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Abstract: The increased prevalence of antibiotic resistance is alarming and has a significant impact
on the economies of emerging and underdeveloped nations. The redundancy of antibiotic discovery
platforms (ADPs) and injudicious use of conventional antibiotics has severely impacted millions,
across the globe. Potent antimicrobials from biological sources have been extensively explored as a
ray of hope to counter the growing menace of antibiotic resistance in the population. Antimicrobial
peptides (AMPs) are gaining momentum as powerful antimicrobial therapies to combat drug-resistant
bacterial strains. The tremendous therapeutic potential of natural and synthesized AMPs as novel
and potent antimicrobials is highlighted by their unique mode of action, as exemplified by multiple
research initiatives. Recent advances and developments in antimicrobial discovery and research have
increased our understanding of the structure, characteristics, and function of AMPs; nevertheless,
knowledge gaps still need to be addressed before these therapeutic options can be fully exploited.
This thematic article provides a comprehensive insight into the potential of AMPs as potent ar-
senals to counter drug-resistant pathogens, a historical overview and recent advances, and their
efficient production in plants, defining novel upcoming trends in drug discovery and research. The
advances in synthetic biology and plant-based expression systems for AMP production have defined
new paradigms in the efficient production of potent antimicrobials in plant systems, a prospective
approach to countering drug-resistant pathogens.

Keywords: antibiotic arsenals; antimicrobial peptides; drug-resistant microbes; Staphylococcus aureus;
peptide-based drugs; plant expression systems

1. Overview of Global Antibiotic Resistance and Drug Discovery

The spread of antimicrobial resistance (AMR) has attained a state of ‘global emergency’
in the 21st century [1]. The statistics from the World Health Organization (WHO) have
warned against the indiscriminate use of conventional antibiotics by humans in healthcare,
the food sector, animal husbandry, and agriculture resulting in a high mortality of approx-
imately 10 million deaths worldwide [2,3]. The rising frequency of antibiotic resistance
and the emergence of drug-resistant diseases have a significant impact on developing
countries’ economies [4,5], particularly those with limited healthcare facilities. The research
initiatives have defined the ‘One Health and Global Health’ concept to address the critical
themes in infectious diseases, particularly those contributing to AMR spread [6–8]. The
interdisciplinary concept of ‘One Heath and Global Health’ provides knowledge-based
information on the emergence of drug-resistant microbes and AMR evolution, the inter-
connected network of humans, animals, and the environment, and socio-economic factors
in the spread of AMR [9,10]. Furthermore, studies have suggested that the presence of
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drug-resistant determinant factors in linked microbiomes alters bacterial genomes and trig-
gers the prevalence of drug-resistant microbes [9]. An alarming rise in antibiotic resistance
has been predicted by the WHO statistics suggesting 10 million mortalities every year by
2050, with most predicted causalities in the African and Asian sub-continent [11]. Besides
the health of the people, the emergence of resistant microbes is worrisome in healthcare,
particularly in surgical operations, transplants, and therapies for cancer treatment [12,13].
Alexander Fleming’s 1928 discovery of penicillin was a ‘phenomenal and pathbreaking
discovery’ in the medical revolution, substantially expanding antibiotic arsenals for in-
fection therapies [14]. The ‘antibiotic golden era’ was marked by streptomycin discovery
and reached new paradigms with the subsequent development of sulfonamides, oxazo-
lidinones, β-lactams antibiotics, cephalosporin, and tetracyclines, including others and the
subsequently derived versions [15–17]. However, the efficacy and the usage of conventional
antibiotics gradually declined, which is attributed to the development of drug resistance in
multiple bacterial species.

