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ABSTRACT
Objective: Textual radiology reports contain a wealth of information that may help understand associations among diseases and imaging obser-
vations. This study evaluated the ability to detect causal associations among diseases and imaging findings from their co-occurrence in radiology
reports.

Materials and Methods: This IRB-approved and HIPAA-compliant study analyzed 1 702 462 consecutive reports of 1 396 293 patients; patient
consent was waived. Reports were analyzed for positive mention of 16 839 entities (disorders and imaging findings) of the Radiology Gamuts
Ontology (RGO). Entities that occurred in fewer than 25 patients were excluded. A Bayesian network structure-learning algorithm was applied at
P<0.05 threshold: edges were evaluated as possible causal relationships. RGO and/or physician consensus served as ground truth.

Results: 2742 of 16 839 RGO entities were included, 53 849 patients (3.9%) had at least one included entity. The algorithm identified 725 pairs
of entities as causally related; 634 were confirmed by reference to RGO or physician review (87% precision). As shown by its positive likelihood
ratio, the algorithm increased detection of causally associated entities 6876-fold.

Discussion: Causal relationships among diseases and imaging findings can be detected with high precision from textual radiology reports.

Conclusion: This approach finds causal relationships among diseases and imaging findings with high precision from textual radiology reports,
despite the fact that causally related entities represent only 0.039% of all pairs of entities. Applying this approach to larger report text corpora
may help detect unspecified or heretofore unrecognized associations.

Key words: biomedical ontologies (D064229), data mining (D057225), etiology (Q000209), correlation of data (D000078331), machine learning (D000069550), natural
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BACKGROUND AND SIGNIFICANCE

Medical records contain a wealth of information that can be
used to better understand diseases and associated conditions.
In particular, electronic medical record (EMR) data can be
used to discover correlations among diseases and to stratify
patient cohorts.1 Textual information, such as progress notes,
imaging reports, and procedural reports, constitutes much of
the data available from the EMR; incorporating text-based
information can improve the detection and identification of
named clinical conditions.2 In addition, one can use ontolo-
gies—a form of knowledge representation that defines the
entities in a domain of discourse and their relationships to
other entities—to extract clinical information from physi-
cians’ free-text notes.3 Radiology reports have been shown to
have a wealth of information about underlying diseases and
conditions.4

Pairwise co-occurrence statistics can be used to detect asso-
ciations between diseases and findings.5,6 A study of co-
occurrence data from radiology reports using the phi coeffi-
cient (u) and Cohen’s kappa statistic (j) was able to identify
causal relationships at a variety of statistical thresholds.7

However, that approach showed limited performance, with
an area under the receiver operating characteristic curve of
approximately 0.7, due in part to the very small proportion of
causally related pairs of entities.

A more powerful approach to detect causal relationships is
Bayesian network learning. A Bayesian network is a graphical
model whose nodes represent random variables, such as dis-
eases and observations.8,9 Each node has two or more states
with associated probability values; for each node, the proba-
bility values sum to 1. The directed connections between
nodes, called “edges” or “arcs,” represent causal or probabil-
istic influences; each node has a table that expresses the condi-
tional probabilities of the node’s states based on those nodes
that influence it. Nodes without incoming edges have a proba-
bility table that reflects their prior probability, that is, their
prevalence. A variety of algorithms can learn the structure of
a Bayesian network model directly from data10,11; such
structure-learning algorithms can account for confounding
variables to identify those nodes that are highly likely to be
causally linked. The absence of an edge between two nodes
indicates that the nodes are conditionally independent. Unlike
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simple co-occurrence statistics, Bayesian networks can iden-
tify and account for confounding variables whose influences
can cause other variables to falsely appear to be causally
related.12

OBJECTIVE

The aim of this study was to evaluate the ability of a Bayesian
network structure-learning algorithm to detect causal rela-
tionships among diseases and imaging findings from their pat-
terns of co-occurrence in textual radiology reports.

MATERIALS AND METHODS
Patient data

The study was approved by the Institutional Review Board
and was compliant with the Health Insurance Portability and
Accountability Act (HIPAA); the need for signed informed
consent from each patient was waived. The study analyzed all
reports of radiology examinations performed from January 1,
2015, through December 31, 2016 at a large US health system
that serves urban, suburban, and rural populations and has
both academic and community-practice settings. Reports
were generated as narrative (“free”) text or as semistructured
text using report templates by more than 190 attending radi-
ologists and more than 100 radiology residents and fellows;
final reports were approved by an attending radiologist.

