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Abstract: The most prevalent and aggressive type of brain cancer, namely, glioblastoma (GBM), is
characterized by intra- and inter-tumor heterogeneity and strong spreading capacity, which makes
treatment ineffective. A true therapeutic answer is still in its infancy despite various studies that have
made significant progress toward understanding the mechanisms behind GBM recurrence and its
resistance. The primary causes of GBM recurrence are attributed to the heterogeneity and diffusive
nature; therefore, monitoring the tumor’s heterogeneity and spreading may offer a set of therapeutic
targets that could improve the clinical management of GBM and prevent tumor relapse. Additionally,
the blood–brain barrier (BBB)-related poor drug delivery that prevents effective drug concentrations
within the tumor is discussed. With a primary emphasis on signaling heterogeneity, tumor infiltration,
and computational modeling of GBM, this review covers typical therapeutic difficulties and factors
contributing to drug resistance development and discusses potential therapeutic approaches.

Keywords: glioblastoma; recurrence; heterogeneity; invasion; blood–brain barrier (BBB); targeted
therapy; GBM signaling

1. Introduction

Glioma is a term used to describe a neuroepithelial tumor originating from glial cells,
which are the most common type of supporting cells in the CNS. One of the deadliest types
of human cancer, namely, glioblastoma multiforme (GBM), is classified as a WHO grade IV
brain tumor. A combination of surgical resection, radiation therapy, and chemotherapy are
the current accepted treatments for GBM [1].

Surgery to remove a GBM tumor carries a significant danger for the patient since
it frequently invades vital brain regions. Following surgery, patients receive concurrent
Temozolomide (TMZ) and radiation therapy. Unfortunately, these methods only slightly
improve the prognosis for GBM patients, with a median survival of 14–15 months and a
5-year survival rate of about 10% [2,3].

In this review, we highlight three major problems in GBM treatment: tumor hetero-
geneity, GBM infiltration, and the blood–brain barrier (BBB) (Figure 1).

Significant efforts have been made to subtype GBM in order to address the problem of
inter-tumor heterogeneity, including methylation (six subtypes), transcriptomic subtyping
(proneural, neural, classical, and mesenchymal), and the World Health Organization defini-
tion (IDH wild type, IDH mutated, NOS) [4,5]. However, when protein–protein expression
patterns are estimated over a large population of GBM tumors in proteome variability
studies, they reveal even more variations between GBM patients, resulting in dozens of
subgroups [6]. Furthermore, tumor cell variability (intra-tumor), which is often dynamic
and develops over time, adds another layer of complexity to tumor classification [7–9].

Another clinical difficulty is the highly diffuse nature of GBM. Even when a tumor is
successfully removed, followed by a combination of radiotherapy and chemotherapy, GBM
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recurs. Tumor relapse is frequently caused by highly infiltrative cells that penetrate the
brain and are not recognized during surgery [10]. Enhanced cellular infiltration is caused by
several processes, including signaling pathways involved in EMT (epithelial–mesenchymal
transition), ECM remodeling, and increased spreading due to cell–cell communication
inside GBM [11].
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Figure 1. A schematic overview of the main challenges for glioblastoma (GBM) clinical care men-
tioned in this review. The challenges include the infiltrative nature of GBM tumors, substantial
heterogeneity between patients or cells inside the tumor, drug delivery through the BBB, and thera-
peutic limitations.

The anatomical position of GBM provides a further significant barrier to treatment, as
GBM cells are inaccessible to most systemically administered medicines [1].

Taken as a whole, the review expands on these issues (Figure 1) and recent initiatives
to solve them, whether through novel treatment options, recent research, or technological
improvements. Other important topics, such as immune checkpoint treatment, CAR
T-based immunotherapy, oncolytic viral medicines, gene and thermo-therapies, and tailored
neoantigen-based vaccinations, were recently reviewed elsewhere [12–14].

2. Current Glioblastoma Treatments

The degree of GBM resection is a crucial element in patients’ survival. The gross total
resection (GTR) was found to be favorably connected to survival time [15,16]. However,
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achieving GTR and removing the entire tumor is rare. An exact high-level determination of
the tumor margins is required for a successful GTR. Surgical removal becomes extremely
difficult when a tumor is located in an unresectable brain area or next to an area responsible
for neurological function. Furthermore, due to the invasive nature of GBM, tumor cells
infiltrate alone or in small groups into the healthy area, making identifying tumor margins
and, ultimately, resecting the entire tumor without harming vital parts impossible [1]. As a
result, post- or pre-surgical treatments and non-surgical treatment modalities are required
to prevent tumor recurrence.

The following sections contain a list of available anti-GBM treatments and a dis-
cussion of recent developments in GBM research that aim to increase the field’s current
understanding of the disease.

2.1. Temozolomide (TMZ) Therapy

Temozolomide (TMZ) is a first-line chemotherapeutic drug used to treat post-surgical
GBM [17]. It is an oral alkylating drug that produces DNA adducts by methylating purine
bases in DNA [18]. Its chemical nature makes it a preferred chemotherapeutic agent for
GBM because of its stability at stomach acidic pH and ability to pass the blood–brain barrier
(BBB) [19].

The treatment regimen has mostly stayed the same since a clinical trial in 2005 that
confirmed the efficacy of adding TMZ to RT in a group of patients with newly diagnosed
GBM [20]. Unfortunately, despite its contribution to patient survival (a 37% increase in
survival at a median follow-up of 28 months) [20], the development of TMZ resistance and
thus, the incidence of tumor recurrence, remains very high [21].

TMZ resistance can be developed through a variety of mechanisms [19,22], including
MGMT (O6 Methylguanine DNA Methyltransferase) overexpression [23]. MGMT is a DNA
repair protein that removes the methyl group from O6-methylguanine to prevent DNA
alkylation [24].

Another mechanism shows that repeated TMZ treatment of GBM cells may transform
non-GSCs (GBM stem cells) into new GSCs [25], enhancing their potential to self-renew,
proliferate indefinitely, and differentiate into many lineages [26].

TMZ can also cause thrombocytopenia in patients, which is caused by TMZ-dependent
DNA damage in healthy cells [27,28].