The present trends in the rise of AMR can be ascribed to several causes, including
indiscriminate/overuse, a lack of suitable marketing standards [18], and poor sanitation
practices [19]. In the present context, methicillin-resistant Staphylococcus aureus (MRSA),
Klebsiella pneumoniae, and Mycobacterium tuberculosis (extensively drug-resistant (XDR))
represent frequently present drug-resistant bacterial strains [20,21]. Some bacterial strains
exhibited complete antibiotic resistance; for instance, colistin overuse (indiscriminate usage)
to treat MDR strains (K. pneumonia, A. baumannii, and Pseudomonas aeruginosa) resulted in
MCR-1-gene-mediated antibiotic resistance [22,23]. Although oxazolidinones and lipopep-
tides were marketed for Gram-negative microorganisms [24], staphylococcal resistance
to oxazolidinones emerged subsequently [25]. The Food and Drug Administration (FDA)
discontinued tigecycline and telithromycin due to their adverse effects [26,27]. M. tuber-
culosis, another bacterial strain, acquired fluoroquinolone resistance and other medicines
(kanamycin, capreomycin, etc.) [28]. Daptomycin (lipopeptide) had some effectiveness
in therapies but was subsequently withdrawn by the WHO [29]. The WHO produced a
list of key MDR pathogens in 2017 that included third-generation cephalosporin-resistant
P. aeruginosa, A. baumannii, and Enterobacteriaceae with an urgent necessity to tackle the
emerging MDR strains [30].

The global rise in AMR further aggravated by chronic and multifactorial diseases is
a threat to human and animal health and needs immediate attention. The development
and characterization of novel antimicrobials from natural sources have contributed to the
development of potent antimicrobials and their clinical trials in recent decades [31,32],
but only a handful have shown promising outcomes. The research initiatives in this
direction have explored the potential of antimicrobial peptides (AMPs) as antimicrobial
agents, with key information deposited in AMP databases [33]. AMPs are emerging
candidates as prospective antifungal and antibacterial therapies [34], attributed to their
potential bioactivities. AMPs are a broad family of chemicals that are created as the
first line of defense by multicellular organisms [35]. AMPs have been characterized as
possible therapeutic alternatives to conventional therapy due to their minimal potential for
resistance [36]. More than 3000 AMPs have been identified and described from multiple
biological sources [37], including mammals [38], insects [39], amphibians [40], plants [41],
and microorganisms [42]. In addition, AMPs are classified based on their bioactivities,
namely antiparasitic, anti-tumor, antibacterial, antiviral, and anti-HIV, among others [43].
However, a detailed understanding of the AMP design and applications on the one hand
and mechanisms of action on the other is crucial for creating or finding new AMPs with
high biological efficacy against deadly microbial pathogens. Plants produce AMPs for
a variety of purposes, including high-scale production via molecular farming and as a
defense mechanism against multiple diseases (Figure 1).

The recent era has witnessed the emergence of plant systems as production platforms
for AMPs as the preferred choice, attributed to synthesis in higher amounts, well-defined
peptides (proper folding, glycosylation, etc.), and cost-effective peptide production, plants
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are favored for the manufacturing of AMPs [44]. Compared to bacterial and yeast expres-
sion systems, plant-based molecular farming is safer since there is essentially no chance of
product contamination with infections that affect humans, animals, or endotoxins because
plants do not have these pollutants. Substantial progress has been achieved in the produc-
tion of AMPs in plant systems via synthetic biology [45]. The co-integration of synthetic
biology strategies with system biology, genome engineering, and RNA interference (RNAi)
for plant chassis and process optimization has yielded significant results in antimicrobial
production [6,7], a plausible approach to addressing AMR. Through this thematic review,
we herein present the recent trends in AMR prevalence and the prospects of AMPs as key
arsenals to counter drug-resistant pathogens in a socio-economic context. In this direc-
tion, plants as production platforms and their genetic manipulation via synthetic biology
comprise a sustainable approach to the production of novel and potent antimicrobials
(Figure 2).
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2. Natural Compounds and Derivatives as Potential Antimicrobial Agents