Reports were aggregated by patient to account for imaging
findings or disorders that might appear in different examina-
tions, such as the presence of a cerebral artery aneurysm in a
patient with autosomal-dominant polycystic kidney disease.
Patients’ medical record numbers were anonymized and
replaced by a unique sequential numerical identifier. The
patient’s age and gender were recorded; ages greater than 90
years were recorded as 90 years. No protected health infor-
mation was recorded. The total number of patients and their
distribution by age and gender was computed.

Reference ontology

The Radiology Gamuts Ontology (RGO) incorporates a con-
trolled terminology of 16 839 entities that include diseases,
interventions, and findings relevant to the practice of radiol-
ogy.13 RGO has been integrated with a variety of other bio-
medical ontologies, including RadLex, SNOMED Clinical
Terms, the Disease Ontology, Human Phenotype Ontology,
and Orphanet Rare Disease Ontology,14,15 which allows the
incorporation of additional synonyms from those other ontol-
ogies. A key aspect of RGO is its representation of 55 619
causal relationships among those entities, such as “cirrhosis
may_cause splenomegaly.” Those causal assertions allow one
to formulate differential diagnoses; they also serve as a refer-
ence standard (“ground truth”) against which one can bench-
mark the performance of automated systems to detect causal
relationships. The may_cause relation and its inverse,
may_be_caused_by, indicate possible causes of an imaging
observation. This causal relation is weaker than logical impli-
cation and the specified causes of an observation need not be
exhaustive.13 RGO is available through the National Center
for Biomedical Ontology’s BioPortal website (https://biopor
tal.bioontology.org/ontologies/GAMUTS).16

Identification of entity occurrences

Named entity recognition (NER), a subtype of natural lan-
guage processing (NLP), was applied to identify the presence
in each report of each of RGO’s 16 839 disorders, interven-
tions, and imaging findings. In addition to synonyms defined
within RGO itself, the search incorporated synonyms from
linked ontologies, such as RadLex and SNOMED Clinical
Terms. A commercial text-retrieval algorithm with negative-
expression filtering was used to identify positive mentions of
the terms in the corpus of reports (Nuance mPower, Micro-
soft, Redmond, WA). We used query expansion to incorpo-
rate synonyms and lexical variants: for example, the search
terms provided to the mPower algorithm for the Gamuts term
“gallstones” included lexical variants such as “gallstone”
(from RGO) and “gallbladder stones” (from SNOMED CT)
and related terms such as “cholelithiasis” (from RadLex) and
“cholecystolithiasis” (from SNOMED CT).

An occurrence was defined as a positive mention of an
entity in any of a patient’s radiology reports. For example, a
patient whose report that indicated “A large right pleural
effusion is present” was considered as an occurrence of pleu-
ral effusion. Negative mentions (eg, “no pneumothorax”) and
speculative mentions (eg, “rule out AVN”) were excluded. To
assure appropriate statistical power, entities that occurred in
fewer than 25 patients were excluded. The threshold of 25
patients was chosen with the estimate that it would result in
150 RGO entities being included in the analysis, which would
result in approximately 10 000 pairwise combinations of enti-
ties. Under the assumption that 50% of patients would have
the first entity and 4% of those patients would have the sec-
ond entity, a sample size of 25 patients would have 80%
power to detect an association between entities with a Type I
error rate of 0.05/10 000.

Data were aggregated by patient. Entities that occurred in
reports of the same patient were considered to co-occur,
regardless of chronological order of the findings. The cohort
for analysis consisted of those patients with at least one of the
included entities. Patients who had no positive mention of the
included RGO entities were excluded from analysis.

To analyze the performance of the commercial NER sys-
tem, we sampled two consecutive days of radiology reports
from one hospital in the health system: 1277 reports were
accrued. For 15 search terms, we evaluated the precision and
recall of the NER tool to identify the number of reports with
positive mentions (using the system’s “Maximize positive
findings” setting). Analysis was limited to the specified term;
no synonyms or related terms were included. One of the
authors (CEK) reviewed the reports to establish ground truth
without reference to the automated system’s findings. For
each search term, precision (TP/(TPþFP)) and recall (TP/
(TPþFN)) were computed. The macro-average was computed
as the mean of the values for each term; the microaverage was
computed from the total number of classified reports; 95%
confidence intervals (CI95) were computed for each value.