Furthermore, recent research has shown that TMZ treatment may contribute to tumor
progression by promoting tumor invasion and EMT (epithelial–mesenchymal transition).
Kubelt et al., for example, demonstrated that TMZ therapy enhances mRNA expression
of many EMT markers in T98G glioma cells in vitro, including Vimentin, TGF-β, and
Fibronectin [29]. Kochanowski et al. revealed that Cx43 signaling promotes GBM cell
invasiveness in both MGMThigh (T98G) and MGMTlow (U87) populations [30]. The “GO
OR GROW” phenomenon, which was reported in slow-dividing but spreading cells, was
also detected in IDH-mutant astrocytoma and IDH-WT GBM cells after TMZ treatment.
These cells reduced their proliferation rate significantly in response to TMZ but moved
2–3 times faster [31].

2.2. Radiotherapy (RT)

Radiotherapy is recommended either alone or in conjunction with TMZ after a surgical
GBM resection. Despite the long history of radiation therapy in GBM therapy, ongoing
debates exist about its usefulness as a standard treatment technique and its involvement in
GBM recurrence.

The major mechanism through which RT causes cell death is DNA damage. The
manner in which cells respond to this injury, however, is determined by cell-intrinsic
and microenvironmental factors [32]. Current clinical practice and research show that
radiotherapy is less effective in some brain cancers than others [33,34]. Glioblastomas are
among the most radio-resistant aggressive forms of cancer [35]. Several efforts were made
to identify biomarkers to determine and select patients with radio-sensitive tumors [36].
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For example, in a study that ranked the radiosensitivity of 40 human cell lines based
on survival components, three glioblastoma cell lines, namely, U87, U251, and T98G, were
found to be the most radio-resistant cell line models [34]. The radiosensitivity was found to
be mainely associated with p53 status and the expression of the ATM gene, which plays a
critical role in regulating the DNA damage response [33]. A similar pattern was reported in
several in vivo models [37–39]. For instance, the combined effects of radiation and the ATM
kinase inhibitor (KU-60019) significantly increased mice survival by 2-3-fold compared with
controls [38]. Furthermore, the mutant p53 group was substantially more radiosensitive to
KU-60019 than p53 WT [39,40].

MDM2-mediated p53 suppression is another axis that was found to be disturbed in at
least 25% of primary and 60% of secondary GBM. The MDM2/p53 axis was reported to
reduce the efficacy of RT in the treatment of cancer [41]. Thus, inhibiting the MDM2/X-p53
interaction is recognized as a potential anti-cancer strategy, including in the treatment of
glioblastoma [42].

Radio-resistance may also arise from the cancer stem cell (CSC) subpopulation, hy-
poxia, and the increased expression of DNA repair pathways [43]. Moreover, irradiation,
similarly to TMZ, can promote cancer progression. For instance, it was observed that
primary malignancies treated with brain radiation had a seven-fold greater chance of
developing secondary CNS tumors [2].

Besides the radio-resistance mechanisms, RT was found to induce enhanced invasion
and cell “escaping” from the primary tumor [44], which is one of the main reasons for
tumor relapse [45], especially at the post-surgical margins, which occurs at rates of up to
90% [46].

Cells that survive the lethal effects of RT are frequently aggressive, multiply more
quickly, and have improved migratory and invasion capabilities [47]. It was found that
modest dosages of 5-8 Gy, which cannot be increased due to safety reasons [48], enhance
tumor cell invasion [49,50]. It is yet not fully clear why low radiation exposures increase cell
migration. Several studies found that RT changes the expression and functional activities
of adhesion molecules [51], such as the upregulation of αv β3 integrin expression following
RT [52]. Another study found that RT can activate Src-dependent EGFR, which activates
the p38/Akt and PI3K/Akt signaling pathways, resulting in enhanced MMP-2 secretion
and invasiveness of PTEN mutant glioma cells [53].

2.3. Tumor-Treating Fields (TTFs)

A TTF is a relatively recent non-invasive therapeutic approach that involves admin-
istering alternating, low-intensity, intermediate-frequency electric fields (100–300 kHz)
to tumor cells [54]. The TTF devices comprise nine insulated electrodes placed on the
patient’s scalp to deliver electric fields that aim to disrupt cell division and reduce tumor
growth [55]. TTFs, in particular, interrupt the normal polymerization–depolymerization
process of microtubules during mitosis. In terms of cell morphological changes in response
to therapy, their effect is comparable with that of Taxol [55].

The US Food and Drug Administration (FDA) approved a TTF device in 2011 to
treat recurrent or resistant GBM. Together with the National Comprehensive Cancer Net-
work (NCCN), they recently approved the TTF device as an adjuvant treatment for newly
diagnosed GBM patients who have completed standard-of-care surgery and chemoradia-
tion [56]. However, a TTF is not regarded as a “standard of treatment” for GBM patients,
owing to incomplete clinical trials that lacked a placebo-control “sham” device and demon-
strated poor safety, in addition to the device’s high cost [56].

The poor response of GBM tumors to existing treatments spurred researchers world-
wide to define the mechanisms and GBM phenotypes that cause therapeutic resistance. The
primary mechanisms are listed below.
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3. Infiltration and Invasion of GBM Cells

The invasiveness of GBM is a major reason for therapeutic failure. Cancer cells that
remain after surgery or treatment frequently create a new mass within 2–3 cm of the original
lesion [57]. While other aggressive cancers spread to organs via the circulatory or lymphatic
systems, high-grade glioma cells migrate actively through two types of extracellular space
in the brain: (1) perivascular space near blood vessels and (2) space between neurons and
glial cells that make up the brain parenchyma and white matter fiber tracts [58].

3.1. Epithelial–Mesenchymal Transition (EMT)

The EMT is a critical mechanism in physiological and pathological processes, such as
embryogenesis, wound healing, and cancer development, enabling cells to transit from an
epithelial to a mesenchymal state [59]. The literature defines three distinct EMT subtypes,
each of which occurs in different biological circumstances and has a range of functional
outcomes [60,61].

Normal tissue homeostasis, including embryonic development, is influenced by type
1 EMT, while type 2 EMT occurs in wound healing, organ fibrosis, and tissue regenera-
tion [61]. Type 3 EMT, on the other hand, is associated with neoplastic cells that have
undergone genetic and epigenetic changes, boosting tumor-initiating and metastatic poten-
tial, as well as resistance to different treatment regimens [62].

EMT causes epithelial cells to separate when cells lose their apical–basal polarity and
connections through tight junctions. In other words, epithelial cells lose their ability to
adhere and instead develop a fibroblast-like shape and enhanced mobility during EMT.
EMT simultaneously promotes the expression of mesenchymal marker proteins and aids
in developing mesenchymal characteristics and attachment to the extracellular matrix
(ECM) [63].