Natural compounds derived from plants, animals, and microbes are being extensively
explored and studied for their antimicrobial properties [46–48]. Antibiotic-producing
bacteria have been discovered in a variety of environmental niches, including extreme con-
ditions (hypersaline locales) [49], plants (endophytes) [50], soil [51], marine sponges [52],
and others. These antimicrobial compounds show a key potential to suppress the growth
of bacteria [53] and fungi [54] and have major biotechnological/therapeutic uses. These
bacteria demonstrate antimicrobial functions, and several antibiotics with high potency
have been isolated from various microbial strains. Furthermore, several microbial strains
were shown to suppress toxin synthesis and biofilm development [52,55]. Lactococcus
lactis synthesizes a lantibiotic (nisin) that suppresses biofilm development in numerous
species by eliminating or suppressing biofilm formation while having no negative ef-
fects on human beings. Moreira et al. demonstrated that boromycin, a macrolide from
Streptomyces antibioticus, acts on transmembrane ion gradient and acts against non-growing
and developing cells resistant to antibiotics. Plants constitute a rich reservoir of bioactive
substances, and essential oils [24], triterpenoids [56], plant extracts [57], and plant pro-
teins [58] have shown good efficacy in combating microbial infections in several animal
models. Among plants, secondary metabolites with antimicrobial action are classified as
phenolics, coumarins, saponins, alkaloids, terpenoids, and tannins [48,59] (Figure 3).

Life 2023, 13, x FOR PEER REVIEW 5 of 23 
 

 

 
Figure 3. Significance of natural compounds and derivatives as potential antimicrobial agents. 

The enormous structural variation in chemical scaffolds of plant metabolites influ-
ences antibacterial activity, displaying multiple functions. For example, the –OH func-
tional group found in phenolics inhibits microorganisms [59] by breaking the bacterial cell 
membrane and inducing cellular leakage [60], e.g., carvacrol. Eugenol is more efficient 
against Listeria and Campylobacter jejuni (due to double bond) than isoeugenol [61]. The 
antimicrobial mechanism of oxygenated terpenes comprises disruption of membranes 
and leakage of K+ ions [62]. Plant essential oils are potent antimicrobials, and limonene (1-
methyl-4-(1-methyl ethenyl)-cyclohexene) is more effective than p-cymene in countering 
microbial infections [63]. In the case of terpenes, even minor structural changes in the lo-
cation of the –OH group might drastically influence antibacterial action; for example, ter-
pinene-4-ol at low concentrations promoted K+ leakage from E. coli cells when compared 
to terpineol. The capacity of oxygenated terpenes to break membranes and generate K+ 
leakage is responsible for the antibacterial effect [62]. Similarly, antibacterial activity was 
discovered in various plant by-products produced during food processing, in addition to 
other roles [64,65], due to its high phenolic content. As a result, the commercialization of 
by-products as antibacterials and maximal extraction would be significant in this direc-
tion. 

Among the antimicrobial substances derived from animals, key examples include 
chitosan, lactoferrin, lactoperoxidase, lipids, and defensins [48]. Chitosan has sparked the 
interest of food preservationists; however, its usage is limited owing to higher and neutral 
pH insolubility and needs attention [66]. As acid-soluble chitosan substitutes, the chitosan 
derivatives have shown significant antimicrobial activity against B. cereus, E. coli, S. aureus, 
Shigella dysenteriae, and others [67]. Milk’s bioactive components (for example, casein) 
have been identified to have a variety of properties, one of which is antibacterial [68]. 
Coffee peels and husks [69], Bergamot peel (a by-product of essential oil) [70], pomegran-
ate juice by-products [71], coconut husk [72], and others have antibacterial properties. 
Honey is a good source of bioactive substances and includes sugars, glycoproteins, etc., 
which have antibacterial action against MDR isolates [73]. Numerous additional bioactive 
compounds with antibacterial action have been identified from various natural resources, 
and a few notable examples are discussed (Table 1). 
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The enormous structural variation in chemical scaffolds of plant metabolites influences
antibacterial activity, displaying multiple functions. For example, the –OH functional group
found in phenolics inhibits microorganisms [59] by breaking the bacterial cell membrane
and inducing cellular leakage [60], e.g., carvacrol. Eugenol is more efficient against Listeria
and Campylobacter jejuni (due to double bond) than isoeugenol [61]. The antimicrobial
mechanism of oxygenated terpenes comprises disruption of membranes and leakage of
K+ ions [62]. Plant essential oils are potent antimicrobials, and limonene (1-methyl-4-(1-
methyl ethenyl)-cyclohexene) is more effective than p-cymene in countering microbial
infections [63]. In the case of terpenes, even minor structural changes in the location of the
–OH group might drastically influence antibacterial action; for example, terpinene-4-ol at
low concentrations promoted K+ leakage from E. coli cells when compared to terpineol. The
capacity of oxygenated terpenes to break membranes and generate K+ leakage is responsible
for the antibacterial effect [62]. Similarly, antibacterial activity was discovered in various
plant by-products produced during food processing, in addition to other roles [64,65],
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due to its high phenolic content. As a result, the commercialization of by-products as
antibacterials and maximal extraction would be significant in this direction.

