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Abstract

Understanding the origins of past and present viral epidemics is critical in preparing for future outbreaks. Many viruses, including
SARS-CoV-2, have led to significant consequences not only due to their virulence, but also because we were unprepared for their emer-
gence. We need to learn from large amounts of data accumulated from well-studied, past pandemics and employ modern informatics
and therapeutic development technologies to forecast future pandemics and help minimize their potential impacts. While acknowl-
edging the complexity and difficulties associated with establishing reliable outbreak predictions, herein we provide a perspective on
the regions of the world that are most likely to be impacted by future outbreaks. We specifically focus on viruses with epidemic po-
tential, namely SARS-CoV-2, MERS-CoV, DENV, ZIKV, MAYV, LASV, noroviruses, influenza, Nipah virus, hantaviruses, Oropouche virus,
MARYV, and Ebola virus, which all require attention from both the public and scientific community to avoid societal catastrophes like
COVID-19. Based on our literature review, data analysis, and outbreak simulations, we posit that these future viral epidemics are
unavoidable, but that their societal impacts can be minimized by strategic investment into basic virology research, epidemiological

studies of neglected viral diseases, and antiviral drug discovery.
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Introduction

Despite the rapid development and distribution of vaccines (Ex-
cleretal. 2021), the world is still grappling with SARS-CoV-2, which
has infected an estimated 761 million people worldwide in 3 years
after the pandemic begun. While we continue to grapple with the
consequences of this most recent pandemic, it is important to
learn from the lessons of history so that we are better prepared
for likely unavoidable future viral outbreaks.

Throughout the 20th century, several strains of deadly in-
fluenza hit the world. The most severe, the 1918 influenza pan-
demic, infected 500 million people and killed an estimated 20-50
million people worldwide (CDC 2019a). In the last 40 years, several
viruses have caused global epidemics that have substantially af-
fected humankind including (but not limited to) human immun-
odeficiency virus (HIV), severe acute respiratory syndrome coron-
avirus (SARS-CoV), Middle East respiratory syndrome coronavirus
(MERS-CoV), Ebola virus, Zika virus (ZIKV), and the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) (Morse et al.
2012). This also includes the currently emerging concerns about
the monkeypox virus outbreak, lack of treatments, and its con-
tinued spread (Centers for Disease Control and Prevention, CDC
2022a). Factors like expanding mosquito-borne viral diseases and
climate change (Reperant and Osterhaus 2017) contribute to sin-

cere concerns about what virus is to come next, and whether we
are prepared to prevent future viral outbreaks (Gates 2020). Some
groups attribute the increase in viral epidemics to human popu-
lation growth (Bloom et al. 2017, Spernovasilis et al. 2021, Baker
et al. 2021). Historical modeling predicts that there is a 22%-28%
chance of a COVID-19 scale viral outbreak again in the next 10
years, and a 47%-57% chance of such an outbreak over the next
25 years, given the yearly probability of 2.5%-3.3% (Agyarko et al.
2023). These estimates emphasize the need for antiviral drug dis-
covery and vaccine development research to lessen the impact of
future pandemics.

There is a published history of potential epidemic monitor-
ing well before COVID-19. For example, in 1970, annual global
rates of the 1968 Hong Kong influenza were being monitored by
many groups (Gill et al. 1971, Mandin et al. 1971, Salim 1971,
Gill and Murphy 1972, Jackson et al. 2010) and, in 1999, Sandra
Keavey, a practicing physician’s assistant, predicted that the next
influenza outbreak would be a pandemic in her published notice
to clinicians (Keavey 1999). In 1997, Andrick et al. (1997) discussed
the prediction of viral outbreaks as it relates to climate change.
In The Coming Plague, Laurie Garrett discussed the epidemiolog-
ical past and outbreaks of many viruses, including Lassa virus
(LASV) and Ebola virus, in addition to their threatened impact on
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the future of modern society (Garrett 1994). More recent projects
such as the Global Virome Project (Carroll et al. 2018) and PRE-
DICT (UC Davis 2009) aimed to analyze all available public health
data on every possible zoonotic virus in the hopes of predicting
and preparing for the next outbreak. The PREDICT project un-
covered nearly 1000 novel viruses but, unfortunately, was shut
down just prior to the emergence of the SARS-CoV-2 pandemic
(Global Biodefense Staff 2020). Similarly, tools such as HealthMap
(https://www.healthmap.org/en/), aggregate all viable resources
to locate small-scale, unnoticed outbreaks before they escalate
to endemics or pandemics.

It is imperative to develop pre-emptive strategies to deal
with new viruses as they emerge to mitigate future outbreaks
(Boston’s Children Hospital researchers 2006, Myers et al. 2000).
Recently, the Director General of the World Health Organiza-
tion’s reinforced that humankind must be better prepared for
the next pandemic, since outbreaks are “facts of life,” and called
on countries to invest more in public health (Reuters Staff
2020). In this perspective, we organize and summarize the vari-
ous methodologies and outcomes of previous predictions of vi-
ral outbreaks in the literature. We aim to identify regions of
the world where the next outbreaks are more likely to occur
and summarize developments that can help us prepare for such
outbreaks.

Below, we consider the factors responsible for the emergence,
spread, and eradication of both current and previous viruses
including SARS-CoV, MERS-CoV, Ebola virus, ZIKV, SARS-CoV-2,
Dengue virus (DENV), Mayaro virus (MAYV), LASV, noroviruses, in-
fluenza, Nipah virus, hantaviruses, Oropouche virus (OROV), and
Marburg virus (MARV). We collate information about human vi-
ral pathogen infection predictions and provide a perspective on
the next outbreaks and regions of the world where these viruses
are most likely to emerge. Establishing the value and accuracy of
outbreak predictions is crucial to minimizing the impact of novel
outbreaks given the paucity of available therapeutics for most
viruses (Bobrowski et al. 2020). Currently, few approved antiviral
drugs are available to treat the viral infections reviewed herein: a
handful of drugs are available to treat influenza yet are suscep-
tible to the development of resistance; EUA drugs and vaccines
and a few repurposed FDA-approved drugs are available to treat
SARS-CoV-2; and there is one antibody treatment against Ebola
(US Food and Drug Administration, FDA 2023, National Institute
of Allergy and Infectious Diseases, NIAID 2017, Centers for Dis-
ease Control and Prevention, CDC 2021a). Although current ap-
proaches cannot forecast the exact time and place of the new out-
break, based on systematic literature review, data analysis, and
outbreak simulations, we anticipate that the next viral epidemics
are unavoidable. We summarize the existing outbreak predictions,
current and potential treatments, including both molecular ther-
apeutics and vaccines, and emphasize the importance of contin-
ued funding of both virology and antiviral drug discovery research
as critical means to minimize the burden of future pandemics on
mankind.

A tale of the outbreaks

In the discussion that follows, we will reference both the first
event and the occurrence of disease cases above average ex-
pectancy as an “‘outbreak.” However, as we analyze the outbreak
forecasts retrospectively, it is crucial to understand which event(s)
qualify as an outbreak and which do not. For example, the first
case of MERS-CoV in the USA occurred on 1 May 2014 (2 months
after it was rampant in the Middle East in March 2014), but the