Type 3 EMT plays a dominant role in GBM tumors [64], where it is associated with
poor prognosis, tumors’ immune escape [65], and invasive behavior of GBMs, coupled
with autophagy, which is a cellular process involved in the degradation of cytosolic protein
aggregates, supporting cellular and organismal homeostasis [66]. GBM cells become more
capable of migrating and invading through blood vessels and basement membranes as
they approach the mesenchymal state. Since GBM cells do not originate from epithelial
cells, the EMT process in GBM is referred to as EMT-like.

N-cadherin overexpression and E-cadherin loss are two of the most noticeable char-
acteristics of EMT [57,67]. The loss of E-cadherin causes changes in cell adhesion and
increases cell spreading since it is an epithelial marker that prevents epithelial cells from
separating from the parent tissue [68]. On the other hand, it was demonstrated that brain
tumor invasion is increased by overexpressing N-cadherin, which is a transmembrane
adhesion protein [68,69].

Eukaryotic Translation Elongation Factor 1 Delta (EEF1D) and Calponin and LIM
Domain Containing 2 (MICAL2) are two further examples of EMT-related markers. It was
demonstrated that EEF1D increases glioma proliferation and invasion via modifying the
EMT process and that blocking EEF1D might reverse the EMT properties of glioma cells,
decreasing cell growth and tumor progression [70]. In addition, a TGF-B/p-Smad2/EMT-
like signaling pathway was discovered to increase GBM growth and invasion [71].

Recently, it was discovered that the radioresistant characteristics of some gliomas and
GBMs are related to the overexpression of EMT genes, such as ACTN1, CCND1, HCLS1,
ITGB5, PFN2, PTPRC, RAB13, and WAS [72]. Irradiation was also shown to increase the
expression of Vimentin and other EMT-associated proteins, which may play a role in cell
migration [46,73]. Furthermore, it was proposed that Vimentin can cause EMT movement
by upregulating N-cadherin and downregulating E-cadherin [74].

3.2. The Extracellular Matrix (ECM) Has a Role in Cell Invasion

GBM cells invade by undergoing many biological changes that ultimately result in
remodeling the cellular cytoskeleton and the surrounding extracellular matrix (ECM). Even
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though the ECM is a physical barrier that GBM cells must overcome, it also provides
ligands, such as integrins [58], to which the tumor cells can anchor to propel themselves
forward and carry out the mesenchymal migration [75]. It was shown, for example, that RT
can alter the ECM by upregulating integrins, facilitating GBM infiltration [76].

Cell adhesion, migration, and cell fate decisions are significantly influenced by the
molecular and physical properties of the ECM. Normal brain tissue’s ECM comprises
hyaluronan, proteoglycans, and tenascin-C, and it lacks fibrillar collagens’ capacity to create
stiff ECM structures [77]. In contrast, the ECM in GBM is associated with a significant
increase in basement membrane constituents like collagens and laminin [10,78].

Laminin expression and peri-tumor collagen production were both found to be upreg-
ulated at the invasive edge of GBMs [79], favoring cancer cell invasion and metastasis in
different cancer models [80,81].

Collagen type I, which acts as a structural framework for cells and other scaffold
proteins [82], is one of the most abundant connective tissue components. Collagen I may be
prevalent in some tumor types, like lung carcinoma [83]; however, in GBM [84], collagen
types IV and VI were shown to be more essential for GBM tumor growth, vasculariza-
tion, and migration [85–87]. Thus, ECM elements, including collagens, were proposed as
potential therapeutic targets for GBM [47,78,88].

4. Signal Transduction Pathways and Targeted Therapies

The primary regulatory pathways that support GBM tumor invasion, survival, drug
resistance, and anti-apoptotic characteristics are listed below.

4.1. Epidermal Growth Factor Receptor (EGFR)

The epidermal growth factor receptor (EGFR) has been designated as a “signature
molecule” for glioblastoma [89,90]. EGFR is a tyrosine kinase receptor that regulates multi-
ple signaling pathways involved in cell proliferation, differentiation, and migration [91],
including PI3K/AKT, RAS/RAF/MEK/MAPK, and STAT cascades [92–94] (Figure 2). The
EGFR gene amplification is common in all gliomas, accounting for 40 to 50 percent of
primary GBMs [95].

EGFRvIII is a mutant EGF receptor that lacks the extracellular ligand-binding domain
(exons 2–7 deletion) and is constitutively active in 50-60% of EGFR-amplified GBMs [96].
GBM tumors that express wtEGFR frequently express the EGFR lesion [97–99]. EGFRvIII ex-
pression, on the other hand, is uncommon in the absence of wtEGFR amplification [98,100].
The difference between the two receptors also appears in their activated downstream
pathways. For instance, it was reported that EGFRvIII cells had substantially higher PI3K
activity than did cells with wtEGFR [101]. EGFRvIII, unlike wtEGFR, does not appear
to activate the STAT3 pathway via direct phosphorylation [102]. Furthermore, a study
found that U87MG GBM cells engineered to express EGFRvIII increased RAS activity
twice as much as parental cells [103] (Figure 2). EGFRvIII was regularly found to be
more tumorigenic than wtEGFR [104–106]. Nude mice injected with U87MG GBM cell
lines harboring EGFRvIII, for example, form tumors faster than parental U87MG cells or
cells expressing wtEGFR [107]. Furthermore, NR6 murine fibroblasts harboring EGFRvIII
demonstrated increased motility, while U87 MG cells transfected with EGFRvIII demon-
strated increased migration and invasion [108,109]. This phenomenon was compatible with
clinical observations [110].

Recently, it was demonstrated that murine astrocytes expressing EGFRvIII were sig-
nificantly less adhesive by reducing their focal adhesion size and number and displayed
enhanced migration compared with cells bearing mutations in Ink4a or PTEN [111].

4.2. Vascular Endothelial Growth Factor Receptor (VEGFR)

Three Receptor Tyrosine Kinases (RTKs) are members of the Vascular Endothelial
Growth Factor Receptors family (VEGFR1-3). It was shown to influence vasculogenesis
and angiogenesis [112,113]. Because of unregulated angiogenesis and vascularization in
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GBM tumors, VEGFR2 signaling is disrupted, resulting in uncontrolled survival, migration,
and vessel permeability [114]. Furthermore, the surrounding hypoxic microenvironment
of glioblastoma induces VEGFR signaling, allowing the tumors to compensate for the
hypoxia [115]. In addition to its angiogenic involvement in glioblastoma, a few studies re-
vealed that VEGFR may be involved in the irradiation-dependent motility and proliferation
of GBM cells [116].
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RAS/MAPK activation is stronger in EGFRvIII-expressing cells, EGFRwt commonly stimulates
MAPK and STAT3, encouraging tumor growth. Meanwhile, EGFRvIII is constitutively activated and
primarily initiates the PI3K pathway, which is involved in tumor invasion and survival.