Detection of causal relationships

We defined a Bayesian network whose nodes represented the
included RGO entities; each node had two states, present and
absent. The bnlearn hill-climbing algorithm (R version 4.13, R
Foundation, Vienna, Austria) was applied to construct a BN
model using the Bayesian Information Criterion (BIC) for net-
work scores.10 No preseeded directed acyclic graph (DAG)
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was used to initialize the algorithm, nor was any of RGO’s
domain knowledge encoded into the BN model. All possible
arcs were evaluated for inclusion in the graph. The structure-
learning algorithm randomly inserted, removed, or reversed an
arc on every iteration; the number of iterations was unlimited.
The maximum number of parents for a node was allowed to
be one less than the total number of nodes. Score caching was
applied to accelerate the structure-learning process.

Statistical analysis was performed using two-sided test sta-
tistics and a statistical significance threshold of P<0.05. The
data presented to the model consisted of an array with
patients by row, RGO entities by column, and a value of 1 or
0 to indicate the presence or absence, respectively, of a posi-
tive mention of corresponding entity in any of that patient’s
reports. The Bayesian network’s edges, regardless of direc-
tion, were evaluated as possible causal relationships, and
were matched against the 55 619 known causal relationships
specified in RGO. Those pairs of entities not specified in
RGO as causally related were reviewed by two Board-
certified radiologists, both with more than 12 years of experi-
ence, for plausible causal relationships; decision was achieved
by consensus.

The algorithm’s precision, recall, positive likelihood ratio
(PLR), and negative likelihood ratio (NLR) were computed.
Precision, also known as positive predictive value, was com-
puted as the number of true positives—truly causally related
pairs of terms, as judged by a matching causal relationship in
RGO or by physician review—divided by the total number of
pairs identified. Recall (sensitivity) was computed as the num-
ber of true positives divided by the number of causal relation-
ships defined in RGO among the included entities. One of the
authors (CEK) reviewed a random sample of 250 negative
pairs to confirm that they were truly negative (ie, not causally
related). PLR is the ratio of true positives to false positives;
NLR is the ratio of false negatives to true negatives. Tests
with PLR > 10 or NLR < 0.1 are considered useful to estab-
lish or exclude an association.17

RESULTS

The study cohort included 1 702 462 consecutive reports of
1 396 293 patients; Figure 1 summarizes the distribution of
patients by age and sex. Occurrence of entities was recorded
for each patient (Figure 2). Of the 16 839 RGO entities, the
2742 entities (16%) that occurred in 25 or more patients
were included in the analysis. RGO specified 3804 causal
relationships among the included entities. The analysis cohort
was comprised of the 53 849 patients (3.9%) who had a posi-
tive mention of at least one of the included entities. For each
patient, the dataset included age (by decade; ie, values 0, 10,
. . ., 90), sex (as assigned at birth), and a Boolean value
(present or absent) for each of the 2742 entities.

On the sample of 1277 reports, the NER system achieved a
macroaverage precision of 0.992 (CI95, 0.980–1.000) and
recall of 0.975 (CI95, 0.956–0.993) (Table 1). Microaverage
precision was 0.981 (CI95, 0.960–1.000) and recall was 0.963
(CI95, 0.934–0.992).

The Bayesian network algorithm evaluated more than
12 440 441 possible associations; the final model identified
725 pairs of probabilistically related entities. Of those, 216
(30%) matched a known causal relationship in RGO. Physi-
cian review determined that 418 of the 509 (82.1%) other
pairs represented plausible causal relationships (Table 2).

Figure 1. Age and sex distribution of patients in the study cohort.

Figure 2. Occurrence of RGO entities in the patient cohort, before

excluding rarely occurring entities. The table has 1 396 293 rows (one for

each patient) and 16 839 columns (one for each RGO entity). A black dot

indicates the occurrence of an RGO entity in that patient.

Table 1. Performance of the commercial named-entity recognition

system to detect positive mentions of terms in a sample of 1277 reports

Search term TP FP FN TN Precision Recall

Adenopathy 1 0 0 1276 1.000 1.000
Aortic aneurysm 3 0 0 1274 1.000 1.000
Appendicitis 1 0 0 1276 1.000 1.000
Ascites 13 0 2 1262 1.000 0.867
Cirrhosis 1 0 0 1276 1.000 1.000
Encephalomalacia 7 0 0 1270 1.000 1.000
Hydronephrosis 11 0 3 1263 1.000 0.786
Kidney stone 5 0 0 1272 1.000 1.000
Lymphadenopathy 7 0 0 1270 1.000 1.000
Nephrolithiasis 4 0 0 1273 1.000 1.000
Parkinson’s disease 2 0 0 1275 1.000 1.000
Pleural effusion 56 2 0 1219 0.966 1.000
Pneumonia 28 0 1 1248 1.000 0.966
Pneumothorax 10 1 0 1266 0.909 1.000
Splenomegaly 7 0 0 1270 1.000 1.000
Total 156 3 6 18 990