outbreak did not begin until 16 May 2014 (Bialek et al. 2014). Ac-
cording to the CDC, an epidemic refers to “an increase, often sud-
den, in the number of cases of a disease above what is normally
expected in that population in that area,” but an outbreak is typ-
ically considered an epidemic in a geographically confined area
(Centers for Disease Control and Prevention, CDC 2022b). Thus,
throughout this paper, we used both terms, i.e. “epidemic” and “out-
break” following these definitions. The use of these definitions in
the literature is variable and depends entirely on the severity of
the disease, location, frequency, and spread of the virus. There-
fore, the term “outbreak” may be frequently used inappropriately
or out of context by many of the sources referenced in this re-
view. In some situations, a single case can constitute an outbreak,
while in others, thousands of cases should be reported to consti-
tute an outbreak (Association of Professionals in Infection Control
and Epidemiology, APIC 2023). Discrepancies like this were evident
in our literature search as well, where some viruses had multiple
models, some had simulations, and some had no more than ob-
servations from past outbreaks. Several groups have tried to de-
velop outbreak prediction models for a variety of viruses, albeit
with limited success. In Table 1, the dates and information as-
sociated with these predictions are charted. Most of these models
proved to be inaccurate or were reported retrospectively. However,
some of these efforts can still be useful as warnings and/or obser-
vations. For instance, epidemiological surveillance networks mon-
itoring Ebola in the Congo (Rouquet et al. 2005, Asher 2018) and
norovirus in the USA (Wang and Deng 2016) resulted in accurate
predictions of the outbreak occurrences. These networks’ suc-
cesses were largely due to their foundations in infection tracing,
described below when we discuss Ebola virus and norovirus. Given
the last-minute circumstances of the MERS prediction (Bialek et
al. 2014), this aligns more to an alert than a prediction, and both
the Zika (Counotte et al. 2019) and Lassa fever (Fichet-Calvet and
Rogers 2009) predictions were too far removed to determine their
accuracy. In all, there is an acute difficulty in accurately assess-
ing when a new outbreak will appear. Furthermore, in some cases
(such as with Ebola), even forewarning was not enough to prevent
or mitigate an outbreak. Many factors in outbreak models are dif-
ficult to assess, especially with little knowledge of viral transmis-
sion and pathogenesis; factors such as host-vector transmissibil-
ity can be difficult to model due to the vastness of the global vi-
rome (Albery et al. 2021). In Table 2, we describe the molecular bi-
ology behind each of the viruses, and in the following sections we
provide detailed discussions of their outbreak risk based on data
and literature analysis. Because different past outbreaks received
varying levels of attention and scrutiny, the depth and amount of
information discussed below will be different for each virus, with
the most elaborate discussion being on the current COVID-19 pan-
demics.

Major viral outbreaks

In the section below, we summarize factors affecting the trans-
mission and outbreak potential, as well as the available models, of
SARS-CoV-2, MERS-CoV, DENV, ZIKV, MAYV, LASV, noroviruses, in-
fluenza, Nipah virus, hantaviruses, OROV, MARV, and Ebola virus.
Brief outbreak histories of each can be found in the Supplemen-
tary materials. We acknowledge that not every virus with out-
break potential may be included, but we aimed to include all that
are not (i) largely eradicated, (ii) privy to well-accepted preven-
tative treatments, or (iii) vector-borne. The following is a com-
mentary on factors that needed to build successful predictive
models.


https://www.healthmap.org/en/

Table 1. Summary of predicted outbreaks.
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Predicted date
of the
outbreak

Actual date of the

Disease outbreak

Outbreak location

Model used to make
prediction

Date when prediction
was made* (reference)

*1f the date when the prediction was made was not available, the date of publication was assumed to be the date of prediction. Lines shaded in light green are
considered accurate predictions, orange are alerts, red are inaccurate predictions (due to significantly inaccurate location or time), and purple are predictions of

future events.

Coronaviruses

SARS-CoV-2 (2019-2023)

It has been particularly challenging to develop models that cap-
ture the effect of increasingly virulent SARS-CoV-2 mutants ob-
served in human populations (Chen et al. 2020, Wang et al. 2020).
For example, the B.1.617.2 variant, better known as the Delta
variant, is 50% more contagious than the Alpha variant and is
75% more contagious than the original SARS-CoV-2. Thus, Delta
also became a prevalent variant for many new COVID-19 cases
in 2021 (Katella 2021). The Virus Outbreak Simulator for the
USA (https://bioinformaticshome.com/online_software/virus-ou
tbreak/US/index . html#) simulates the spread of select viruses;
simulations were available for influenza, coronaviruses, and Ebola
(Andrews 2019). We employed this server to run simulations using
the settings summarized in Table 3, and the code for the simula-
tion can be found on GitHub (https://github.com/s-andrews/vir
usbreak). The simulation was set so that the total population was
327 million people and on Day 1, there were 55k carriers of each
virus. The coronavirus numbers used by the simulation have been
updated daily since December 2019 and were taken from the In-
stitute for Health Metrics and Evaluation (https://covid19.health
data.org/projections) projections (Institute for Health Metrics and
Evaluation 2021).

The numeric results of the simulations can be seen in Fig. 1.
While vaccinations played a significant role in the number of peo-
ple predicted to be affected by influenza, only a tiny portion of
the population was predicted to die from the infections. Similarly,
only a small percentage of the US population was predicted to be
infected with Ebola, likely due to the full containment that was
in effect for the Ebola simulation. While this severely limited the
spread of the infections, all infected persons were predicted to die.

To understand the threat posed by the Delta variant (we
launched this study in 2020), we aimed to simulate how it would
impact the USA using the simulator under different conditions.
Primarily, we varied the lethality of the virus and containment
strategies and assumed that 47% of the US population was vacci-
nated as of 4 July 2021 (Carlsen et al. 2021). We varied the contain-
ment, to view the effects of the reopening of the USA and vaccine

distribution, and the lethality, to view the differences given the
unestablished relationship between the lethality and the roughly
60% increased virulence of the Delta variant (Lovelace Jr. 2021).
The input parameters and the results of these simulations are
summarized in Table 4 and Fig. 2.

These predictions demonstrate how important containment
practices like quarantining and social distancing are. Even with
increased lethality, containment decreases the number of fatali-
ties by more than 200-fold. Furthermore, increased simulated vac-
cination significantly decreased the number of deaths (data not
shown). Similar studies were run for the Omicron variant. Includ-
ing the US vaccination status (64%) as of 16 February 2022, we
ran the same simulations, only adjusting the settings from our al-
pha SARS-CoV-2 model by increasing the virulence to 90% and de-
creasing the lethality to 1%. These percentages were chosen based
on the several fold increase in contagiousness (Park 2022) and
less than 1% average fatality rate seen in Omicron cases (Arnott
2022). Compared to alpha settings with 64% vaccination, Omicron
reduced the duration of the simulated outbreak by 19% and the
deaths by 87%. However, with full containment methods both sim-
ulated outbreaks ended in 30 days (83% less than the previous al-
pha simulation) and left the vast majority of the population alive
and immune.

Obviously, containment and vaccination are crucial factors in
the impacts of SARS-CoV-2 on humanity. Furthermore, the indi-
vidual specifications of each variant can provide a moving tar-
get for therapeutics and models alike. For example, a 3% change
in lethality can lead to a 45% increase in deaths when there
are no social containment measures. Therefore, rapid changes
in containment, vaccination, and viral mutation present major
complications to building successful models. Our simulation was
limited by using flat vaccination rates as well as poorly defined
containment procedures. The flat vaccination rate does not ac-
count for those who have been partially vaccinated or any growth
in the number of people vaccinated over time. As for the con-
tainment, “quarantine” and “physical distancing” are not spe-
cific and leave room for interpretation. Notably, IHME COVID-
19 data (Institute for Health Metrics and Evaluation 2021) were
used to set up the parameters for isolation and social distanc-
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Table 2. Molecular biology, disease characteristics, and timelines of virus discovery and outbreak.