4.3. Fibroblast Growth Factor Receptor (FGFR)

The Fibroblast Growth Factor Receptor family consists of four receptors, namely,
FGFR 1-4. They control essential biological processes involved in development, including
differentiation and proliferation, as well as CNS growth and tissue repair [117,118].

Although FGFR genetic mutations are regarded as infrequent in glioblastoma, FGFR
overexpression in astrocytes may contribute to malignant transformation and GBM progres-
sion [119]. FGFR3 and FGFR4 were shown to be upregulated in invasive GBM cells [120].
Furthermore, FGRF1 and FGFR3 gene fusions with transforming acidic coiled-coil genes
(FGFR-TACC) were discovered in GBM, leading to constitutive receptor activation and
aneuploidy [121].

4.4. Platelet-Derived Growth Factor Receptor (PDGFR)

The platelet-derived growth factor receptor family includes two receptors, namely,
PDGFRα and PDGFRβ, which are required for tissue development during embryogenesis.
PDGF mutations were implicated in GBM development and metastasis [122]. The two
receptors contribute to the progression of GBM in separate ways. While PDGFRα, which is
the second most amplified receptor in glioblastoma after EGFR, is primarily upregulated in
the proneural subtype, PDGFRβ is preferentially expressed in glioma stem cells (GSCs),
where it regulates the level of stem cell markers, like SOX2 [4,123]. Furthermore, PDGFRα
mutations are strongly linked to the occurrence and poor prognosis of GBMs [124].
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4.5. Hepatocyte Growth Factor Receptor (HGFR)

The hepatocyte growth factor receptor, also known as c-MET, is recognized to play an
essential role in the interaction of mesenchymal and epithelial cells throughout embryogen-
esis and tissue homeostasis. HGFR-activating ligands are abundantly produced by GBM
cells, resulting in significant activation of PI3K, STAT3, and RAS pathways [125,126]. HGFR
amplification was found in 1.6-4 percent of GBM samples, and its presence was linked to a
poor prognosis [98,127].

4.6. Insulin-like Growth Factor Receptor 1 (IGF1R)

The insulin-like growth factor receptor 1 is a member of the IGF receptor family, which
is known to play important functions in prenatal and postnatal development [128]. While
IGF1R expression in normal tissue regulates cell proliferation and differentiation during
brain development, its upregulation in GBMs is associated with enhanced activation of
PI3K/Akt and MAPK pathways, leading to neoplastic transformation, TMZ resistance, and
poor patient survival [129,130].

4.7. Discoidin Domain Receptors (DDRs)

Triple-helical collagen activates the discoidin domain receptors, namely, DDR1 and
DDR2, in a delayed and sustained manner [131,132]. DDRs play a vital role in embryonic de-
velopment by regulating a variety of processes, including proliferation, migration, adhesion,
and ECM remodeling [133]. GBMs are distinguished by a high amount of collagens, which
alters DDR signaling and ECM stiffness, thereby influencing tumor progression [86]. DDR1
overexpression in GBM cells is associated with increased migration and invasion [134] and
poor clinical outcomes [135]. In DDR2-mutated GBM, increased cell–ECM interactions
were connected to tumor invasion [136].

4.8. Tyrosine Kinase with Immunoglobulin-like and EGF-like Domains (Tie) Receptors

Tie1 and Tie2 are members of the Tie receptor family. They are required for angiogenic
vascular remodeling during embryogenesis and to control lymphangiogenic responses [137].
Tie2 expression in nonvascular glioma compartments correlates with glioma development
and grade [138,139]. Following this finding, it was suggested that Tie2 signaling may
facilitate cross-talk in the tumor microenvironment (TME) between glioma cells and vas-
cular endothelial cells [139]. Ang-2, which is its agonist, was shown to be overexpressed
in GBMs, where it is related to Tie2 activation, increased invasion, and reduced VEGF
inhibition [140–142].

4.9. RTK Downstream Signaling

Ras/MAPK, PI3K/AKT/PTEN, FAK/SRC, and DNA repair signaling cascades are
commonly disturbed in GBM [139,143].

Despite lacking RAS mutations, the protein is significantly activated in glioblastoma
due to Receptor Tyrosine Kinase (RTK) activation, such as EGFR [144]. The upregulation
of H-Ras or K-Ras was found to induce astrocyte transformation into malignant and
infiltrating gliomas [145,146]. In addition to contributing to gliomagenesis, the RAS/MAPK
signaling pathway is also involved in tumor maintenance [147].

The PI3K/AKT/PTEN and FAK/SRC pathways, which control cell proliferation, inva-
sion, metastasis, and metabolism, are additional critical signaling pathways in GBM [148–150].
PI3K/AKT/PTEN is often active in GBMs due to PTEN and PI3K mutations or Akt amplifica-
tions [151], and it plays an important role in the development and progression of gliomas [152].
The upregulation of FAK/SRC induces the invasion and metastasis of GBM malignancies.
Furthermore, SRC was linked to GBM maintenance via TME inflammation and metabolic
rewiring [153].

DNA damage response [154–156] is one of the fundamental mechanisms driving
radiation or chemotherapy resistance. It was shown that EGFR may activate ATM, which is
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one of the main regulators and effectors of the DNA-damage-activated checkpoint system,
which causes radiation resistance in EGFRvIII tumor cells [157,158].

4.10. Targeted Therapy

Although significant progress has been made recently in understanding the molecular
mechanisms underlying the malignancy of glioblastomas [159–161], which also resulted in
the identification and validation of prognostic and predictive biomarkers [162,163], targeted
therapies have so far demonstrated only modest clinical trial efficacy [160] (Figure 3).
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Even though more than >70% of GBM patients have overexpressed RTK [164], such as
EGFR and PDGFRA with active downstream pathways (e.g., PI3K/AKT/mTOR) [165], clin-
ical trials including RTK inhibitors, such as Cetuximab, an FDA-approved anti-EGFR [166]
antibody, or Imatinib (anti-PDGFRA inhibitor), have failed. Poor BBB permeability, in-
tertumor heterogeneity, unfavorable side effects, and toxicities were the leading causes
of these failures [160,167]. Despite promising results in preclinical investigations [168],
erlotinib, which is another EGFR tyrosine kinase inhibitor (TKI), exhibited poor efficacy
and unacceptable side effects [169] in phase 2 clinical trials of newly diagnosed or recurrent
GBM patients.