Macroaverage 0.992 0.975
Microaverage 0.981 0.963

The “true positive” (TP) count was the number of reports that correctly
identified a positive mention of the search term. False positive (FP), false
negative (FN), and true negative (TN) counts are tallied.
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Thus, the Bayesian network learning algorithm achieved pre-
cision (positive predictive value) of 87% (634/725) (Table 3).
Of the 3804 causal relationships among the 2742 included
entities, the 216 RGO causally related pairs found by the
algorithm yielded a recall (sensitivity) of 5.7% (216/3804).
However, the PLR of 6876 indicates that the algorithm sub-
stantially increased the odds of detecting a true causal
association.

The NLR of 0.83 indicates that the algorithm had limited
ability to discern the absence of a causal relation; however,
that limitation was not of concern given that 99.96% of all
possible entity pairs had no causal relationship defined in
RGO. Manual review of 250 entity pairs selected randomly
from the 141 766 816 negative pairs (141 767 541 possible
entity pairs, less the 725 pairs found to be causally related)
found none to have a causal relationship; hence, the specificity
of the algorithm approximated 1 (CI95, 0.998–1).

DISCUSSION

We applied a Bayesian network structure-learning algorithm
to identify causal relationships from data indicating the occur-
rence of diseases and imaging findings in a large set of textual
radiology reports. The algorithm yielded a model with 725
edges, each of which specified a pair of probabilistically
related entities from RGO. Of those 725 pairs, 634 were
judged to be “true positives” to yield an overall precision of
87%. Most of the related entities identified by the algorithm
were not specified in the RGO, which suggests that the techni-
que applied here could help discover heretofore unspecified
causal associations. The PLR of 6876 indicates that the

algorithm very effectively improved detection of causal
associations.

The 5.2% recall reflects the extremely low frequency of
causally related entities: RGO’s 55 619 known causal rela-
tionships constituted less than 0.04% of the 141 767 541 pos-
sible pairs of 16 839 entities. Additional data should allow a
more powerful analysis and investigation is now underway
using an order of magnitude more reports. Although the recall
(sensitivity) remains low, the Bayesian-network algorithm
shows promise to identify causal associations between
entities.

This study had several limitations. Many of RGO’s disor-
ders and imaging findings are quite rare, and were observed
in few, if any, of the 1.3 million patients. The study did not
account for supertype–subtype (“subsumption”) relationships
among RGO entities. Because patients did not have every type
of imaging study, related conditions may not have been
observed. For example, there are known associations between
sickle cell disease (SCD) and H-shaped thoracolumbar verte-
brae, and between SCD and frontal bossing of the skull; a
patient with SCD who had thoracolumbar radiographs but
not skull radiographs would contribute to detecting the for-
mer, but not the latter. All reports came from a single organi-
zation, albeit one with diverse settings and populations;
reports were dictated by more than 190 attending radiologists
and 100 trainees. The current analysis did not account for
temporal relationships among terms; although the algorithm
may have identified a causal relationship between trauma and
fracture, for example, there was no information that one fol-
lowed the other. Several other methods could be used to
extract causal relationships from data, including causal medi-
ation analysis,18 Mendelian randomization,19 propensity
score matching analysis,20 and Bayesian networks using the
PC algorithm.21

The commercial text-search algorithm showed a strong
ability to detect positive mentions of entities in the current
text corpus. The algorithm’s negative-expression (“negex”)
filtering techniques have identified positive and negative
instances of imaging findings with accuracy in excess of
97%.22 PRESTO, the predecessor to the commercial system
used in the current study, showed 91% precision and 97%
recall in detecting adrenal findings in 32 974 abdominal CT
reports.23 Our audit of a sample of 1277 reports from the cur-
rent study estimated the macroaverage precision and recall of
0.992 and 0.975, respectively.

At least 90% of the reports in the study cohort were based
on reporting templates that fixed the order of elements and in
many cases, provided limited “pick-list” options for the val-
ues shown in the reports. In general, though, the labels for the
various fields of the reports did not specify a diagnosis, but
rather an anatomical site. For example, for the “Gallbladder”
field, the “normal” option indicated “No calcified gallstones.
No gallbladder wall thickening.” Here, negation of the spe-
cific findings (“gallstones” and “gallbladder wall thickening”)
precluded that the system would identify them as positive
occurrences. Although no report was observed in which a
label or heading was counted as an occurrence, we did not
conduct a systematic evaluation of such a possibility. Because
we defined an “occurrence” at the level of a patient, the pres-
ence of repeated positive mentions of a term in a single
report—for example, in both the narrative (“findings”) sec-
tion and impression section—did not result is false positives.