Virus

Genome organization

First confirmed isolation

First major outbreak

Latest outbreak

SARS-CoV-2

SARS-CoV

MERS-CoV

Ebola virus

ZIKV

DENV

MAYV

LASV

Norovirus

Influenza
virus

Spherical, enveloped virus
with single-strand, linear,
positive-sense RNA
genome (~29.9 Kb) (Nagvi
et al. 2020)

Spherical, enveloped virus
with single-strand,
positive-sense RNA
genome (~29.7 Kb) (Xu et
al. 2003)

Spherical, enveloped virus
with single-strand,
positive-sense RNA
genome (~29.9 Kb) (Chu et
al. 2014)

Filamentous, enveloped
virus with single-strand,
negative-sense RNA
genome (~19.0 Kb) (Bharat
et al. 2012)

Spherical, enveloped virus
with single-strand,
positive-sense RNA
genome (~10.8 Kb) (Wang
et al. 2017)

Icosohedral, enveloped
virus with single-strand,
positive-sense RNA
genome (~10.7 Kb) (Kuhn
et al. 2002)

Icosohedral, enveloped
virus with single-strand,
positive-sense RNA
genome (~10.7 Kb)
(Ribeiro-Filho et al. 2021)
Round, enveloped virus
with two single-strand,
ambisense RNA segments
(~3.4 Kb [S] and ~7.0 Kb
[L]) (Hass et al. 2004)
Icosohedral,
nonenveloped virus with
single-strand,
positive-sense RNA
genome (~7.5 Kb) (Chan et
al. 2017)

Filamentous or spherical,
enveloped virus with eight
(influenza A and B) or
seven (influenza C)
single-strand,
negative-sense RNA
segments (~2.3,2.3,2.2,
1.8,1.6,1.4,1.0,and 0.9 Kb
segments in HIN1
influenza A) (Bouvier and
Palese 2008)

December 2019—Wuhan,
China (Worobey et al.
2022)

November 2002—Foshan,
Guangdong, China
(Chinese Law and
Government 2014)

June 2012—Jeddah, Saudi
Arabia (van Boheemen et
al. 2012)

June 1976—Nzara, Sudan
(Feldmann et al. 2003)

April 1947—Uganda
(isolated from monkeys)
(Dick et al. 1952)

August 1942—Nagasaki,
Japan (Takasaki 2011)

August, 1954—Trinidad,
Caribbean (Anderson et al.
1957)

1969—Lassa, Nigeria
(Monath 2019)

August 1972—Norwalk,
Ohio (Kapikian et al. 1972)

Isolated from ferrets in
1933—National Institute
for Medical Research at
Mill Hill, London, England
(Smith et al. 1933)

December 2019-January
2020—Wuhan, China
(Worobey et al. 2022)

February
2003—Guangdong, China
(WHO 2009)

April 2012—Zarqa, Jordan
(Hijawi et al. 2013)

June-August 1976—Sudan
and Democratic Republic
of the Congo (Feldmann et
al. 2003)

1952—Uganda and United
Republic of Tanzania
(Robinson 2016)

1635—Martinique and
Guadeloupe, Caribbean
(suspected DENV
outbreak) (Dick et al. 2012)

August, 1954—Trinidad,
Caribbean (Anderson et al.
1957)

1969—Nigeria (Monath
2019)

Suspected outbreaks since
1940s, (Kapikian et al.
1972) first confirmed in
1968—Norwalk, Ohio (The
inexorable progress of
norovirus 2013)

First agreed upon
influenza pandemic began
in 1729, but reports of
outbreaks with
influenza-like symptoms
date back to 1173 (Potter
2001)

December 2019-January
2020—Wuhan, China
(Worobey et al. 2022)

January
2004—Guangdong, China
(Gralinski and Baric 2015)

Early 2019—Saudi Arabia,
occasional cases reported
up to March 2022 (World
Health Organization)

June 2021—Guinea (World
Health Organization 2021)

November 2021—Uttar
Pradesh, Kerala, and
Maharashtra, India (Jha
2021)

Endemic to numerous,
mainly tropical, areas
with cases still being
reported worldwide
January-March
2023—Europe, Asia, Africa,
and South America
(Boston’s Children
Hospital researchers 2006,
Bolivian hospitals under
strain as dengue kills
dozens; Associated Press
2023).

October 2020—Cayenne,
French Guiana (World
Health Organization
2020b)

Ongoing outbreak (as of
June 2022)—Nigeria
(Tolu-Kolawole 2022)

Ongoing outbreak (as of
June 2022)—British
Colombia, Alberta,
Manitoba, and Ontario,
Canada (Entis 2022)

Seasonal influenza cases
reported worldwide yearly.
Last major global
outbreak was during
2009-2010 HIN1
pandemic (Centers for
Disease Control and
Prevention, CDC 2021b)




Table 2. Continued
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Virus Genome organization

First confirmed isolation

First major outbreak

Latest outbreak

Nipah virus Spherical, enveloped virus
with single-strand, linear,
negative-sense RNA
genome (~18.2Kb) (Eaton
et al. 2006)

Spherical, enveloped virus

with three single-strand,

negative-sense RNA
segments (~1.8-2.1,
3.7-3.8, and 6.5-6.6 Kb
segments) (Hepojoki et al.

2012)

OROV Spherical, enveloped virus
with three single-strand,
negative-sense RNA
segments (~6.9, 4.4, and
1.0 Kb segments) (da Rosa
etal. 2017)

MARV Filamentous, enveloped
virus with single-strand,
negative-sense RNA
genome (~19.1 Kb)
(Fujita-Fujiharu et al.
2022)

Hanta virus

March 1999—Kampung
Sungei Nipah, Malaysia
(Chua 2012)

March 1978—Seoul, South
Korea (Lee et al. 1978)

1955—Vega de Oropouche,
Trinidad and Tobago
(Anderson et al. 1961;
Downs et al. 1961)

Pathogen isolated in
November
1967—Hamburg, Germany
(Slenczka and Klenk 2007)

September 1998—Ipoh,
Malaysia (Chua 2012)

1951—Korean Peninsula
(Muranyi et al. 2005), but
English “sweate” outbreak
of 1485 is suspected
(Bridson 2001)

1955—Trinidad and
Tobago (Anderson et al.
1961), but first large-scale
outbreak in 1961—Belém,
Brazil (Azevedo et al. 2007)

August 1967—Marburg
and Frankfurt, Germany
(Slenczka and Klenk 2007)

September 2021—Kerala,
India (Yadav et al. 2022)

May 2022—Palos Blancos,
Bolivia (Herriman 2022)

August-September
2020—Satl, French
Guiana (Organizagdo
Mundial da Saude, World
Health Organization
2020a)

23 February
2023—Equatorial Guinea;
(Marburg virus
disease—Equatorial
Guinea; Disease Outbreak
News 2023).

Table 3. The input settings and outputs from the Virus Outbreak Simulator. The duration parameter was collected after the simulation
ran to completion.

Parameter Ebola Coronavirus Influenza
Duration (days) 16 126 96
Virulence 2 50 50
Lethality 50 5 0.5
Incubation time 10 5 2
Infection time 5
Vaccination (%) 0 60 47
Containment Quarantine and No containment No containment
physical
distancing

Table 4. The properties of the simulated Delta variant to hypothesize its effects on a large population, especially comparing lethality
and containment efforts.

Containment, Containment, No containment, No containment,
Parameter higher lethality normal lethality normal lethality higher lethality
Duration (days) 65 60 124 127
Virulence 80 80 80 80
Lethality 8 5 5 8
Incubation time 5 5 5 5
Infection time 9 9 9 9
Vaccination (%) 60 60 60 60
Containment Quarantine and Quarantine and No containment No containment

physical physical
distancing distancing

ingin the simulation. Additionally, the data were collected from a
simulator, not real world observations; however, we believe the
presentation of the data is highly useful to visualizing the im-
pacts of the parameters discussed. We recognize these limitations
and consider it essential to emphasize the importance of inter-

ventions and modeling, especially in considering a more lethal
virus.

Beyond the current variants of SARS-CoV-2, an impending
SARS-CoV-3 should warrant further concern. One study (Wardeh
et al. 2021) summarized the data of past transmission cases to



6 | FEMS Microbiology Reviews, 2023, Vol. 47, No. 5

- 1 1
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® Uninfected mImmune mVaccinated © Dead

Figure 1. Number of affected people in the USA based on the simulations of influenza, coronaviruses, and Ebola outbreaks (using
https://bioinformaticshome.com/online_software/virus-outbreak/US/index.html#; see text for the input parameters used). All numbers are in
millions of people, and the respective colors represent those who would be uninfected, vaccinated (when applicable), immune, and those who would
die from the infection.

0 50 100 150 200 250 300 350

® Uninfected = Immune wmVaccinated © Dead

Figure 2. Number of affected people in the USA based on the simulation of the outbreak of a modified coronavirus emulating the Delta variant of
SARS-CoV-2. All numbers are in millions of people, and the respective colors represent those who would be uninfected, vaccinated (when applicable),

immune, and those who would die from the infection

highlight the probability of both a novel SARS-CoV outbreak event,
as well as novel vector and species transmission. Then, the au-
thors compiled and sequenced viral genomic data to compare it
with potential mammalian vectors and generated models pre-
dicting each potential coronavirus-mammal association. In do-
ing so, they suggest that dogs, rats, Chinese ferret-badgers, and
the Asian palm civet, among more than 100 mammals, should be
monitored as major potential host reservoirs for both MERS-CoV
and SARS-CoV-2 mutation and transmission (Wardeh et al. 2021).
Other studies (Wang et al. 2020, Murray and Piot 2021) have also
implied the threat of both continued SARS-CoV-2 and further mu-
tations, but have not built models to predict the future SARS-CoV
outbreaks.