Other examples are VEGF inhibitors [167,170], such as Bevacizumab, which is an FDA-
approved, humanized monoclonal antibody that failed clinical trials due to low overall
patient survival [170].

Several studies were undertaken to evaluate the idea of using inhibitors of downstream
pathways (PTEN/PI3K/AKT/mTOR) rather than targeting upstream receptors [160,171].
However, despite promising results in in vitro and in vivo preclinical studies, PI3K and
RAS inhibitors failed in clinical trials. PI3K inhibitors, for example, were ineffective at low
acceptable doses, but large dosages or long-term therapy resulted in significant side effects
and toxicities, as seen with LY294002 [17,172–174].

Significant efforts have been made to provide novel therapeutic technologies to dissect
the complexity of GBM biology, as well as crossing the BBB [175,176]. Nevertheless, poor
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BBB permeability and intertumor heterogeneity remain the primary therapeutic challenges
for GBM [13,160,167].

5. Tumor Heterogeneity

Inter-tumor heterogeneity is the term used to describe the heterogeneity among pa-
tients harboring tumors of various histological or molecular types. The existence of phe-
notypically and molecularly distinct cell populations within a tumor that exhibit varying
degrees of resistance to existing treatments is known as intra-tumor heterogeneity (Figure 4).
Using transcriptional profiling data from bulk tumor tissues, four subgroups of GBM tu-
mors were identified: mesenchymal, classical, proneural, and neural. A recent study
identified 18 driver genes, including MGMT, ATRX, H3F3A, TP53, EGFR, NES, VIM, MIK67,
and OLIG2, with differential expression profiles in different molecular subtypes [177]. For
instance, Herrera-Oropeza et al. found that the classical subtype showed overexpression of
EGFR, NES, VIM, and TP53, while the proneural subtype was characterized by the overex-
pression of MKi67 and OLIG2. The mesenchymal subtype showed the overexpression of
MGMT and VIM, and the repression of EGFR, H3F3Q, OLIG2, S100, and TP53. In fact, it
was discovered that NES, OLIG2, VIM, and EGFR were sufficient to subtype GBM into four
subgroups, as confirmed by another investigation [178].
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processes. An untargeted process in cell (A) may trigger survival molecular mechanisms in cell (B) via
soluble factors, resulting in the emergence of a new resistant subpopulation and tumor progression.
Cell (C) represents another innately resistant subpopulation.
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High-throughput proteomics studies, which quantify protein–protein expression pat-
terns across a large sample of GBM tumors, show a great diversity among GBM patients,
resulting in dozens of subgroups. Some patients do not fit into any groupings because they
have specific changes in protein–protein expression networks [6,179].

Recent investigations showed that the expression of GBM biomarkers is not homoge-
nous, indicating that there is not only variation across patients but also within the tumor
cells [1]. Sottoriva et al. demonstrated that fragments from the same tumor can be catego-
rized into several GBM subgroups by genomic analysis of samples from various locations of
a single GBM tumor. In this regard, they discovered that one tumor clone exhibited EGFR,
CDK6, and MET amplification, whereas another subclone received a copy of chromosome 3
with PIK3CA, resulting in PIK3CA amplification [7].

The existence of diverse subpopulations (Figure 4) underlies tumor plasticity, resulting
in resistance [8] to RTK inhibitors [180] or radiotherapy [181]. Moreover, different regions
within the tumor tissue can have varying degrees of radiosensitivity, as was demonstrated
using patient-derived neurosphere cultures [182].

Furthermore, microenvironmental pressures like hypoxia, acidosis, and reactive oxy-
gen species can arbitrarily cause genetic instability, resulting in the formation of de-novo
therapy-resistant subpopulations [9]. Resolving and targeting the expanding cellular sub-
populations in response to therapy, as has recently been demonstrated in other cancer types,
may be an effective method for reducing drug resistance development [183].

Cell–Cell Communication within GBM

Cell–cell communication between GBM subpopulations or between GBM cells and
the cells in the tumor microenvironment is crucial for maintaining GBM development [96].
Factors released by microenvironment cells, like Chi3l1, or ligands, like IL-6 or HGF, that
mediate the interaction of GBM subpopulations facilitate cell–cell contact [96,184], resulting
in the generation and maintenance of a diversity of transcriptome and phenotypic states
inside the tumor [185]. They contribute to the tumor’s aggressiveness by creating a cellular
network through which cancer cells communicate with one another or other tumoral
microenvironment components to stimulate their growth, invasion, neo-angiogenesis,
oncogenic transformation, and immune suppression [186].

For instance, it was found that astrocytes interact closely with tumor cells, forming a
network of communication crucial to tumor development [186]. Astrocytes secrete a large
number of soluble factors that encourage GBM invasiveness and growth by activating
several intracellular signaling pathways, such as NF-Kb and STAT1, in GBM cells [187–189].
As a result, GBM tumors inhibit the expression of p53 in astrocytes, promoting the survival
of GBM cells through ECM remodeling [190]. Another study revealed that the commu-
nication between GBM cells and non-cancerous astrocytes drives tumor growth through
mitochondrial transfer from astrocytes to GBM cells [191].

In the research on the GBM microenvironment, macrophages have also received a
lot of interest since they comprise the majority and up to 30% of the tumoral mass [192].
Several signaling pathways involved in glioma invasion, including the TGF-B, EGF, and
PDGF signaling pathways, were found to be stimulated by macrophages [193,194]. Another
illustration of macrophage–tumor interaction is macrophage-dependent angiogenesis. IL-6
secretion, JAK-STAT activation, and increased Src-PI3K-YAP signaling all contribute to the
process [195,196]. Furthermore, recent research showed that the crosstalk between GBM
cells and macrophages promotes tumor growth and progression by evolving heterogeneous
mechanisms that permit malignant glioma cells to enfeeble microglia and brain macrophage
defense systems [197]. These mechanisms include various pathways, such as IL-6, IL-33,
m-TOR, CCN4, miR-155-3p, and miR-1246 [197].

Additionally, communication between the tumor subpopulations is essential for the
progression of GBM. It was discovered, using U87 model cell lines and GBM patient-
derived cells, that paracrine interactions between the subpopulations expressing activating
mutations (EGFRvIII) and subpopulations harboring epidermal growth factor receptor
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amplification (EGFRwt) play a significant role in the diffuse architectures of GBM tumors.
It was shown that aggressive EGFRvIII cells alter the ability of EGFRwt cells to migrate
and invade. HGF and IL6 released by EGFRvIII cells activate Src protein in EGFRwt cells,
enhancing the EGFRwt cell-spreading ability and velocity [184]. Additionally, communica-
tion between these cell subtypes was found to support the tumor growth and heterogeneity
of GBM [96].