Among the antimicrobial substances derived from animals, key examples include
chitosan, lactoferrin, lactoperoxidase, lipids, and defensins [48]. Chitosan has sparked the
interest of food preservationists; however, its usage is limited owing to higher and neutral
pH insolubility and needs attention [66]. As acid-soluble chitosan substitutes, the chitosan
derivatives have shown significant antimicrobial activity against B. cereus, E. coli, S. aureus,
Shigella dysenteriae, and others [67]. Milk’s bioactive components (for example, casein) have
been identified to have a variety of properties, one of which is antibacterial [68]. Coffee
peels and husks [69], Bergamot peel (a by-product of essential oil) [70], pomegranate juice
by-products [71], coconut husk [72], and others have antibacterial properties. Honey is a
good source of bioactive substances and includes sugars, glycoproteins, etc., which have
antibacterial action against MDR isolates [73]. Numerous additional bioactive compounds
with antibacterial action have been identified from various natural resources, and a few
notable examples are discussed (Table 1).

Table 1. Key examples of phytomolecules as potent antimicrobials, their bioactive constituents, and
modes of action against pathogenic microbes (modified from Tiwari et al. [7]).

S. No. Classification Key Examples Mechanism of Action Reference

1. Plant-derived compounds

Phenolics Thymol,
Carvacrol

The hydroxyl group increases the
Membrane disruption and

Leakage of cellular contents
[60]

Flavonoid compounds Catechins Antibacterial against Shigella, Vibrio, and
Streptococcus mutans [74,75]

Hydroxylated phenols Catechol and pyrogallol

Antibacterial against Corynebacterium xerosis,
Pseudomonas putida, and

P. pyocyanea, and antifungal (catechol) against
Penicillium italicum and Fusarium oxysporum

[76]

Polyphenol
(3,5,4′-trihydroxystilbene) Resveratrol

Antifungal against Plasmopara viticola, Sphaeropsis
sapinea, and Pyricularia oryzae. In C. albicans, resveratrol

penetrates the cell membrane and causes apoptosis.
Antibacterial against M. tuberculosis, VRE,

S. typhimurium, and MRSA

[77–80]

Essential oil from
Salvia fruticosa ---- Inhibition of Efflux pump in Staphylococcus epidermidis

(clinical isolates) [81]

Quinones from Juglans
and Plumbago Juglone and plumbagin Antibacterial against S. aureus by increasing membrane

permeability and restricting the formation of cell wall [82]

Essential oil from
Chenopodium ambrosioides ---- Efflux pump Tet(K) inhibition in

S. aureus IS-58 [83]

Alkaloid Capsaicin Efflux pump NorA inhibition in
S. aureus SA-1199B [84]

Anthraquinone
from Hypericum perforatum Hypericin Antimicrobial activity against methicillin-resistant and

methicillin-sensitive Staphylococcus [85]

Alkaloid Catharanthine Efflux pump inhibition in
P. aeruginosa [86]

Dimeric
Phenylpropanoids from

Styrax japonica

Lignans
Styraxjaponoside C

Antifungal against C. albicans showing
membrane-active mechanisms [87]

Flavonoid Baicalein S. aureus SA-1199B NorA efflux pump inhibition [88]

Triterpenoids Ursolic acid and
derivatives

inhibition of efflux pump AcrA/B, MacB, TolC and YojI
in MDR E. coli (KG4) [89]
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Table 1. Cont.