MERS-CoV (2012-2014)

Most of the focus on modeling the spread of MERS-CoV revolved
around proper data mining and the allocation of patient informa-

tion. One group of models was based on two key components, the
patients’ ages and whether they were symptomatic. These mod-
els produced accuracies ranging from 53.6% to 71.58% and sug-
gested older patients being at the highest risk of complications
(Al-Turaiki et al. 2016). However, publications describing model-
ing or forecasting MERS-CoV were extremely limited. We have
identified a study describing an epidemiological model that con-
cluded that hospital transmission cases were four times more in-
fluential to viral spread than community transmission. Written
during the 2014 outbreak, the study suggested efforts to contain
the then-current MERS-CoV should be focused on hospitals. They
also shared anidea that the weak secondary MERS-CoV transmis-
sion removed its “epidemic” status based on the R < 1 where sec-
ondary community transmission cases were concerned (Chowell
et al. 2014). One group modeled two strains of MERS-CoV to eval-
uate their epidemic potential and suggest that MERS-CoV had a
high risk of developing rapidly in Riyadh and Macca, Saudi Arabia.


https://bioinformaticshome.com/online_software/virus-outbreak/US/index.html

Through their bilinear, non-monotone, and saturated social be-
havior models, they retrospectively predicted the number of cases
in the 2015-2016 outbreak and used this as their models’ valida-
tion. They too emphasized the importance of research given the
high mortality rate (35.5%) and complete lack of treatment or pre-
vention (Sardar et al. 2020).

DENV

Many health authorities have taken precautions, like creating
clinical networks to monitor DENV based on symptomatology
(Gubler 1998). In Australia, predictive models have been used to
show correlations between the Southern Oscillation Index (SOI),
a measure of sea level air pressure difference between the east-
ern and western tropical Pacific, and dengue cases. A multivari-
ate Seasonal AutoRegressive Integrated Moving Average model
was generated using Queensland Health and Australia’s Bureau
of Statistics data from January 1993 and December 2005. It was
discovered that dengue fever cases increased as the SOI de-
creased and temperatures increased; their predictive model val-
ues matched observed cases with an error of 1.93% (Hu et al. 2010).
Models like these could be pivotal in other at-risk countries if data
can be reliably collected. These models also emphasize the im-
portance of including environmental factors in modeling disease
outbreaks. This should be of high priority, as there are over 100
countries and 3 billion people worldwide that are at risk of con-
tracting DENV (Centers for Disease Control and Prevention, CDC
2020).

ZIKV

Two major factors have been identified to explain the increas-
ing global spread of the ZIKV: urban transmission and stochas-
tic factors. Experimental studies did not support a genetic vari-
ation hypothesis suggesting that an adaptive evolution of ZIKV
was responsible for the rapid spread (Gubler et al. 2017). Rather,
it is theorized that high levels of viremia in humans facilitates
vector-borne transmission (Gubler et al. 2017). Newly infected, im-
munologically naive populations were the most likely causes of
rapid spread (Gubler et al. 2017), as it is assumed that infected in-
dividuals have lifelong immunity. Given the 2015-2016 epidemic
timeline, the next outbreak is predicted to occur around 2035 (see
Table 1), as this is when the virus would be introduced to naive
populations in the Americas; the chance for outbreaks goes above
50% in 2047 (Counotte et al. 2019). It is thought young women of
reproductive age will be at the most risk for ZIKV in the future
(Counotte et al. 2019) due to the particularly dangerous threat
Zika poses to pregnant persons and their unborn children. How-
ever, we could not identify any reliable simulations or models that
could confidently predict future ZIKV spread.

MAYV

Lack of an effective vaccine and documented spread to new re-
gions increase the global risk of MAYV outbreaks. Additionally,
there has been movement of the outbreaks from primarily South
American countries (Caicedo et al. 2021) to North America and
Europe (Acosta-Ampudia et al. ), suggesting the potential for rapid
globalization. These outbreaks bring mild to moderate febrile ill-
ness to the affected countries and are frequently misdiagnosed
as other arborviruses early in disease (Acosta-Ampudia et al. ).
Currently, vector control (the use of techniques to mitigate the
transmitting species, in this case mosquitos) and personal protec-
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tive measures are the only forms of infection prevention and are
relatively ineffective, as the number of new arboviral infections
continues to increase (Esposito and Fonseca 2017). One group per-
formed a biomathematical analysis on the epidemiological conse-
quences of MAYV in Colombia (Valencia-Marin et al. 2020). Their
model was based on the temperature, migration patterns, rates of
development, and the flow of land cargo, all of which contribute
to the vector spread and ability to infect the human population.
Specifically, this study determined that regions with high rates
of land cargo movement and temperatures between 23 and 28°C
were most at risk for MAYV spread via Ae. Aegypti. Therefore, they
concluded Magdalena, Imeri, and the biogeographical Chocé ar-
eas to be at the highest risk for rapid spread of MAYV in Columbia
(Valencia-Marin et al. 2020).

LASV

The major risk areas of LASV outbreak are Sierra Leone, Liberia,
Guinea, Nigeria, and other countries in the region (Fichet-Calvet
and Rogers 2009). This was determined by environmental data
and statistical analyses, as these have proven to be the most effec-
tive method of producing Lassa fever risk maps (see Table 1). Mod-
els were generated using nonlinear maximum likelihood discrim-
inant analysis techniques. Areas of presence and absence of Lassa
fever were identified in West Africa, which considers the distribu-
tion of the highly populous rodent hosts (Fichet-Calvet and Rogers
2009). The survival of LASV in decreased humidity significantly
increases its transmission potential. Rainfall conditions appear to
have the most substantial influence, but the temperature has a
variable impact, especially in high-risk areas of Western Africa
(Fichet-Calvet and Rogers 2009).

Noroviruses

Some norovirus outbreaks can be predicted using factors specific
to the host of the norovirus. For example, oyster-borne norovirus
can be monitored and predicted using an Artificial Neural Net-
work model called NORF (Wang and Deng 2016). The authors suc-
cessfully used the NORF model to predict these outbreaks to take
place on the Gulf of Mexico using environmental factors such as
salinity, water level height, temperature, wind, and rainfall (see
Table 1). The model was trained on 14 years of data (from 1994
to 2007) and validated exclusively using seven additional years of
data (from 2007 to 2014). The model predicted that an outbreak
on the Louisiana coast would occur on 29 December 2013 and
the outbreak indeed occurred from 26 December 2013 to 9 Jan-
uary 2014 (Wang and Deng 2016). While this was retrospective in
nature, the model was successful in predicting a confirmed out-
break from external data and so other risk assessment models
may consider water irrigation of produce (Fiona Barker et al. 2013)
to predict future outbreaks. Collaborative tools such as NoroNet, a
scientific surveillance collective for norovirus (https://www.rivim
.nl/en/noronet), may also help identify outbreaks before they oc-
cur. Another model called NOROCAST was created in Japan to pre-
dict norovirus genotype and herd immunity; this model found one
structural protein in particular impacted herd immunity the most
and should be targeted for therapeutics (Suzuki et al. 2019).