6. Blood–Brain Barrier (BBB) in GBM

Although there is a growing list of the mechanisms underlying GBM development
and resistance, and there is a high potential for using this knowledge to provide new
therapeutic strategies, brain cancer medicine still needs to overcome an additional barrier
to be able to implement potential therapeutic strategies. The blood–brain barrier (BBB) is a
significant hurdle to the delivery of therapeutic drugs.

The BBB serves as a protection barrier between the circulatory system and the central
nervous system’s extracellular space. The endothelial cells that make up the majority of
the BBB, form a tight barrier along the blood vessel wall and regulate which substances
can enter the parenchyma [198]. Thus, more than 98% of small molecules cannot penetrate
tight junctions, which are smaller than 1 nm.

Although the BBB in GBM may have increased permeability as a result of poorly
developed, leaky blood vessels, upregulated transporter proteins, and downregulated tight
junction proteins [199,200], the disruption of the tumor’s BBB is not uniform, and almost
all GBM patients have large tumor regions with an intact BBB [201].

In order to effectively treat GBM patients with drugs, several technologies are being
developed [202,203]. For instance, chemical delivery systems (CDSs), which link an active
drug molecule to a lipophilic carrier to boost a drug’s solubility and cell permeability or
lipidation of the therapeutic molecule, are examples of such efforts [167].

Using polymeric nanoparticles (NPs) is another promising therapeutic method [204,205].
NPs are carriers with diameters ranging from 10 to 1000 nm that can be engineered from vari-
ous materials, including metal-, lipid-, and polymer-based materials. They can be conjugated
into multiple chemotherapeutic and targeted drugs. For instance, Alessandro Sacchetti et al.
designed a gel formulation that enhances the release of TMZ locally beyond the BBB in ortho-
topic human xenograft models [206]. Another study suggested a novel design of flexibility-
tunable polymer-drug conjugates to deliver drug combinations with ratiometric dosing and
reported that focused ultrasound (FUS) improved the penetration of the drug conjugates into
murine brain GBM models [207]. Furthermore, a clinical study was conducted on the use of
an implantable ultrasound device, for delivering albumin-bound paclitaxel in patients with
recurrent GBM [208]. The device could transiently open the BBB, allowing a safe and repeated
penetration of cytotoxic drugs into the brain. Following these results, a phase 2 clinical trial is
taking place to further evaluate the safety and efficacy of the approach and is registered with
ClinicalTrials.gov (NCT04528680).

7. Computational Modeling of GBM: New Insights toward Understanding and
Treating GBM

Computational GBM research is a rapidly growing multidisciplinary subject frequently
utilized to investigate and define tumor heterogeneity; the effect of BBB constraints on
treatment effectiveness; and GBM behavior, such as aggressiveness and recurrence.

For example, Randles et al. described the development of a spatially explicit stochas-
tic process modeling to investigate the impact of the perivascular niche spatiotemporal
dynamics in GBM, which can be used to optimize standard treatment (chemotherapy and
radiation) schedules for this disease [209]. Another study proposed a model informed by
in silico signaling pathways and kinetics characteristics to predict outcomes and prescribe
customized therapy in GBM patients treated with radiation and TMZ [210].

Partial least-squares regression (PLSR) data-driven models that were constructed
based on the paired signaling and phenotype data to predict the efficacy of phosphatase
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inhibition in GBM treatment [211] or to identify new targetable GBM markers are additional
examples [212].

Information-theoretical approaches were used [6,179] to identify patient-specific sig-
naling signatures in each GBM patient. Based on these signatures, patient-specific targeted
drug combinations can be designed. This method was verified for other types of can-
cer [183,213].

Multiple machine learning (ML)/deep learning approaches have been extensively
used to identify new potential therapeutic targets (reviewed in [214]). For example, based
on progression-free survival (PFS), ML-based models (random forest classifier (RFD),
extreme gradient boosting (XGBoost), naïve Bayes, and support vector machine (SVM)), al-
gorithms were created to stratify newly diagnosed GBM patients into prognostic subclasses,
identifying those at increased risk of early recurrence [215,216]. Wang et al. used machine
learning algorithms (least absolute shrinkage and selection operator (LASSO) regression,
SVM, RFB, and XGBoost) to identify individuals who may react better to immunotherapy
and have higher overall survival [217].

Further examples include mathematical and bioinformatics models that attempt to
predict BBB permeability and drug delivery efficacy [218,219]. For example, based on
experimental information from preclinical subjects treated with anti-EGFR targeted ther-
apy, an ordinary differential equation (ODE) model was developed to characterize the
heterogeneous sensitivity of drug response and blood–brain barrier penetration [220].

Another study created a geometrical model that employed computational fluid dy-
namics to predict blood flow behavior with injected magnetic nanoparticles under various
conditions, such as blood flow fluctuations. This provided information on the permeability
of the BBB [221]. One more study used three-compartment cellular modeling (apical, cell
monolayer, and basolateral) and statistical approaches to successfully simulate the time
course of drug cellular uptake and accumulation, based on its BBB passive permeability,
in order to demonstrate the functional relevance of uptake and efflux transporters to BBB
penetration of drugs [222].

Overall, computational and theoretical models provide important insights into GBM
heterogeneity, drug permeability across the BBB, tumor growth, and treatment responses,
hence improving the efficacy of GBM dissection and individualized therapies.

8. Conclusions

Despite several advances in developing effective treatment regimens, GBM is incur-
able. The standard course of treatment includes radiotherapy, chemotherapy, and surgery.
However, most patients experience tumor relapse and recurrence. From a therapeutic stand-
point, invasion, intra- and inter-tumor heterogeneity, and BBB pose significant barriers to
curative treatment.

