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Abstract: Rhabdomyosarcoma (RMS) is the most common pediatric soft-tissue cancer with a survival
rate below 27% for high-risk children despite aggressive multi-modal therapeutic interventions. After
decades of research, no targeted therapies are currently available. Therapeutically targeting actin-
binding proteins, although promising, has historically been challenging. Recent advances have made
this possibility more salient, including our lab’s identification of advillin (AVIL), a novel oncogenic
actin-binding protein that plays a role in many cytoskeletal functions. AVIL is overexpressed in
many RMS cell lines, patient-derived xenograft models, and a cohort of 30 clinical samples of both
the alveolar (ARMS) and embryonal (ERMS) subtypes. Overexpression of AVIL in mesenchymal
stem cells induces neoplastic transformation both in vitro and in vivo, and reversing overexpression
through genetic modulation reverses the transformation. This suggests a critical role of AVIL in
RMS tumorigenesis and maintenance. As an actin-binding protein, AVIL would not traditionally be
considered a druggable target. This perspective will address the feasibility of targeting differentially
expressed actin-binding proteins such as AVIL therapeutically, and how critical cell infrastructure
can be damaged in a cancer-specific manner.
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1. Introduction

Rhabdomyosarcoma (RMS) is the most common cancer of soft tissue in children,
accounting for at least half of all pediatric sarcomas [1]. Approximately 90% of all RMS
cases occur in patients under 25 years of age, with the majority occurring in children under
10 [2]. RMS has significant variability in outcomes. Low-risk patients with localized disease
face a survival rate of 90%, while high risk patients with metastatic or recurrent disease
face dismal survival rates of 21% and 30%, respectively [3,4]. These high-risk groups have
seen no improvement in outcomes in the last 30 years, making the lack of novel targeted
treatments a major roadblock to durable cures.

The major anatomic sites of RMS include the head, neck, and genitourinary tract. Pre-
viously, the classification of RMS was primarily based upon histology to delineate alveolar
RMS (ARMS) and embryonal RMS (ERMS). The most recent World Health Organization
(WHO) classification of RMS consists of four groups: alveolar, embryonal, pleiomorphic,
and spindle cell/sclerosing, with new subdivisions of spindle cell/sclerosing tumors based
upon molecular alterations (Table 1) [5–7]. These alterations differentially regulate the
pathways involved in promoting tumorigenesis. For instance, PAX3/7 and FOXO1 function
as transcriptional activators of genes that regulate muscle differentiation, cell lineage, prolif-
eration, cell migration, muscle growth, and metabolism [8,9]. Chromosomal translocations
can lead to PAX3-FOXO1 or PAX7-FOXO1 gene fusions, and the translated fusion proteins
have enhanced transcriptional activity in contrast to the parent proteins [10]. In ERMS, the
RAS genes encode small GTPase transductor domains involved in regulating cell prolif-
eration, migration, and growth by cycling between GTP-bound active and GDP-bound
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inactive forms. Mutations in these genes lead to a gain-of-function in the protein with a
constitutive GTP-bound active form, promoting carcinogenesis [11]. Additionally, p53 is a
tumor suppressor protein that functions to negatively regulate cell cycle progression and
is frequently mutated in ERMS [12]. Most ERMS present with loss-of-function mutations
in p53, which allows for uncontrolled cell cycle progression [12]. Several other functional
genetic aberrations that promote RMS were recently reviewed [13]. Table 1 provides an
overview of the different genetic profiles, histopathologies, and common sites associated
with the four groups of RMS based on the WHO classifications.

Table 1. Overview of the classification of rhabdomyosarcoma subtypes. The genetic alterations and
histopathological characteristics of each of the four types are described.

Subtypes of RMS Gene Alterations/Fusions Histopathology Common Sites

Alveolar RMS
Fusion-positive

MARS-AVIL (12q14)
PAX3-FOXO1 t(2;13)
PAX7-FOXO1 t(1;13)
PAX3-NCOA1 t(2;2)
PAX3-NCOA2 t(2;8)
PAX3-IN080D t(2;2)
PAX3- FKHR t(2;13)
PAX7-FKHR t(1;13)

Enlarged nuclei with scanty
cytoplasm of rhabdomyoblast, not

well-differentiated.
Characterized by the expression of
diffused MYOD1 and myogenin;
80–90% associated with recurrent

FOXO1 fusions.