Influenza virus

In addition to the four currently approved anti-influenza drugs
(Roguski and Fry 2017), annual vaccination against seasonal in-
fluenza (both influenza A and B) is available in many countries to
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protect against the predicted strains of that year and those that
are antigenically similar. Unfortunately, it is difficult to predict
what strains will emerge, so these vaccines typically have low ef-
ficacy due to the high evolutionary rate of influenza viruses (Cen-
ters for Disease Control and Prevention). It is believed that the
most proactive response to preventing the next influenza resur-
gence is to survey wild birds and farm swine actively to observe
how they interact with domestic animals and humans (Tauben-
berger and Morens 2010). Antigen shift/drift and flu recombina-
tion in intermediate hosts present severe challenges to accurately
predicting future outbreaks (Ma et al. 2008, Kim et al. 2018). In this
regard, many models integrating past mutation data and other
creative tactics, such as local search query data, have been built
to predict the next pandemic flu strain (Luksza and Léssig 2014,
Zhang et al. 2019, Yin et al. 2020), all claiming limited success,
but acknowledging the stochastic nature of the influenza virus
evolution and the plethora of data needed to build models. For
instance, Yin et al. (2020) employed their model to predict mu-
tations of influenza A viruses. They concluded that they could
predict point mutations at selected residues to provide better in-
sights than current methods, which could prove incredibly use-
ful in vaccine and outbreak prediction development. Many mod-
els have also targeted recombination in swine, but to this point
all the authors acknowledged that none of the available contain-
ment strategies (including vaccination) are sufficient at prevent-
ing genetic variation in swine populations infected with influenza
(Reynolds et al. 2014, Etbaigha et al. 2018, Li et al. 2022).

Nipah virus

In nature, the primary reservoirs of the Nipah virus are flying
foxes, a large bat of the genus Pteropus (Lo Presti et al. 2016). Recent
outbreaks in Bangladesh and India trace back to contaminated
date palm sap (Ang et al. 2018). An intermediate host that facil-
itates the transmission of the virus from bats to humans is pigs;
the 1999 outbreak in Malaysia resulted in a massive, nationwide
culling of pigs to halt the spread of the virus. As they are a frequent
host of human-threatening virulent diseases, many studies mon-
itor swine for pathogens hoping to stop the next viral outbreak
before it occurs (Ruiz-Fons 2017). Geographical mapping consid-
ers climate, longitude, latitude, and previous outbreaks to predict
the next outbreak (Peterson 2015), however, we were unable to find
any modeling attempts for Nipah virus. Based on what we know
about the virus, we hypothesize successful models would take fac-
tors such as climate, wildlife monitoring, agricultural factors, and
human-host interactions into account.

Hantaviruses

Most approaches to predict hantavirus outbreaks depend on ex-
amining the relationships between rodent population growth and
hantavirus exposure. These models consider aspects such as ran-
dom mating and deaths relating to disease or natural causes.
Mathematical models have been developed to analyze and inter-
pret the interaction between rodents and hantavirus (Jonsson et
al. 2010). These models (SIR and SEIR models) aim to characterize
epidemic dynamics and have been useful in predicting possible
contagion scenarios (Jonsson et al. 2010). In silico models based on
human data are preferred due to the complexities of relating ani-
mal models to humans (Safronetz et al. 2013). Other sources posit
that adding seasonal interactions with rodents is crucial to mod-
els when trying to predict outbreaks (Sauvage et al. 2007). It is also
notable that there is increased interaction with rodents as the hu-

man population grows and more rodents flock to urban areas due
to the destruction of their ecosystems (Neiderud 2015).

OROV

It is predicted that OROV outbreaks and sporadic cases will in-
crease in Brazil and the Amazonian region over time, largely due
to recent wildfires and rapid deforestation (de Oliveira Andrade
2019, Tollefson 2020). Because these tropical regions are amenable
to arthropod vectors such as mosquitoes, a favored host of this
virus, zoonotic arboviruses can cause great harm in these areas.
While patients with OROV frequently present with mild symp-
toms similar to that of other arboviruses many go on to develop
meningitis, making outbreaks of the utmost concern (Gutierrez et
al. 2019). The densely populated region of southeastern Brazil also
has a higher risk of an outbreak due to internal and international
migration and tourism (Vasconcelos et al. 2001, Lowe et al. 2013)
Evolving environmental, demographic, and social factors make it
likely that OROV will spread outside Central and Latin America as
the climate change, globalization, and deforestation all continues
to increase (Sakkas et al. 2018). Despite our growing knowledge of
the epidemiological, clinical, and molecular features of OROV, at
this point we do not have sufficient foundations to develop treat-
ments. This is largely due to the nonfatal pathogenesis of OROV
infection and its primary involvement with the CNS (da Rosa et
al. 2017).

MARV

While the broader epidemiology of MARV is unknown, at this
point, nonhuman primates have not proven susceptible to the dis-
ease, unlike the Ebola virus (Valentine et al. 2020). Most human
outbreaks occurred due to spillover events in caves and mines.
But, as is common with other viral hemorrhagic fevers, a failure
to rapidly diagnose cases leads to the potential for transmission
originating in a hospital or healthcare facility (Pigott et al. 2015).
No vaccines or antiviral medications are currently approved for
MARV. Predictive models that use transmission maps with calcu-
lated uncertainty forecast East Africa as the main region of con-
cern for future outbreaks (Peterson and Samy 2016). The models
were built using Maxent ecological niche modeling, however, they
are limited by time-averaging the data, as well as access to out-
dated ecological, viral, and vector data for some of these regions
from nearly 20 years ago.

Ebola (1976, 1979, 1994-1997, 2000-2003,
2014-2016, and 2021)

Currently, reports say that 22 countries in Central and West Africa
have the potential for zoonotic transmission (Gulland 2014, Pig-
ott et al. 2014). Many forecasting tools, such as stochastic models
and Susceptible-Infected—Recovered (SIR) approaches, were used
in the wake of the 2014 outbreak and have continued to be tested
and optimized (Asher 2018). A total of 6 months after the first re-
ported case, the CDC stated that if nothing changed behaviorally,
West Africa could expect 1.4 million cases (Meltzer et al. 2014).
Before all of this, in 2004, Leroy et al. (2004) discussed the trend in
Ebola-infected apes and how these trends should be surveyed for
predictions of human infection. They, and others (Legrand et al.
2007), concur that the virus originated in wildlife, specifically great
apes near the Ebola River, who were then handled or hunted by lo-
cal villages, thus leading to the transmission of the virus (Leroy et



al. 2004). In fact, one group claims to have alerted local health au-
thorities to the severe risk of both the December 2002 and Novem-
ber 2003 human outbreaks well before they occurred (see Table 1).
They identified these villages as having potential for an outbreak
using their Animal Mortality Monitoring Network, an epidemio-
logical surveillance network that was set up to identify infected
hosts before they reach the human populations. The two predic-
tions made (based on the data of the five previous outbreaks) were
considered accurate, with both occurring in the predicted loca-
tions and within a few weeks or a few months later (Rouquet et
al. 2005). In 2014, the same group published the approach on how
to predict human outbreaks based on ape fecal samples from 2005
and 2007 (Reed et al. 2014). (Kuisma et al. 2019) implemented an-
imal monitoring programs with the government and education
programs with the locals in the Democratic Republic of the Congo
as an attempt to prevent or lessen the next outbreak, but the sys-
tem has yet to be tested as there has not been an outbreak in this
location since the implementation.

When creating predictive models, the most crucial step is ac-
quiring data properly. One Ebola model uses a mimicking system
to test the viability of an outbreak in certain areas synthetically.
This system considers different transmission routes such as di-
rect contact, vector-borne, and enteric transmission (Viboud et al.
2018). Variable symptoms should also be noted when improving
the accuracy of these models, as more symptoms involved in the
model could cause the accuracy to diminish. Constant surveil-
lance and epidemiological characteristics are necessary to define
the accuracy of these models (Hart et al. 2019).

Accuracy of outbreak prediction models

A few models were able to predict respective outbreaks within a
month'’s precision (cf. Table 1). We note that while models offering
long-term forecasts were not very successful, short-term models
based on environmental changes and/or known wildlife patterns
have been more accurate. The two most accurate models detailed
in this review were the epidemiological surveying network and
statistical models which displayed day level precision. The NORF
model (Wang and Deng 2016) was able to use environmental fac-
tors to predict when the virus would flourish and transmit to hu-
mans through food, whereas the Ebola surveying network man-
aged to alert local governments of human contamination with
infected wildlife (Rouquet et al. 2005) with sufficient time prior
to both outbreaks. While the success of the governments’ inter-
ventions varied, the models made reasonably accurate forecasts.
Thus, the surveillance models, especially those monitoring the
spread of viruses between humans and animals, have demon-
strated their worth and should be researched and supported more
widely (PLOS; Wille et al. 2021). This was echoed again recently
by researchers who found 35 cases of a henipavirus, named the
“Langya” virus, from the last 4 years; they assert the importance
of global viral surveillance models given the frequency of human-
animal viral transmission (Mallapaty 2022).