The current primary challenge is to develop computational and experimental ap-
proaches for designing individualized multimodal treatments. The therapy should target
ongoing patient-specific processes responsible for GBM infiltration and drug resistance.
The proposed therapy should also consider basal or evolving states in response to treatment,
as well as the interaction between the microenvironment and GBM, and should be designed
to effectively transport a drug cocktail via the BBB.
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Abbreviations

GBM Glioblastoma
CNS Central nervous system
TMZ Temozolomide
BBB Blood–brain barrier
IDH Isocitrate Dehydrogenase 1
NOS Nitric Oxide Synthase
EMT Epithelial–mesenchymal transition
ECM Extracellular matrix
MMPs Matrix Metalloproteinases
GTR Gross total resection
MGMT O6 Methylguanine DNA Methyltransferase
GSCs GBM stem cells
EMT Epithelial–mesenchymal transition
CAR T Chimeric antigen receptor T-cells
TGF-β Transforming Growth Factor Beta
Cx43 Connexin43
RT Radiotherapy
P53 Tumor Protein 53
ATM gene Ataxia-Telangiesctasia Mutated
MDM2 Mouse Double Minute 2
CSC Cancer Stem Cell
PTEN Phosphatase and Tensin Homolog
Akt Protein Kinase B
PI3K Phosphoinositide 3-Kinases
TTFs Tumor-treating fields
EEF1D Elongation Factor 1-Delta
MICAL2 Calponin and LIM Domain Containing 2
p-Smad2 Mothers against decapentaplegic homolog 2
ACTN1 Alpha-Actinin-3
CCND1 Cyclin D1
HCLS1 Hematopoietic Cell-Specific Lyn Substrate 1
ITGB5 Integrin Subunit Beta 5
PFN2 Profilin 2
PTPRC Protein Tyrosine Phosphatase Receptor Type C
Gy Gray (unit)
MAPK Mitogen-Activated Protein Kinases
EGFR Epidermal Growth Factor Receptor
EGF Epidermal Growth Factor
VEGFR Vascular Endothelial Growth Factor Receptor
FGFR Fibroblast Growth Factor Receptor
PDGFR Platelet-derived Growth Factor Receptor
SOX2 SRY-Box Transcription Factor 2
HGFR Hepatocyte Growth Factor Receptor
IGFR 1R-Insulin-like growth factor receptor 1
DDR Discoidin Domain Receptor
TME Tumor microenvironment
RTK Receptor tyrosine kinase
DDR DNA damage response
TKI Tyrosine Kinase Inhibitor
RTK Receptor tyrosine kinases
NES Nestin
OLIG2 Oligodendrocyte Transcription Factor
VIM Vimentin
Il-6 Interleukin-6
Chi3l1 Chitinase 3 Like 1
NF-Kb Nuclear Factor Kappa Light Chain Enhancer of Activated B Cells
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STAT1 Signal Transducer and Activator of Transcription 1
JAK-STAT Janus kinase/signal transducers and activators of transcription
ATRX Alpha Thalassemia X-linked
H3F3A Histone H3.3A
H3F3Q Histone H3.3Q
MIK67 Marker of Proliferation Ki-67
mTOR Mammalian Target of Rapamycin
IL-33 Interleukin 33
CCN4 Cellular Communication Network Factor 4
MiR MicroRNA
YAP Yes-Associated Protein 1
CDS Chemical delivery system
NPs Polymeric nanoparticles
FUS Focused ultrasound
PLSR Partial least-squares regression
ML Machine learning
XGBoost eXtreme gradient boosting
SVM Support vector machine
LASSO Least absolute shrinkage and selection operator
RFB Receptive field block

References
1. Wu, W.; Klockow, J.L.; Zhang, M.; Lafortune, F.; Chang, E.; Jin, L.; Wu, Y.; Daldrup-Link, H.E. Glioblastoma multiforme (GBM):

An overview of current therapies and mechanisms of resistance. Pharmacol. Res. 2021, 171, 105780. [CrossRef] [PubMed]
2. Davis, M.E. Epidemiology and Overview of Gliomas. Semin. Oncol. Nurs. 2018, 34, 420–429. [CrossRef] [PubMed]
3. Gallego, O. Nonsurgical Treatment of Recurrent Glioblastoma. Curr. Oncol. 2015, 22, 273–281. [CrossRef] [PubMed]
4. Verhaak, R.G.W.; Hoadley, K.A.; Purdom, E.; Wang, V.; Wilkerson, M.D.; Miller, C.R.; Ding, L.; Golub, T.; Jill, P.; Alexe, G.; et al.

Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA,
IDH1, EGFR, and NF1. Cancer Cell 2010, 17, 98–110. [CrossRef]

5. Perez-Garcia, A.; Carrion-Navarro, J.; Bosch-Fortea, M.; Lazaro-Ibanez, E.; Prat-Acin, R.; Ayuso-Sacido, A. Genomic instability of
surgical sample and cancer-initiating cell lines from human glioblastoma. Front. Biosci. 2012, 171, 1469–1479. [CrossRef]

6. Flashner-Abramson, E.; Vasudevan, S.; Adejumobi, I.A.; Sonnenblick, A.; Kravchenko-Balasha, N. Decoding cancer heterogeneity:
Studying patient-specific signaling signatures towards personalized cancer therapy. Theranostics 2019, 9, 5149. [CrossRef]

7. Sottoriva, A.; Spiteri, I.; Piccirillo, S.G.M.; Touloumis, A.; Collins, V.P.; Marioni, J.C.; Curtis, C.; Watts, C.; Tavaré, S. Intratumor
heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc. Natl. Acad. Sci. USA 2013, 110, 4009–4014.
[CrossRef]

8. Qazi, M.A.; Vora, P.; Venugopal, C.; Sidhu, S.S.; Moffat, J.; Swanton, C.; Singh, S.K. Intratumoral heterogeneity: Pathways to
treatment resistance and relapse in human glioblastoma. Ann. Oncol. 2017, 28, 1448–1456. [CrossRef]

9. Gillies, R.J.; Verduzco, D.; Gatenby, R.A. Evolutionary dynamics of carcinogenesis and why targeted therapy does not work. Nat.
Rev. Cancer 2012, 12, 487–493. [CrossRef]

10. Seker-Polat, F.; Degirmenci, N.P.; Solaroglu, I.; Bagci-Onder, T. Tumor Cell Infiltration into the Brain in Glioblastoma: From
Mechanisms to Clinical Perspectives. Cancers 2022, 14, 443. [CrossRef]

11. Crivii, C.B.; Bos, ca, A.B.; Melincovici, C.S.; Constantin, A.M.; Mărginean, M.; Dronca, E.; Suflet,el, R.; Gonciar, D.; Bungărdean, M.;
S, ovrea, A. Glioblastoma Microenvironment and Cellular Interactions. Cancers 2022, 14, 1092. [CrossRef] [PubMed]