Perineal region
Paraspinal region

Extremities

Embryonal RMS
Fusion-negative

Mutations in KRAS, NRAS,
and HRAS

Aneuploidy
Activation of Hedgehog

(Hh) signaling
Inactivation of the master

regulator of p53 and
Rb pathways

FGFR4 mutation
PIK3KA mutation

NF1 mutation
FBXW7 mutation

Varying degrees of skeletal muscle
differentiation with
moderate cellularity.

Head
Neck

Genitourinary tract

Sclerosing/Spindle
Cell RMS

VGLL2/NCOA2 gene fusions
MYOD1 gene mutation

Fascicles of spindle cells.
Elongated and fusiform nuclei,

small nucleoli.
Eosinophilic cytoplasm.

Testicular area
Head
Neck

Trunk (MYOD1 mutation)

Pleomorphic RMS Complex alterations Pleomorphic rhabdomyoblasts. Extremities

Frontline therapy is the same for all RMS risk groups and is generally a combination
of surgery, radiotherapy, and a three-drug cytotoxic chemotherapy regimen consisting of
vincristine sulfate, dactinomycin (Actinomycin-D), and cyclophosphamide (VAC) in the
USA, with ifosfamide replacing cyclophosphamide (IVA or VAI) in Europe [14,15]. The
clinical trial results for traditional chemotherapy regiments are mixed, with some showing
marginal increases in overall survival (OS) and disease/event free survival (DFS/EVS),
and some showing no statistically significant difference between the two groups (Table 2).
Despite some positive outcomes, traditional chemotherapy creates numerous deleterious
side effects due to its non-specific cytotoxicity. For low-risk patients with localized disease,
attempts to decrease the dosing of radiotherapy and chemotherapy, specifically cyclophos-
phamide, have been made to reduce deleterious toxicities such as lifetime infertility and
myelosuppression [16,17]. With no targeted therapies approved, high-risk children face
lifelong consequences even if a durable cure is achieved.
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Table 2. Overview of several recent clinical trials for traditional chemotherapy and targeted molecular
therapy treatments for RMS.

Type of
Therapy

Regimen Phase Patient Group
Disease/Event-Free
Survival (DFS/EVF)

Overall Survival
(OS)

References

Chemotherapy
IVA + maintenance

chemotherapy
III

371 patients with
non-metastatic RMS

5-year DFS
With maintenance

chemotherapy: 77.6%
(95% CI 70.6–83.2)

Without maintenance
chemotherapy: 69.8%

(95% CI 62.2–76.2)

5-year OS
With maintenance

chemotherapy:
86.5% (95% CI

80.2–90.9)

Without
maintenance

chemotherapy:
73.7% (65.8–80.1)

[18]

Chemotherapy IVA + Doxorubicin III
484 patients with

non-metastatic RMS

3-year EFS
With Doxorubicin:

67.5% (95% CI
61.2–73.1)

Without Doxorubicin:
63.3% (56.8–69.0)

p-value: 0.33

[19]

Chemotherapy VAC or VAC/VI III
488 patients with
intermediate-risk

RMS

4-year EFS
VAC: 63%

VAC/VI: 59%
p-value: 0.51

4-year OS
VAC: 73%

VAC/VI: 72%
p-value: 0.80

[20]

Molecular
targeted drugs

Sorafenib,
Inhibitors of

PDGFRs, VEGFRs,
and MAPK

II
20 participants

presenting both RMS
and Wilms tumor

No objective response [21]

Molecular
targeted drugs

Crizotinib,
inhibitors of MET,

ALK, ROS1,
and RON

II
13 patients with
advanced and

metastatic ARMS

No clinically relevant
efficacy as a
single agent

[22]

Molecular
targeted drugs

Temsirolimus II

16, 17, and 19 patients
with RMS, high-grade

glioma, and
neuroblastoma,

respectively

No clinically
meaningful efficacy as
a single agent in RMS

[23]