Many factors might affect the predictivity of these types of
models. Similar models should be considered for future predic-
tive tasks. Due to differing viral evolution rates, distinct spillover
events, and specific vector-host interactions, the most significant
factors of highly predictive models are commonly virus-specific.
However, some of them can be generalized, including epidemi-
ological surveillance measures and monitoring climate change
and other forms of human-induced disruptions to the natural or-
der. These environmental factors are frequently indicative of viral
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spread as they relate to the abundance of the virus or its ability
to transmit.

Where possible, these should be considered heavily, especially
in areas highlighted in Figs 3 and 4. For both these figures, we com-
piled information from the literature to identify countries that are
within reasonable risk for certain outbreaks. We then generated
maps highlighting countries identified in the literature. Neither of
these maps should be considered as predictions. Rather, they are
observation-based risk maps with no assumed date, exclusively
based on literature and prior trends. In Fig. 3, we use a map to vi-
sualize areas where outbreaks have occurred (both in origination
and spread) to signify the impact of these viruses on the human
population. We recognize that this information may be incom-
plete due to the prerequisite of proper testing and reporting that
would allow one to find information on these viruses. Therefore,
this knowledge is limited in that not all past outbreaks may be
included in any study and may be missing from the data. For up-
dated alerts, websites like healthmap.org (https://www.healthma
p.org/en/) provide a map with classified alerts based on literature
and news reports. In Fig. 4, we recognize these same shortcomings,
especially in considering areas at risk for being the origin of novel
outbreaks but aim to emphasize how imminent viral threats are.

As seen in Fig. 4, the prevalence of outbreak risks, particularly
in Brazil, China, and the USA, is clear and should raise concerns
over rapid globalization, deforestation, and urbanization. Con-
versely, there are few parts of the world that are not dealing with
the imminent threat of originating a viral outbreak. This further
emphasizes the need for collaborative, worldwide research. As we
learned with SARS-CoV-2, viral threats can grow quickly and be-
come a concern for the entire world. A hot spot for these threats,
Brazil has not only had the highest number of past outbreaks, but
it also appears at risk for most future outbreaks. In combination
with the tropical climate, deforestation exposes human popula-
tions to new species (and therefore new pathogens) by destroying
the natural habitats in which reservoir hosts live. As seen with
the SARS-CoV-2 pandemic, globalization is integral to spreading
an emerging virus (Jeanne et al. 2022). Relatedly, environmental
changes and technological advances (such as those contributing
to globalization and property development) were also discussed
in relation to Zika and OROVs (Vasconcelos et al. 2001, Lowe et
al. 2013, Liu-Helmersson et al. 2019). Factors like these should
be heavily weighed when considering viral forecasting. There is
much evidence connecting increased development and associ-
ated loss of biodiversity to an increasing number of disease out-
breaks. Deforestation and extinction make pandemics and viral
outbreaks more likely, as the species that survive and migrate dur-
ing severe ecological changes are more likely to host pathogens
(e.g. bats, rats, and birds) (Tollefson 2020, Carlson et al. 2022).
Globally, it is estimated that sudden (on an ecological timescale)
changes in climate and land use will drive new interactions be-
tween humans and zoonotic viral host species, resulting in 4000
cross-species transmission events for novel viruses by year 2070.
(Carlson et al. 2022) For these and many more reasons, all viruses
mentioned here are imminent threats.

Itis indisputable that there will be a plethora of viral outbreaks
to come. However, learning from the past and using modern tech-
nologies, it may be possible to help mitigate the impact of these
outbreaks. Whether this comes from predictive models, monitor-
ing of wildlife, or pre-emptive drug discovery and development,
we must continue to adapt and learn from what has been success-
ful in the past. Moving forward, models should aim to include as
many salient factors as possible and rely heavily on data from pre-
vious outbreaks (Drake 2021), as well as animal and viral surveil-
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Figure 3. Map highlighting countries that either have experienced or been impacted by outbreaks of the selected viruses (Centers for Disease Control

and Prevention, CDC, National Center for Emerging and Zoonotic Infectious Diseases, NCEZID 2023, Verhoef et al. 2015, Sakkas et al. 2018,

Acosta-Ampudia et al. 2018b, Memish et al. 2020).
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Figure 4. Visual representation of countries most at risk for originating new viral outbreaks, based on observed trends from previous outbreaks and

literature describing those outbreaks. The darker the color and higher the number, the more at risk the country is at for being the epicenter of a novel

outbreak. The lack of color in several countries does not imply safety, but rather there is no data or models implying the country to be at risk for the

origination of a novel virus.(Centers for Disease Control and Prevention, CDC, Dowdle 1976, Gulland 2014, Lewnard et al. 2014, Clayton 2017, Jiang et al.
2017, Sakkas et al. 2018, de O Mota et al. 2019) This map does not reflect the viral spread that may cover neighbor countries or all the world, depending

on the virus and medical counter-measures.



lance wherever possible. The predictive models discussed herein
demonstrate thatitis possible to predict pandemics with some ac-
curacy before they occur, but it is also important that policy mak-
ers and other leaders listen to scientists performing this work and
act upon it to prevent massive loss of life based on social measures
(masks, distancing, and so on) as well as preventive development
of drugs, especially broad-spectrum antivirals, and vaccines. In
the past, hesitancy over drug resistant strains has halted develop-
ment of antivirals (De Clercq 2005); our experience with COVID-19
exemplifies how important it is to continue and broaden this type
of research. Although mutations and alternate strains of viruses
cannot always be predicted (e.g. influenza virus), scientists’ warn-
ings should be heeded when they are well-founded. As the cur-
rent practice showed, once the viral outbreaks occur, the best way
to contain them is through diligent quarantine, disinfection, and
travel restrictions.

It should be noted that new outbreaks have already started to
appear in the post-Covid-19 world. In February 2023, an outbreak
of MARV was reported in Equatorial Guinea with every known pa-
tient dying (Marburg virus disease—Equatorial Guinea; Disease
Outbreak News 2023). While the highest probability of outbreak
was in Eastern Africa, rather than in Western Africa, it is of note
that an outbreak in Africa was expected and predicted. Between
1 January 2023 and 16 March 2023, the USA, parts of Europe and
Asia, and much of Africa and South America have all seen DENV
outbreaks. Bolivia has reported more than 7000 cases in the first
6 weeks of 2023 Bolivian hospitals under strain as dengue kills
dozens; Associated Press 2023). Given the two hot (the average
temperature is constantly rising) and rainy years in a row in 2020-
2022, we also expected to see a Dengue outbreak in Brazil (which is
happening right now) in accord with expectations one could draw
from the data in Fig. 4 where we indicated that Brazil is in the
most danger for the appearance of new outbreaks. It has already
been verified in several studies that the highest incidence of the
disease and levels of infestation by Dengue vectors in Brazil coin-
cided with the rainy months, which were also the hottest months
of the year in the country (Viana and Ignotti 2013).

While we continue to expect viral outbreaks in the future, we
need to admit that there is no blanket approach to predicting
these outbreaks. Therefore, we must continue our research into
the outbreak prediction, but acknowledge that in all likelihood,
we will not precisely know what, when, and where the next viral
threat will happen. COVID-19 taught humanity that new enemies
are always waiting at the gate and will show no mercy. We have
been warned, but now we need to be armed, and thus, antiviral
drug discovery and development must be of the highest impor-
tance.