12. Aldoghachi, A.F.; Aldoghachi, A.F.; Breyne, K.; Ling, K.H.; Cheah, P.S. Recent Advances in the Therapeutic Strategies of
Glioblastoma Multiforme. Neuroscience 2022, 491, 240–270. [PubMed]

13. Bikfalvi, A.; da Costa, C.A.; Avril, T.; Barnier, J.V.; Bauchet, L.; Brisson, L.; Cartron, P.F.; Castel, H.; Chevet, E.; Chneiweiss, H.; et al.
Challenges in glioblastoma research: Focus on the tumor microenvironment. Trends Cancer 2023, 9, 9–27. [CrossRef]

14. Rong, L.; Li, N.; Zhang, Z. Emerging therapies for glioblastoma: Current state and future directions. J. Exp. Clin. Cancer Res. 2022,
41, 1–8. [CrossRef] [PubMed]

15. Lacroix, M.; Abi-Said, D.; Fourney, D.R.; Gokaslan, Z.L.; Shi, W.; DeMonte, F.; Lang, F.F.; McCutcheon, I.E.; Hassenbusch, S.J.;
Holland, E.; et al. A multivariate analysis of 416 patients with glioblastoma multiforme: Prognosis, extent of resection, and
survival. J. Neurosurg. 2001, 95, 190–198. [CrossRef]

16. Stummer, W.; Reulen, H.J.; Meinel, T.; Pichlmeier, U.; Schumacher, W.; Tonn, J.C.; Rohde, V.; Oppel, F.; Turowski, B.;
Woiciechowsky, C.; et al. Extent of resection and survival in glioblastoma multiforme: Identification of and adjustment for bias.
Neurosurgery 2008, 62, 564–576. [CrossRef]

https://doi.org/10.1016/j.phrs.2021.105780
https://www.ncbi.nlm.nih.gov/pubmed/34302977
https://doi.org/10.1016/j.soncn.2018.10.001
https://www.ncbi.nlm.nih.gov/pubmed/30392758
https://doi.org/10.3747/co.22.2436
https://www.ncbi.nlm.nih.gov/pubmed/26300678
https://doi.org/10.1016/j.ccr.2009.12.020
https://doi.org/10.2741/3998
https://doi.org/10.7150/thno.31657
https://doi.org/10.1073/pnas.1219747110
https://doi.org/10.1093/annonc/mdx169
https://doi.org/10.1038/nrc3298
https://doi.org/10.3390/cancers14020443
https://doi.org/10.3390/cancers14041092
https://www.ncbi.nlm.nih.gov/pubmed/35205842
https://www.ncbi.nlm.nih.gov/pubmed/35395355
https://doi.org/10.1016/j.trecan.2022.09.005
https://doi.org/10.1186/s13046-022-02349-7
https://www.ncbi.nlm.nih.gov/pubmed/35428347
https://doi.org/10.3171/jns.2001.95.2.0190
https://doi.org/10.1227/01.neu.0000317304.31579.17


Int. J. Mol. Sci. 2023, 24, 14256 16 of 24

17. Ohka, F.; Natsume, A.; Wakabayashi, T. Current Trends in Targeted Therapies for Glioblastoma Multiforme. Neurol. Res. Int. 2012,
13, 2012. [CrossRef]

18. Wang, T.; Pickard, A.J.; Gallo, J.M. Histone Methylation by Temozolomide; A Classic DNA Methylating Anticancer Drug.
Anticancer Res. 2016, 36, 3289.

19. Newlands, E.S.; Stevens, M.F.G.; Wedge, S.R.; Wheelhouse, R.T.; Brock, C. Temozolomide: A review of its discovery, chemical
properties, pre-clinical development and clinical trials. Cancer Treat. Rev. 1997, 23, 35–61. [CrossRef]

20. Stupp, R.; Mason, W.P.; Van Den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.; Belanger, K.; Brandes, A.A.; Marosi, C.;
Bogdahn, U.; et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005, 352,
987–996. [CrossRef]

21. Medikonda, R.; Dunn, G.; Rahman, M.; Fecci, P.; Lim, M. A review of glioblastoma immunotherapy. J. Neuro-Oncol. 2020,
1511, 41–53. [CrossRef] [PubMed]

22. Tomar, M.S.; Kumar, A.; Srivastava, C.; Shrivastava, A. Elucidating the mechanisms of Temozolomide resistance in gliomas and
the strategies to overcome the resistance. Biochim. Biophys. Acta Rev. Cancer 2021, 1876, 188616. [CrossRef] [PubMed]

23. Jiapaer, S.; Furuta, T.; Tanaka, S.; Kitabayashi, T.; Nakada, M. Potential Strategies Overcoming the Temozolomide Resistance for
Glioblastoma. Neurol. Med. Chir. 2018, 58, 405. [CrossRef] [PubMed]

24. Alifieris, C.; Trafalis, D.T. Glioblastoma multiforme: Pathogenesis and treatment. Pharmacol. Ther. 2015, 152, 63–82. [PubMed]
25. Auffinger, B.; Tobias, A.L.; Han, Y.; Lee, G.; Guo, D.; Dey, M.; Lesniak, M.S.; Ahmed, A.U. Conversion of differentiated cancer cells

into cancer stem-like cells in a glioblastoma model after primary chemotherapy. Cell Death Differ. 2014, 21, 1119–1131. [CrossRef]
26. Ahmed, A.U.; Auffinger, B.; Lesniak, M.S. Understanding glioma stem cells: Rationale, clinical relevance and therapeutic

strategies. Expert Rev. Neurother. 2014, 13, 545–555. [CrossRef]
27. Carlsson, S.K.; Brothers, S.P.; Wahlestedt, C. Emerging treatment strategies for glioblastoma multiforme. EMBO Mol. Med. 2014,

6, 1359. [CrossRef]
28. Gerber, D.E.; Grossman, S.A.; Zeltzman, M.; Parisi, M.A.; Kleinberg, L. The impact of thrombocytopenia from temozolomide and

radiation in newly diagnosed adults with high-grade gliomas. Neuro Oncol. 2007, 9, 47. [CrossRef]
29. Kubelt, C.; Hattermann, K.; Sebens, S.; Mehdorn, H.M.; Held-Feindt, J. Epithelial-to-mesenchymal transition in paired human

primary and recurrent glioblastomas. Int. J. Oncol. 2015, 46, 2515–2525. [CrossRef]
30. Kochanowski, P.; Catapano, J.; Pudełek, M.; Wróbel, T.; Madeja, Z.; Ryszawy, D.; Czyż, J. Temozolomide induces the acquisition
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