1 0.703 0.000 0.000

NO_Cov GK 1 0.703 0.000 0.000

NO_Cov Linear 1 0.693 1.428 0.000

Pmean AC_1 1 0.670 0.000 0.000

Pmean AC_2 1 0.670 0.000 0.000

Pmean AC_3 1 0.670 0.000 0.000

Pmean AC_4 1 0.670 0.000 0.000

Pmean GK 1 0.670 0.000 0.000

Pmean Linear 1 0.666 0.706 0.000

BV AC_1 2 0.654 0.000 3.321

BV AC_2 2 0.654 0.000 3.321

BV AC_3 2 0.654 0.000 3.321

BV AC_4 2 0.654 0.000 3.321

BV GK 2 0.654 0.000 3.321

BV Linear 2 0.640 2.125 3.922

NO_Cov AC_1 2 0.683 0.234 3.048

http://hdl.handle.net/11529/10548129
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Table A1. Cont.

Type Kernel Year NRMSE RE__Ker RE_Env

NO_Cov AC_2 2 0.683 0.234 3.048

NO_Cov AC_3 2 0.683 0.234 3.048

NO_Cov AC_4 2 0.683 0.234 3.048

NO_Cov GK 2 0.683 0.234 3.048

NO_Cov Linear 2 0.684 0.000 1.359

Pmean AC_1 2 0.645 0.000 3.955

Pmean AC_2 2 0.645 0.000 3.955

Pmean AC_3 2 0.645 0.000 3.955

Pmean AC_4 2 0.645 0.000 3.955

Pmean GK 2 0.645 0.000 3.955

Pmean Linear 2 0.644 0.062 3.290

BV AC_1 3 0.606 0.000 11.382

BV AC_2 3 0.606 0.000 11.382

BV AC_3 3 0.606 0.000 11.382

BV AC_4 3 0.606 0.000 11.382

BV GK 3 0.606 0.000 11.382

BV Linear 3 0.592 2.330 12.255

NO_Cov AC_1 3 0.617 0.616 13.950

NO_Cov AC_2 3 0.617 0.616 13.950

NO_Cov AC_3 3 0.617 0.616 13.950

NO_Cov AC_4 3 0.617 0.616 13.950

NO_Cov GK 3 0.617 0.616 13.950

NO_Cov Linear 3 0.621 0.000 11.659

Pmean AC_1 3 0.567 0.000 18.139

Pmean AC_2 3 0.567 0.000 18.139

Pmean AC_3 3 0.567 0.000 18.139

Pmean AC_4 3 0.567 0.000 18.139

Pmean GK 3 0.567 0.000 18.139

Pmean Linear 3 0.567 0.106 17.434

BV AC_1 Global 0.645 0.000 4.688

BV AC_2 Global 0.645 0.000 4.688

BV AC_3 Global 0.645 0.000 4.688

BV AC_4 Global 0.645 0.000 4.688

BV GK Global 0.645 0.000 4.688

BV Linear Global 0.632 1.982 5.149

NO_Cov AC_1 Global 0.668 0.000 5.337

NO_Cov AC_2 Global 0.668 0.000 5.337

NO_Cov AC_3 Global 0.668 0.000 5.337

NO_Cov AC_4 Global 0.668 0.000 5.337

NO_Cov GK Global 0.668 0.000 5.337

NO_Cov Linear Global 0.666 0.225 4.088
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Table A1. Cont.

Type Kernel Year NRMSE RE__Ker RE_Env

Pmean AC_1 Global 0.627 0.000 6.822

Pmean AC_2 Global 0.627 0.000 6.822

Pmean AC_3 Global 0.627 0.000 6.822

Pmean AC_4 Global 0.627 0.000 6.822

Pmean GK Global 0.627 0.000 6.822

Pmean Linear Global 0.626 0.304 6.395

Table A2. Prediction performance of the DTH trait measured by NRMSE by type, kernel, year and
predictive capability gain measured by Relative Efficiency.