IVA: Ifosfamide, vincristine, and dactinomycin; VAC: vincristine sulfate, dactinomycin, and cyclophosphamide;
VI: vincristine and irinotecan; VAC/VI: VAC course substituted by half IV; PDGFRs: platelet-derived growth
factor receptors; VEGFRs: vascular endothelial growth factor receptors; MAPK: mitogen-activated protein kinase;
ALK: anaplastic lymphoma kinase; RON: recepteur d’Origine Nantais; ROS1: ROS proto-oncogene 1 receptor
tyrosine kinase.

Efforts have been made to pharmacologically inhibit molecular targets in RMS, such
as platelet-derived growth factor receptors (PDGFRs) and vascular endothelial growth
factor receptors (VEGFRs), but phase II clinical trials have indicated no improved outcomes
(Table 2). The lack of approved targeted therapies is a major unmet need in the field, and
novel therapeutic targets may be necessary to decrease cytotoxic chemotherapy dosing
and reduce long-lasting toxicities. Our lab has recently discovered AVIL, an actin-binding
protein, as an oncogenic driver of RMS. This review summarizes the current literature on
research into targeting actin-binding proteins including AVIL and its family members, and
explores the therapeutic potential of drugging actin-binding proteins such as AVIL for
precision oncology applications in RMS.
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2. Improving VAC Chemotherapy and Molecular Targeted Therapies

The standard management of RMS includes chemotherapy, radiation therapy, and
tumor resection. In patients with metastatic RMS, efforts toward complete remission with
high-dose chemotherapy resulted in treatment-related adverse effects. Several phase III
clinical trials have been conducted to improve disease-free survival, including the addition
of low-dose maintenance chemotherapy after standard chemotherapy with IVA, which
showed a modest increase in the 5-year disease-free survival rate of 8% [18] (Table 2). The
addition of doxorubicin, a drug widely used to treat soft-tissue sarcoma, to IVA chemother-
apy failed to improve the 3-year event-free survival and also resulted in treatment-related
adverse effects such as infections, anemia, leukopenia, gastrointestinal disorder, and even
death [19]. Another phase III clinical trial attempted to modify a similar standard therapy,
VAC, to reduce toxicity by substituting half of the VAC course with vincristine and irinote-
can; this resulted in no significant difference in the oncological outcome [20]. Efforts have
been made to increase complete remission and disease-free survival; however, no recent tri-
als have significantly prolonged patient survival and remission. High dose chemotherapy,
low-dose maintenance chemo following standard chemo, and the addition of doxorubicin
and irinotecan were all evaluated in clinical trials and found to be ineffective.

Molecular targeted therapies have also been investigated, but their efficacy is still in
question. A phase II clinical trial demonstrated that patients receiving vinorelvine (V),
cyclophosphamide (C), and bevacizumab experienced a response rate of 32%, while patients
receiving VC and temsirolumus experienced an increased response rate of 47% [24]. Despite
promising preclinical evidence in their efficacy against RMS, sorafenib and crizotinib both
proved inactive against RMS in phase II clinical trials [21,22,25]. Vismodegib trials in
advanced chrondrosarcoma showed some efficacy, a 25.6% clinical benefit in patients,
which was short of the 40% clinical benefit goal [26,27]. Overall, there is immense genetic,
biological, and clinical response heterogeneity common to RMS, underscoring the dire
need for some form of targeted therapy to open new therapeutic avenues and reduce the
toxicities seen in the current standard of care.

3. Targeting Actin and Actin-Binding Proteins

Eukaryotic actin is a 375 amino acid polypeptide that folds into four subdomains, with
an ATP-binding cleft important for regulating the dynamic switch between its two forms:
globular actin (G-actin) and filamentous actin (F-actin). These processes are critical to the
physiological functions of cells including cell division, maintaining structural integrity, cell
migration, vesicular trafficking, cell signaling, cell adhesions, and tight junction forma-
tion. While healthy cells depend on the controlled regulation of actin to maintain cellular
function, cancer cells harness these same mechanisms to promote migration, invasion, and
metastasis by dysregulating actin-binding proteins (ABPs) and disrupting the balance in
actin dynamics, thereby facilitating the formation of invasive structures like lamellipodia
and filopodia [28]. As such, efforts to therapeutically target ABPs in cancer have been an
attractive but challenging field of research over recent decades.