Summary and perspectives

Viruses have always been present alongside humankind and new
outbreaks are constantly happening. In addition, ecological dis-
ruption and climate change make it more likely that new zoonotic
viruses will jump over to humans. However, as mentioned in this
Perspective, there are many ways we can prevent these outbreaks
from turning into mass tragedies like the 1918 flu pandemic and
the current COVID-19 pandemic. Such methods include employ-
ing data science to predict emerging outbreaks, surveillance of
reservoir populations, promoting scientific awareness and liter-
acy, following guidelines set by scientists and officials as to how to
prevent infection and spread, providing consistent funding for vi-
rology and broad-spectrum antiviral drug discovery research, and
ultimately heeding the warnings of the virologists and data scien-
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tists that forecast the occurrence of such outbreaks. For instance,
where the NOROCAST predictions were heeded, potentially haz-
ardous food was not distributed, and the impending illness was,
therefore, prevented (Wang and Deng 2016); on the contrary, the
warnings against MERS in the USA were not acted on promptly
and severe illness struck those infected in the following months
(Bialek et al. 2014, Donnelly et al. 2019).

The coexistence of humans and viruses is an intrinsic aspect of
life. Epidemics of various sizes have occurred throughout recorded
history and will continue to occur in the future. The constant
increase in globalization, encroachment on wildlife, and climate
change are all likely to increase the spread of emerging viruses
(Baker et al. 2021). Therefore, it is essential to establish a long-
standing political and financial investment in virology research
to understand the etiology of new viruses and predict geographi-
cal areas and circumstances in which outbreaks are more likely to
occur. Additionally, ongoing research is necessary to advance vac-
cine development as well as both broad-spectrum and targeted
antiviral treatments. The time a country or community might
have to combat a virus may be minimal, making this an urgent
task.

Outbreak analytics is an emerging research area focused on
employing data science technology and methods to collect, cu-
rate, visualize, model, and report outbreaks to inform better and
drive proper epidemiological response (Polonsky et al. 2019). How-
ever, as discussed in this perspective, current efforts have relied on
forecasting new cases likely to arise, spread, and impact an ongo-
ing outbreak. We posit that efforts should be made to employ data
science to predict the date and locale that emerging pathogens
are more likely to appear to enable pointed research and public
health efforts to prevent outbreaks from happening. The rapid and
ubiquitous use of smartphones and heavy accumulation of social
media data, electronic health records, surveillance and geospatial
systems, health sensing systems, online search, and Bluetooth ex-
posure apps (Google 2023) have created an unprecedented tech-
nological infrastructure for achieving this goal, similarly to the
prediction of other temporal catastrophic events, such as natural
disasters (Goswami et al. 2018), terrorism (Ding et al. 2017), and ur-
ban pipeline leakage accidents (Qiu et al. 2018). Although the use
of health data and phone location continues to raise privacy con-
cerns (Schomakers et al. 2019), progress has been made to develop
privacy-preserving technologies to allow health data for contact
tracing and epidemiological surveillance and outbreak analytics
(Altuwaiyan et al. 2018, Anjum et al. 2018).

Before computational models can be considered a reliable
data-driven approach for forecasting emerging pathogens, sev-
eral steps in the data science of outbreak analytics should be
executed. Ideally, data generated by different countries should
be shared through government and research institutes, indus-
try, and so on, following the FAIR (findability, accessibility, in-
teroperability, and reusability) data principles (Wilkinson et al.
2016). The logistics underlying building technologies able to
predict future outbreaks are complex and will involve the de-
velopment of both point-of-care data collection, database de-
sign, mobile apps, network infrastructure, privacy-preserving
technologies, and the development of knowledge graphs algo-
rithms. An epidemiological data model with a defined and well-
established ontology needs to be developed to guarantee a good
data ecosystem. Further, the contact tracing apps for COVID-
19 have faced low efficacy due to the low usage and testing
rates (Cebrian 2021, Munzert et al. 2021). These recent studies
have shown that data science can be used to better predict and
assess the current state of outbreaks. Still, significant political



FEMS Microbiology Reviews, 2023, Vol. 47, No. 5

12

($10¢ 'Te 12 uBRUINEY)
SPIUBXOZEIIN ‘UIUWRING
SUIPNIIADOIIIU-G ‘SUIPUINOIYI-

(Tzoc ueL)
ewioy3uoT ‘eydiowodenuasuey

‘ULIIARQTY QUIPNAIAISW-D,g ‘FOT-AAN-VXA ‘FTT-IVL STLITAOION
(8T0Z TR
19 axuasoy) Iaendiae] ‘ULIABGTY (zz0z A0S STRUIL[EDTUI[D) 00SH-ONI ASV'T
(T2oz "1e 30 saupusdueT) (ocoz
urwreins Taendies Te6T-adil Te 32 sodureD uoory) LeN TXOPYYD ARYIN
(810 TR 32 B1109)
unosuLLA] ‘qruneseq ‘T0¥e-XZ (ozoz B
‘ULIIABQU PUE PIoe D1[ousydodki 19 3uaq) 08TA "M¥9d-111A9 ‘€0891S
qiaeridereq TABUGEN ‘SO0AL/E00AL ‘0EVFNACQL ALV'T (0z0z Te 39 Buaq) BrXRABURQ ANAA
(610C
‘Te 32 907) aUIUENSOIY ], ‘PIOY
orouaydodAN
‘UNDIULISA] ‘UDAWOUNDIBJ (8107 seseasiq
‘qIu0z3}10g ‘UJOUEBINY ‘TH9Xa[1D HIN) AldZ ‘€T/-0EVFQ/ANIZ1 MIZ
(TZ0T Te 33 [UNd) SUIPURUOIA]
‘QULIDBUIND ‘SUOIO[LL (d>1z0z DAD (120T 11995195 pue £3s]00/y)) (dozoz
(STOZ UBNK) SUSJIWDIO], ‘UOT}ULAIJ PUB [0IIUOD) 9SEISIJ ofToeA7WED PUB IqUIOD-DBATUIRD uonezIuesIO YI[edH PLIOM)
‘suaydruorD 1eIsniSuA 10j S19}UaD) B3UBQT ‘qazeuIu] ‘AO9I-SPV ‘Z09I-£PVUD B3QBAJN/OUSPQRZ ‘O9IAYT SnIA B[0qT
(zzoe
AO3"STRULL[BOTUI[D—SIS3}UN[OA
AqaresH ur AOD-SYIN 10 00/H-ONI
J0 Aydrusdounwiwd] pue A1[Iqeis[or,
£325eS) (00£7-ONI) 00£5-STD
(120 403 S[RUL[BITUID—SYIN
1sUte8Y T-Id° S-SYIN-VAN SUDIRA
31eprpue) ay) jo Arusdounuruiy
pue £155eS) 13d"S-SIIN-VAN
(ozoz
(zzoz 'Te 19 oyLd-o[aN) A0S S[ELIL[EDTUI[D—IBAWED-SYAL
11as1dedog ataeuldo Jo fyrusdounuuu]
‘WRIYNSI(T ‘TIAISSPUISY pue £19]eS Jo Apn1S) DBAUIRD-SYAT
‘sunusWy TIAISSP[RD (0z0z 'Te 12 BIESs[0d) TXOPVUD AOD-SYIN
(czoz 1B 32 Oy[i-01eN)
1aa1dadog ‘ataeuido (ozoz e 3
‘WeIYnsI T1A0[dDUS] TT) dA-00-STOVNASUS-DYA (ADSI)
TIAISSPWY ‘TIAISIP[ED SUIDBA AOD-SYVS PIIBATIOBU] AOD-SUVS
(zzoz 'Te 19 oy[id-o[aN) (¢ceoz vad
1aa1dadog ‘ataeuido (zzoz TR 32 ‘SaUIDDBA 6T-AIAOD) (XeadxIds)
‘WRIYNSI AIAO[DTOUS] oy[id-oeN) (vN3) Itaendnuon BUISPON ‘([33[) uassue(
TIATSOPWDY TIAISIP[ED {(VNJ) P1AOTXE] TIAISIPWDY (0zoz 'Te 12 1) AU ‘(K&yeurtwioD) Yoo LNOIg-1924d Z-A0D-SUVS
s8nip pasodinday s8nip panoiddy juswdoransp aumdep saupdea pasoiddy SNIIA

'SBaIqAINO [ellA 21n1ng 1sutede pasodindar aq Aeur 10 ‘yuswdoraaap ul ‘paroidde oIe 1By} SSUIDIEA pue S3NIp Jo sajdwexT ‘g d[qelL



13

Sessions et al.