S. No. Classification Key Examples Mechanism of Action Reference

2. Plant by-products in food processing

Green husks of walnuts ---- Antibacterial against B. subtilis,
S. aureus and B. cereus [90]

Grape pomace Phenolics Growth is hampered in S. aureus, yeasts, and
Salmonella sp. [91]

Bergamot peel, an
essential oil by-product Chlorogenic acid Antibacterial against B. subtilis and food-borne E. coli,

S. enterica [70]

Pomegranate
fruit peel extracts Phenolic constituents

Hampered growth in
S. aureus, Y. enterocolitica,

L. monocytogenes, etc.
[92]

Pomegranate rind Tannins Antimicrobial against L. monocytogenes modify
microbial cell membranes and impair cell homeostasis [93]

Coconut husk Tannins and Phenolic
constituents In L. monocytogenes, and V. cholera, growth is hampered [72]

Olive juice powder and
olive pomace

Phenolic compound
(oleocanthal)

Antimicrobial against L. monocytogenes, S. aureus,
and E. coli [94]

3. Animal-origin compounds

Chitosan Polycationic biopolymer
compound

Antibacterial towards
L. monocytogenes, B. cereus, S. aureus, and others [64]

Milk-derived substances
(casein and whey proteins) ----

Antibacterial/antifungal against Helicobacter, Listeria,
Salmonella, Staphylococcus, E. coli, yeasts, and

filamentous fungi
[95]

Lysozyme Bacteriolytic enzyme

Lysozyme hydrolyzes
the β-1, 4 linkages between N-acetylmuramic acid and

N-acetylglucosamine in the peptidoglycan of the
microbial cell wall

[64]

4. Antimicrobials of bacterial origin

Bacteriocin Nisin Growth is hampered in Gram-positive and
spore-producing bacteria in food [96]

Reuterin β-
hydroxypropionaldehyde Antimicrobial towards foodborne pathogens [97]

5. Antimicrobials from algae and mushrooms

Phlorotannins from
marine brown algae ---- Antimicrobial towards

S. aureus, Salmonella spp., etc. [98]

Grifolin, and
pleuromutilin from

macrofungi
----

Antimicrobial activity against
S. aureus, B. cereus,

L. monocytogenes, E. coli
[99]

Fatty acids,
β-carotene-linoleic acid,

flavonoids from
Agaricus spp.

---- Antimicrobial towards Micrococcus luteus,
B. cereus, etc. [100]

3. Antimicrobial Peptides: Novel Peptide-Based Therapeutics

AMPs are designated as a family of antibacterials that demonstrate multiple benefits
including broad-spectrum anti-biofilm activity, delayed resistance development, and host
immune response regulation [101]. AMPs are a class of tiny bioactive proteins that serve
as a first line of defense against infections. AMPs’ mechanisms of action include immune
response modulation, cell membrane disruption, and inflammation control [102] (Figure 4).
AMPs are discovered in multiple niches, like soil and marine organisms, via different
procedures, contributing to increased AMPs. Although 3,000 AMPs have been identified,
only some have potent efficacy in clinical studies. Furthermore, the physicochemical
characteristics of AMPs determine their antibacterial efficacy, absorption, and toxicity [101].
Studies have documented the safe application of synthetic AMPs in cattle, aquaculture,
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and as food preservatives, including the use of both natural and synthetic analogs of AMPs
as antimicrobials [103,104].
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3.1. Identification of AMPs from Nature and Properties