Although targeting ABPs confers an advantage to targeting cancer cells, normal cells
become vulnerable to high and unbearable toxicity. For example, while cytochalasins
have exhibited promising effects on breast, lung, and prostate cancers, congestion necrosis
in rats has been reported at the edge of the liver, as well as negative affects on cardiac
contractility [29–32]. Also, chaetoglobosin has been shown to be lethal at a dose of 2 mg/kg
in rats and induce spermatocyte degeneration in mice [33,34]. Furthermore, Jasplakinolide,
latrunculin, and MKT-077 are other inhibitors targeting the actin cytoskeleton with anti-
cancer effects and have been shown to induce cardiac toxicity, chronic seizures in rats, and
retinal toxicity in humans [35–38]. ABP targeting as a treatment option has struggled as a
result of this widespread toxicity.
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4. Targeting Nucleation Factors

ABPs that nucleate and mediate branching include the Arp2/3 complex with nuclear-
promoting factors, the formin family of proteins, and the tandem monomer binding nu-
cleators. Arp2/3 has been shown to be overexpressed in several cancers including gastric,
glioma, breast, lung, and colorectal cancer, where it facilitates cancer pathogenesis, growth,
and invasion [39–43].

A major activator of Arp2/3 is the Wiskott–Aldrich Syndrome protein (WASp) nuclear-
promoting factor expressed in hematopoietic stem cells. WASp has been targeted with small
molecule compound #13 (SMC #13), which has a bioavailability score of 0.5, a molecular
weight of 461.6 g/mol, four hydrogen bond acceptors, high gastrointestinal absorption,
and drug-likeness potential [44]. Investigators have shown that SMC #13 directly interacts
with WASp to promote its degradation via ubiquitination, which significantly attenuates
WASp-dependent actin dynamics in SMC #13 treated hematopoietic malignancies with
fewer toxicities in healthy naïve cells. Nolen and colleagues have also drugged Arp2/3
using small molecule inhibitors CK-0944636 and CK-0993548. Their experiments suggest
that CK-0944636 binds between Arp2 and Arp3, potentially inhibiting the movement of the
complex into their active conformation, while CK-0993548 modifies the confirmation of
Arp3 by binding in the hydrophobic domain [45], thereby inhibiting actin polymerization.

Formins have also been of interest as a potential target in cancer. These proteins
contain the highly conserved formin homology 2 (FH2) domain for facilitating actin as-
sembly. Formins have been shown to be overexpressed in colorectal cancer [46], induce an
epithelial-mesenchymal transition to facilitate colorectal carcinoma invasion [47], and regu-
late cell migration and metastasis in colorectal carcinoma [48]. Silencing the formin like 2
(FMNL2) gene has been shown to slow the growth of gastric cancer cells, demonstrating its
therapeutic potential [49]. A small molecule inhibitor of the FH2 domain (SMIFH2) was the
first to be discovered to drug formins over a decade ago, both in vitro and in vivo. SMIFH2
disrupts formin-dependent actin dynamics and has no effect on Arp2/3-dependent actin
dynamics [50].

5. Targeting Actin Polymerization and Depolymerization

Several drugs have been described to stabilize F-actin and thereby inhibit depolymer-
ization. While these drugs may have some anti-tumorigenic activities [51], their inability
to selectively target cancerous cells limits their usefulness to research purposes only. Jas-
plakinolide is a membrane-permeable cyclo-depsipeptide isolated from the marine sponge
Jaspis sp. [52,53]. It binds to F-actin to stabilize polymerization, which impairs cell mi-
gration and the protrusion of lamellipodia [51]. Jasplakinolide competes with phalloidin,
another depolymerization-inhibiting compound, for F-actin binding and stabilization [54].
Phalloidin, however, is membrane impermeable.