(T20Z 'T& 3° [Und) SuIpUEeUOIAg
‘QULIDBUINQY ‘DUOIOTL],

(zzoz 'Te 10 soqid) aaendiaeg
(Tcoz 183

910319/\) aumboIo[yD ‘ULIABGRY

(°Tz0z DAD ‘uonusAdld
pUE [0I}U0D 9SE3SI(] 10] SIIUSD)
[IXOQIRW IIARXO[RY IIATUIRID]

(6107 1B 32 OUI0ZZ1]) WSZETI] TIATWEURYZ TIATUIBI[3SQ

(20T T8 12 1Z1BIN) AVIN-ASA

(0zoz "Te 32 n17) (X)N-NLH/DYMd

(z20z ‘T8 18 131501) A-DS-ASH

(0z0Z "Te 32 NI) XBABRIUBH

(zeoz B 1@

1931804) (COAHA) DIAIN-DV-ASAL
(uonjuaARIg puE [01IU0D) 3SBISI
10J SI91U9D) JUS[BAUIPEND)
ISTAN[] ‘JUS[BALIPEND

Jo[qn{d ‘JUSeALIPEND

XBA[RON[] ‘JUS[BALIPRND
2U0ZN[] ‘JUS[BAUIPEND)

[eARTN[] JUS[BALIPEND

XUEBN[] ‘YUS[BALIPEBND BUN[JY

NIVIN
ANOYO

STUITA BlUBH

snua yediN

SNIIA BZUSN[JU]

s8nip pasodinday s8nip pasorddy

1uswdo[aAsp SUIDBA

saumpdea pansorddy

STUIIA

psnunuoy °g d[qeL



14 | FEMS Microbiology Reviews, 2023, Vol. 47, No. 5

and economic commitment to providing infrastructure for di-
agnostic testing, collecting, and evaluating the resulting data is
necessary.

Interest in viruses should not be a temporal issue, dependent
on whether a viral pathogen is currently circulating through the
population or not. However, it tends to be in many cases (Bo-
browski et al. 2020). Scientific literacy and understanding how
viruses and other pathogens cause human disease and spread
throughout populations are necessary to promote widespread
health. Vaccines are available for viruses that will likely cause out-
breaks in the future, such as Ebola virus and influenza virus, and
new vaccines for other viruses are on the way Widespread scien-
tific literacy can facilitate the implementation of mass vaccina-
tion campaigns that will prevent outbreaks of these viruses from
occurring in the first place.

As seen in the COVID-19 pandemic in certain countries such
as the USA, public resistance to health agencies’ guidelines and
vaccination has resulted in the accentuated spread of SARS-CoV-
2. States with lower levels of mask adherence before the relax-
ation of CDC guidelines were associated with high COVID-19 case
rates in the following month, excluding other factors (Fischer et
al. 2021). Regions in the USA that are less likely to mask or get vac-
cinated against the virus are more likely to be rural regions, which
are already more at risk for COVID-19 due to other factors (Centers
for Disease Control and Prevention, CDC, Texas A&M University
2021, Callaghan et al. 2021). Relatedly, in many states and presum-
ably beyond, rural counties were associated with higher COVID-19
case rates and mortality rates (Huang et al. 2021). This association
between the willingness to follow CDC guidelines and regulations
surrounding COVID-19 and the rate or severity of COVID-19 sug-
gests that increased scientific literacy and boosted public aware-
ness campaigns surrounding pandemics and viral diseases might
assist in preventing viral spread within the general population.

As highlighted in our recent analysis, the consistent funding
for research on HIV/acquired immunodeficiency syndrome has
resulted in the development of a plethora of antiviral drugs of
different classes that can be used in combination to stave off a
disease that was once a death sentence (Bobrowski et al. 2021).
This is one of the few examples of a virus that has received con-
sistent attention since it began a pandemic in the 1980s that con-
tinues today, and one of the few true success stories in conquer-
ing a dangerous viral illness in modern history through antiviral
drug development. Having effective treatments for a viral disease,
be it preventative care or postsymptomatic treatment, completely
changes the course of the epidemic.

For most of the viruses mentioned in this paper there are no
available, effective antiviral treatments or vaccines (Table 5). Like-
wise, there is no consistent funding for these diseases, especially
those with high potential to cause disease (such as the Oropouche
and MAYVs) but have yet to cause widespread, global outbreaks.
Interest in these viruses should not wane past the point where a
particular epidemic ends, but more than often, this is the case; as
public interest wanes in major epidemic viruses, so does the fund-
ing for research into said virus (Bobrowski et al. 2020). Both the
rapidity and bulk of immediate responses to temporal viral epi-
demics are typically insufficient to result in a tangible outcome
(i.e. vaccine or antiviral medication) past the point the epidemic
has ended. EBOV and ZIKV, both described in this paper as being
high-risk viruses for future outbreaks, have seen decreased NIH
funding available after their initial outbreaks (2014-2016). This
decrease in funding is also associated with a decrease in pub-
lications associated with these viruses in PubMed (Bobrowski et
al. 2020). Therefore, it is necessary to maintain interest in these

viruses past the point at which they cease to be a problem; just
because one epidemic has ended does not mean another will not
begin soon after, as with the more recent outbreak of EBOV (2018-
2020).

For decades, most antiviral research followed the “one bug, one
drug” paradigm, but with a recent paradigm shift toward broad
spectrum drugs, it is unclear how many existing compounds are
active against multiple viruses. An open-access small molecule
antiviral compound collection (SMACC) was recently developed
(Martin et al. 2023) to support the discovery of broad-spectrum
antiviral drug molecules; currently, it contains over 32 500 chemi-
cal bioactivity entries for 13 viruses with high pandemic potential.
Their analysis revealed several compounds with multiple antiviral
activities suggesting the feasibility of broad spectrum antivirals
but underscoring the need for systematic efforts toward discovery
of such agents, like the Rapidly Emerging Antiviral Drug Develop-
ment [nitiative (READDI) at UNC-Chapel Hill. Current research in-
dicates the conservation of viral proteins (Melo-Filho et al. 2022)
or other conserved viral mechanisms, like involvement of com-
mon host factors (Kumar et al. 2020), could be the key to broad-
spectrum antiviral discovery. Obviously, host targets responsible
for viral entry should not be forgotten as well (Hochuli et al. 2022).

Biomedical knowledge mining tools like ROBOKOP (Bizon et al.
2019) (Reasoning Over Biomedical Objects linked in Knowledge-
Oriented Pathways) and Chemotext (Capuzzi et al. 2018) have
been developed to help elucidate biological pathways underlying
compound activity or toxicity. Similar technologies can be lever-
aged and deployed to mine data to detect emerging pathogens and
estimate data of new outbreaks to facilitate rapid responses, such
as patient isolation and contact tracing to prevent the spread of
the virus. For example, a recent study reported the development of
a tool leveraging deep learning and a computer sensor system ca-
pable of predictinginfluenza outbreaks 15 weeks in advance based
on and real-time data of flu patterns and symptoms (Al Hossain
et al. 2020).

Ultimately, we should focus more on the future, particularly on
how the past informs that future. Anyone alive today can say it
is infinitely better not to experience a viral pandemic than to live
through the associated economic, mental, and personal tragedies
associated with it. All the viruses mentioned—SARS-CoV-2, MERS-
CoV, DENV, ZIKV, MAYV, LASV, noroviruses, influenza, Nipah virus,
hantaviruses, OROV, MARV, and Ebola virus—have epidemic po-
tential and require attention to avoid becoming catastrophes. The
available predictive models can advise us on when, where, or what
strain of virus may emerge, and more attention should be given
to alerting models. Consistent investment in research and pub-
lic literacy in science is integral to implementing actual policies
that can affect individual lives. If public health officials and politi-
cians worldwide heed the warnings of virologists and data scien-
tists who predict and generate data, they could prevent the next
viral epidemic and avoid mass morbidity and mortality. History
sets a precedent for successes and failures, and the handling of
many major pandemics in the past are failures. However, this does
not have to be the case in the future. We have been warned of the
dangers of currently circulating virus strains that exist and their
potential for disease, what remains to be determined is if these
dangers will be given proper attention by the scientific commu-
nity and funding agencies.
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