Type Kernel Env NRMSE RE_Ker RE_Env

BV AC_1 1 0.651 0.000 0.000

BV AC_2 1 0.651 0.000 0.000

BV AC_3 1 0.651 0.000 0.000

BV AC_4 1 0.651 0.000 0.000

BV GK 1 0.651 0.000 0.000

BV Linear 1 0.641 1.577 0.000

NO_Cov AC_1 1 0.678 0.000 0.000

NO_Cov AC_2 1 0.678 0.000 0.000

NO_Cov AC_3 1 0.678 0.000 0.000

NO_Cov AC_4 1 0.678 0.000 0.000

NO_Cov GK 1 0.678 0.000 0.000

NO_Cov Linear 1 0.670 1.224 0.000

Pmean AC_1 1 0.645 0.000 0.000

Pmean AC_2 1 0.645 0.000 0.000

Pmean AC_3 1 0.645 0.000 0.000

Pmean AC_4 1 0.645 0.000 0.000

Pmean GK 1 0.645 0.000 0.000

Pmean Linear 1 0.642 0.468 0.000

BV AC_1 2 0.630 0.000 3.204

BV AC_2 2 0.630 0.000 3.204

BV AC_3 2 0.630 0.000 3.204

BV AC_4 2 0.630 0.000 3.204

BV GK 2 0.630 0.000 3.204

BV Linear 2 0.619 1.875 3.507

NO_Cov AC_1 2 0.659 0.410 2.991

NO_Cov AC_2 2 0.659 0.410 2.991

NO_Cov AC_3 2 0.659 0.410 2.991

NO_Cov AC_4 2 0.659 0.410 2.991

NO_Cov GK 2 0.659 0.410 2.991

NO_Cov Linear 2 0.661 0.000 1.331

Pmean AC_1 2 0.625 0.000 3.103
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Table A2. Cont.

Type Kernel Env NRMSE RE_Ker RE_Env

Pmean AC_2 2 0.625 0.000 3.103

Pmean AC_3 2 0.625 0.000 3.103

Pmean AC_4 2 0.625 0.000 3.103

Pmean GK 2 0.625 0.000 3.103

Pmean Linear 2 0.625 0.000 2.607

BV AC_1 3 0.607 0.000 7.201

BV AC_2 3 0.607 0.000 7.201

BV AC_3 3 0.607 0.000 7.201

BV AC_4 3 0.607 0.000 7.201

BV GK 3 0.607 0.000 7.201

BV Linear 3 0.592 2.448 8.120

NO_Cov AC_1 3 0.619 0.679 9.667

NO_Cov AC_2 3 0.619 0.679 9.667

NO_Cov AC_3 3 0.619 0.679 9.667

NO_Cov AC_4 3 0.619 0.679 9.667

NO_Cov GK 3 0.619 0.679 9.667

NO_Cov Linear 3 0.623 0.000 7.611

Pmean AC_1 3 0.565 0.000 14.048

Pmean AC_2 3 0.565 0.000 14.048

Pmean AC_3 3 0.565 0.000 14.048

Pmean AC_4 3 0.565 0.000 14.048

Pmean GK 3 0.565 0.000 14.048

Pmean Linear 3 0.564 0.142 13.678

BV AC_1 Global 0.629 0.000 3.385

BV AC_2 Global 0.629 0.000 3.385

BV AC_3 Global 0.629 0.000 3.385

BV AC_4 Global 0.629 0.000 3.385

BV GK Global 0.629 0.000 3.385

BV Linear Global 0.617 1.955 3.770

NO_Cov AC_1 Global 0.652 0.000 4.065

NO_Cov AC_2 Global 0.652 0.000 4.065

NO_Cov AC_3 Global 0.652 0.000 4.065

NO_Cov AC_4 Global 0.652 0.000 4.065

NO_Cov GK Global 0.652 0.000 4.065

NO_Cov Linear Global 0.651 0.067 2.876

Pmean AC_1 Global 0.612 0.000 5.384

Pmean AC_2 Global 0.612 0.000 5.384

Pmean AC_3 Global 0.612 0.000 5.384

Pmean AC_4 Global 0.612 0.000 5.384

Pmean GK Global 0.612 0.000 5.384

Pmean Linear Global 0.610 0.202 5.106
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Table A3. Prediction performance of the YIELD trait measured by NRMSE by type, kernel, year, and
predictive capability gain measured by Relative Efficiency.