Table 2. Six examples of entity pairs identified by the Bayesian network

Entity pair

Causally related

RGO

Physician

review Conclusion

Leukemia—thrombocytopenia Yes — Yes
Gastroenteritis—vomiting Yes — Yes
Bladder cancer—ileal conduit No Yes Yes
Desmoid tumor—mesenteric mass No Yes Yes
Meningioma—paranasal sinusitis No No No
Conjunctivitis—ligamentum

flavum thickening
No No No

The “RGO” column indicates whether the Radiology Gamuts Ontology
asserted a may_cause relationship between the specified entities. The
“Physician Review” column indicates if physician review determined that
the entities have a plausible causal relationship. The rightmost column
summarizes the two determinations.

Table 3. Results of Bayesian network model for the 2742 included

entities that occurred in 25 or more patients

Number of pairs of entities

Related Unrelated Total

Causal relationship identi-
fied by Bayesian network
algorithm

Yes 634 91 725
No 3170 3 754 016 3 757 186
Total 3804 3 754 107 3 757 911

The total number of possible entity pairs is computed as n�(n�1)/2, where
n¼ 2742.
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In most settings, the great majority of information within
an EHR is in the form of narrative text. NLP has been applied
EHR systems to support a variety of clinical applications such
as representation learning, information extraction, outcome
prediction, and phenotyping.24,25 Radiology reports comprise
a large and important subset of textual EHR data and can
form a valuable source of data for deep phenotyping.26,27

NLP systems have shown high performance in identifying and
classifying radiology reports, and offer a promising approach
to extract measurable information from conventional narra-
tive (“free-text”) reports.28,29 An NLP system successfully
determined the presence of more than 20 clinical indications
and imaging findings from a database of 889 921 chest radio-
graphic reports.30 Text mining of radiology reports has
shown a strong ability to identify limb fractures, pneumonia,
and hepatocellular carcinoma stage.31–34 Rare diseases have
shown an approximate, but significant correlation between
their known prevalence and their frequency of occurrence in
radiology reports.35 The availability of radiology report data
and tools to mine those data allow one to establish causal
rules.36

A number of statistical and computational approaches have
been developed to infer causal relationships from data.37

Bayesian networks provide a graph-based causal inference
model. A Bayesian network is a DAG where each variable is
represented as a node, and a connection between nodes is rep-
resented as a directed edge with associated conditional proba-
bility table. Variables that are independent remain
unconnected. Bayesian networks require three assumptions to
ensure valid causal inference: (1) faithfulness—that is the
dependence relationships in the Bayesian network hold in the
data; (2) causal sufficiency—where all common causes of
pairs in the set of variables are present in the analysis; and (3)
the causal Markov condition (CMC)—that each node is inde-
pendent of its nondescendants, conditioned on its parents
(direct causes). Bayesian network analysis can be susceptible
to selection bias: if missing data are not completely random
(independent of all variables), the Bayesian network’s infer-
ence may be invalid. However, the high precision of the Baye-
sian network’s selection of causally related entities suggests
that any missing data were sufficiently random.

The current study falls broadly under the category of causal
machine learning, in which one seeks not only to identify pat-
terns of co-occurrence or correlation, but to achieve a deeper
understanding of the causal relationships among diseases and
their imaging phenotypes.38,39 In medical imaging, causal rea-
soning can help address major challenges in machine learning,
such as the paucity high-quality annotated data and mis-
matches between training data and the setting in which the
machine learning system will be used.40 Causal knowledge
also allows one to assess a system would react to an interven-
tion and to make robust, actionable decisions in the presence
of confounding information.41

CONCLUSION

A Bayesian network structure-learning algorithm identified
causally related diseases and imaging findings with high preci-
sion. The algorithm identified numerous relationships among
diseases and imaging findings that were plausible, but previ-
ously unspecified in an ontology of radiological differential
diagnosis. Given the breadth of topics covered by radiology
reports, such analyses offer powerful approaches to identify

causally related disorders and imaging phenotypes. Simple
pairwise co-occurrence metrics achieve poor performance, for
a variety of reasons, including the potentially confounding
effects of co-occurring conditions. Further investigation is
underway to apply these methods to substantially larger cor-
pora of radiology reports. Analysis of imaging reports holds
promise to validate known associations and to identify new
associations among diseases and imaging findings.
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