Other F-actin stabilizing drugs include doliculide [55], chondramides, and dollastin
11 [56]. While these drugs enhance actin polymerization, other drugs inhibit polymerization.
Cytochalasins are membrane-permeable fungal metabolites that bind to the barbed ends
of F-actin to inhibit actin polymerization [57]. Cytochalasin D has been shown to induce
the hydrolysis of ATP in G-actin dimers to inhibit F-actin assembly, and, eventually, cell
migration and proliferation. While the potential benefits of cytochalasins as a supplement
to improve chemotherapies have been exploited [58] and reviewed [59], their safety in
patients remains to be seen.

Furthermore, there are several other small molecule inhibitors targeting other actin-
binding proteins that have been extensively reviewed [60]. These have shown promising
effects in some actin-binding targets traditionally considered “undruggable”, such as Rho-
GTPases. The ABP AVIL is of particular interest among actin-binding proteins because
it is significantly overexpressed in RMS cancer cells while showing low level expression
in very few normal cells [61]. Amplification at the AVIL locus has been shown not only
in RMS but in other sarcomas as well, suggesting broader oncogenic properties. This
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selective overexpression of AVIL in RMS makes cancer cells vulnerable to targeting of the
cytoskeleton while sparing actively dividing but healthy cells.

6. Advillin Background

Advillin (AVIL), encoded by the AVIL gene, is a calcium-regulated actin-binding protein
originally identified in the adult murine brain [62,63]. Advillin is a member of the gelsolin
protein superfamily, sharing 65 to 75% homology with adseverin [62]. Proteins of this super-
family, which also includes villin, gelsolin, and adseverin, regulate actin organization [62–64].
Advillin contains six homologous domains termed gelsolin-like (G1–G6) which are conserved
within gelsolin superfamily members (Figure 1) [65]. The G1 and G2 domains allow for
binding to phosphatidylinositol 4,5-bisphosphate (PIP2) and regulation of monomeric actin
(G-actin), while G1, G2, and G3 domains can also function in severing and capping actin fila-
ments. The G1 and G4 domains bind actin monomers, while the G2 domain is responsible for
filamentous actin (F-actin) and tropomyosin binding [64,65]. The carboxy-terminus headpiece
domain present in advillin, villin, villin-like protein, supervillin, and flightless 1 enables actin
filament bundling. In the absence of calcium ions, the G6 and HP domains inhibit the function
of G1–G3 domains [64,65].
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Although the precise function and impact on signal transduction remains unclear,
advillin seems to be involved in many processes, playing a vital role in neurite outgrowth
and the development of neuronal cells that form ganglia [62,66]. Moreover, in normal
physiology, advillin is rarely expressed outside of sensory neurons during development, or
non-peptidergic nociceptors in dorsal root ganglia, the Merkel cells of the skin, and tuft
cells in the gastrointestinal and biliary tracts in adulthood [67,68]. Expression in the dorsal
root ganglia is restricted to isolectin B4-positive neurons, and may be involved in growth
cone formation, axonal regeneration, and neuropathic pain [69].

Due to its key role in the organization of the actin cytoskeleton, which affects polarity,
movement, cell division, and trafficking, it is not surprising that advillin appears to play
a role in many cancers [70]. Figure 2 summarizes the general interactions between AVIL
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and actin, demonstrating that AVIL can modulate many actin-based processes. The AVIL
gene is overexpressed in nearly 100% of glioblastomas and was identified as a bona fide
oncogene that is crucial for glioblastoma tumorigenesis [71]. In recent studies, we have
shown that AVIL expression is abnormally upregulated in RMS, where silencing this gene
results in a dramatic reduction in proliferation and migration, killing cancer cells and
preventing tumor formation [61]. Therefore, AVIL seems to be a viable therapeutic target in
glioblastoma and RMS.
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cytoskeleton, and its dynamic qualities enable cells to respond to change. It exists in globular (G)
and filamentous (F) forms and switches between the two via polymerization or depolymerization,
affecting cytoskeletal structure and cellular processes. AVIL can cause changes in actin structure and
composition, affecting cellular functions like movement and division.