Type Kernel Env NRMSE GRE_Entre_Ker GRE_Entre_Env

BV AC_1 1 0.810 0.099 0.000

BV AC_2 1 0.810 0.099 0.000

BV AC_3 1 0.810 0.099 0.000

BV AC_4 1 0.810 0.099 0.000

BV GK 1 0.810 0.099 0.000

BV Linear 1 0.811 0.000 0.000

NO_Cov AC_1 1 0.828 0.000 0.000

NO_Cov AC_2 1 0.828 0.000 0.000

NO_Cov AC_3 1 0.828 0.000 0.000

NO_Cov AC_4 1 0.828 0.000 0.000

NO_Cov GK 1 0.828 0.000 0.000

NO_Cov Linear 1 0.827 0.169 0.000

Pmean AC_1 1 0.793 0.000 0.757

Pmean AC_2 1 0.793 0.000 0.757

Pmean AC_3 1 0.793 0.000 0.757

Pmean AC_4 1 0.793 0.000 0.757

Pmean GK 1 0.793 0.000 0.757

Pmean Linear 1 0.793 0.000 0.769

BV AC_1 2 0.800 0.075 1.162

BV AC_2 2 0.800 0.075 1.162

BV AC_3 2 0.800 0.075 1.162

BV AC_4 2 0.800 0.075 1.162

BV GK 2 0.800 0.075 1.162

BV Linear 2 0.801 0.000 1.186

NO_Cov AC_1 2 0.818 0.281 1.333

NO_Cov AC_2 2 0.818 0.281 1.333

NO_Cov AC_3 2 0.818 0.281 1.333

NO_Cov AC_4 2 0.818 0.281 1.333

NO_Cov GK 2 0.818 0.281 1.333

NO_Cov Linear 2 0.820 0.000 0.878

Pmean AC_1 2 0.799 0.013 0.000

Pmean AC_2 2 0.799 0.013 0.000

Pmean AC_3 2 0.799 0.013 0.000

Pmean AC_4 2 0.799 0.013 0.000

Pmean GK 2 0.799 0.013 0.000

Pmean Linear 2 0.799 0.000 0.000

BV AC_1 3 0.722 0.194 12.162

BV AC_2 3 0.722 0.194 12.162

BV AC_3 3 0.722 0.194 12.162

BV AC_4 3 0.722 0.194 12.162
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Table A3. Cont.

Type Kernel Env NRMSE GRE_Entre_Ker GRE_Entre_Env

BV GK 3 0.722 0.194 12.162

BV Linear 3 0.723 0.000 12.056

NO_Cov AC_1 3 0.742 0.054 11.659

NO_Cov AC_2 3 0.742 0.054 11.659

NO_Cov AC_3 3 0.742 0.054 11.659

NO_Cov AC_4 3 0.742 0.054 11.659

NO_Cov GK 3 0.742 0.054 11.659

NO_Cov Linear 3 0.742 0.000 11.410

Pmean AC_1 3 0.706 0.071 13.128

Pmean AC_2 3 0.706 0.071 13.128

Pmean AC_3 3 0.706 0.071 13.128

Pmean AC_4 3 0.706 0.071 13.128

Pmean GK 3 0.706 0.071 13.128

Pmean Linear 3 0.707 0.000 13.063

BV AC_1 Global 0.777 0.120 4.164

BV AC_2 Global 0.777 0.120 4.164

BV AC_3 Global 0.777 0.120 4.164

BV AC_4 Global 0.777 0.120 4.164

BV GK Global 0.777 0.120 4.164

BV Linear Global 0.778 0.000 4.142

NO_Cov AC_1 Global 0.796 0.054 4.079

NO_Cov AC_2 Global 0.796 0.054 4.079

NO_Cov AC_3 Global 0.796 0.054 4.079

NO_Cov AC_4 Global 0.796 0.054 4.079

NO_Cov GK Global 0.796 0.054 4.079

NO_Cov Linear Global 0.796 0.000 3.847

Pmean AC_1 Global 0.766 0.026 4.296

Pmean AC_2 Global 0.766 0.026 4.296

Pmean AC_3 Global 0.766 0.026 4.296

Pmean AC_4 Global 0.766 0.026 4.296

Pmean GK Global 0.766 0.026 4.296

Pmean Linear Global 0.766 0.000 4.281

Table A4. Phenotypic, genetic, and residual covariance and correlation matrix between traits.

Phenotypic covariance

yield_blue DTH_blue DTF_blue

yield_blue 0.943 3.318 2.981
DTH_blue 3.318 35.301 33.398
DTF_blue 2.981 33.398 31.872
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Table A4. Cont.

Phenotypic correlation

yield_blue DTH_blue DTF_blue

yield_blue 1.000 0.575 0.544
DTH_blue 0.575 1.000 0.996
DTF_blue 0.544 0.996 1.000

Genetic covariance

yield_blue DTH_blue DTF_blue

yield_blue 2.787 × 10−10 1.726 × 10−10 1.142 × 10−10

DTH_blue 1.726 × 10−10 5.383 × 10−9 5.147 × 10−9

DTF_blue 1.142 × 10−10 5.147 × 10−9 5.037 × 10−9

Genetic correlation

yield_blue DTH_blue DTF_blue

yield_blue 1.000 0.141 0.096
DTH_blue 0.141 1.000 0.988
DTF_blue 0.096 0.988 1.000

Residual covariance

yield_blue DTH_blue DTF_blue

yield_blue 0.144 −0.017 −0.009
DTH_blue −0.017 1.575 1.531
DTF_blue −0.009 1.531 1.619

Residual correlation

yield_blue DTH_blue DTF_blue

yield_blue 1.000 −0.035 −0.019
DTH_blue −0.035 1.000 0.958
DTF_blue −0.019 0.958 1.000
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