7. AVIL Functionality in ERMS and ARMS Subtypes

Embryonal RMS (ERMS) affects mostly children, with the most common sites of
presentation being the head, neck, and genitourinary tract [9]. ERMS presents varying
degrees of differentiation, from well-differentiated neoplasms to poorly differentiated
tumors [72]. Anaplastic cells in some cases of RMS have been characterized by a significant
hyperchromasia. Several genetic alterations have been suggested to drive the pathogenesis
of ERMS, including enhanced RAS signaling with mutations in KRAS, NRAS, and HRAS;
activation of Hedgehog (Hh) signaling; and inactivation of p53 and Rb pathways [73].
Alteration in each of these pathways allows the cells to evade growth suppressors and
apoptosis, promoting proliferation. Copy number alterations have also been observed,
including gain of chromosome 8 and loss of chromosomes 10 and 15 [72].

Alveolar RMS (ARMS) affects mostly adolescents and young adults. While ARMS can
arise from any part of the body, it is commonly observed in perineal and paraspinal regions
as well as the extremities. Pathological features include poorly differentiated rhabdomy-
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oblasts with enlarged nuclei and scant cytoplasm [2]. Tumor cells are usually nested in
fibrovascular septa and have loosened intercellular connections, creating alveolar or slit-
like spaces. ARMS is characterized by the expression of diffused MYOD1 and myogenin.
About 80–90% of ARMS are associated with recurrent Forkhead Box O1 (FOXO1) fusions.
FOXO1 forms a fusion with PAX3 or PAX7, resulting in altered expression, localization,
and function compared to wild-type FOXO1 [74]. Functionally, the PAX3–FOXO1 fusion
joins the DNA-binding region of PAX3 with the transactivation domain of FOXO1, creating
a novel transcription factor that can activate cellular pathways that promote oncogeneic
hallmarks such as rampant proliferation and evasion of apoptosis [74]. The PAX7–FOXO1
fusion product exhibits similar functionality in ARMS [75].

AVIL is thought to activate the RAS signaling pathway, which is a major cell prolifer-
ation pathway and a hallmark of ERMS. Interestingly, an oncogenic cooperativity assay
found no difference in foci formation between overexpressing AVIL alone, RAS alone, or
both [61]. Furthermore, AVIL overexpression in mesenchymal stem cells is sufficient to
differentially express many RAS targets, increase p-MEK1/2 and p-ERK1/2, and mimic
published gene signatures for RAS signaling. AVIL overexpression also appears to mimic
PAX3–FOXO1 fusion signaling in ARMS, with AVIL leading to the differential expression
of PAX3–FOXO1 fusion targets. AVIL is reported to be significantly expressed in many cell
lines of both ARMS and ERMS, mimicking pathways upstream of both RMS subtypes in-
cluding PAX3–FOXO1 and RAS. It may, therefore, serve as a connecting node for the major
pathways associated with ARMS and ERMS [61]. Given its differential overexpression in
numerous cancers including RMS, and its ability to activate both RAS and PAX3–FOXO1
signaling pathways, AVIL demonstrates promising therapeutic potential as a target for
both ERMS and ARMS.

8. Perspective

Cytotoxic chemotherapies targeting the cytoskeleton are some of the most potent thera-
peutics for most cancers, with almost all approved therapies targeting tubulin [76–78]. These
cytotoxic agents also come with a large list of deleterious toxicities given that they target all
dividing cells, both normal and malignant. Identifying a cancer-specific cytoskeletal protein
that is differentially targetable, especially in rarer malignancies, would be a major step forward
in treating these diseases. AVIL appears to be a relatively cancer-specific cytoskeletal protein
overexpressed in RMS, a pediatric cancer with limited treatment options. Targeting AVIL sits
at the crossroads of two therapeutic philosophies: broad range cytotoxic agents that target
critical cellular infrastructure common to all dividing cells, and a targeted cancer-specific
therapy that limits toxicities in normal cell populations. It is this unique combination that
positions AVIL as an attractive druggable target for RMS therapies.
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