AMPs are biochemicals that have been conserved during evolution and are found in di-
verse organisms [105]. The primary characteristics of AMPs include (i) amphipathic nature
(30% hydrophobic residues), (ii) positively charged molecules (+2 to +9 net positive charge)
owing to positive amino acids such as lysine and arginine, and (iii) post-translational
modification [106]. Furthermore, AMPs are encoded as one or more copies in biological
genomes and are formed from bigger precursor molecules via post-translational modifica-
tions [106]. In the 1990s, the first AMPs were discovered in Drosophila melanogaster infected
with bacteria or fungi [107]. A similar origin for Drosophila-produced human defensins
has been suggested, whereas other AMPs (in Drosophila) exhibit homology with insect
AMPs [108]. The co-evolution of AMPs in insects with other species emphasizes antimicro-
bial specificity, demonstrating synergistic effect and variation in specificity towards certain
microbes. AMP has a broad spectrum of action and kills yeasts, bacteria, viruses, cancer
cells, and fungi [109]. Plants and insects use AMPs to combat deadly microorganisms,
whereas microbes use AMPs to preserve their habitats.

There are several secondary configurations for AMPs, including helices, disulfide
bridges in strands, and extended/loop topologies that increase antimicrobial activity [110].
The AMPs are divided into cationic and non-cationic peptides (secretolytin) with varying
structural characteristics (e.g., thanatin, penaeidins). Other characteristics include size,
hydrophobicity, charge, size, self-association, etc., leading to broad-spectrum antibacterial
activities [111]. Niyonsaba et al. [112] speculated that the co-evolution of AMPs may have
been influenced by another characteristic of AMPs, namely the control of immune response
by host cell contact. The mode of administration, target tissue, duration, dosage, and
formulation, among other factors, affect how effective AMPs work against microbes. For
instance, the production of AMP by the gut microbiota maintains bacterial colonization and
reduces inflammation [113]. At the infection site, AMP may trigger the activation of innate
immune cells and cause the induction of chemokines by a variety of cells [114]. Depending
on the AMP type, it has different immunomodulatory features, including actions like those
of growth factors and cytokines used to maintain immunological homeostasis [109].
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The antimicrobial activity of AMPs is responsible for AMPs’ selectivity towards
the target cells and is greatly influenced by their structural characteristics. Less than
100 hydrophobic and positively charged amino acid (lysine and arginine) residues make up
an AMP molecule. The existence of AMPs in many biological species showed conservation
over the course of evolution, and knowledge of the conserved structural features served
as the foundation for creating new peptides [115]. Penaeidins, for instance, are chimeric
cationic peptides that have antimicrobial action against fungi and Gram-positive bacteria.
They have a chitin-binding domain (conserved), a PRP domain at the N-terminus, and a
cysteine-rich domain at the C-terminus [116]. The AMP LL-37 is amphipathic and helical
in shape and comprises XBBXBX patterns for heparin binding [117]. The physicochemical
and structural characteristics of AMPs are another critical factor that greatly influences
their toxicity toward certain cells. For instance, the AMP tachystatin was isolated from the
horseshoe crab Tachypleus tridentatus and was antimicrobial towards fungal and bacterial
strains. Tachystatin’s cytotoxic properties are thought to be caused by the presence of an
amphiphilic sheet at the C-terminal end [118]. Antifungal peptides have not, however,
been reported to include a conserved domain. Studies have focused on increasing AMP
activity by using mutagenesis, peptide structural modification, or in silico methods. The
capacity of AMPs to interact with cell membranes makes them a tumor-inducing/mitogenic
agent [119] and a vector for the transport of drugs [120] and signaling molecules [121].

3.2. Classification and Discussion on the Structure of AMPs

In the ‘post-antibiotic era’, AMPs are emerging as potential antibacterial candidates
and exhibit significant structural and functional diversity. As key components of innate
immunity and the initial line of defense against microbial infections, AMPs are evolution-
arily conserved in genomes. mRNA translation by ribosomes and nonribosomal peptide
synthesis are the two methods that lead to the formation of AMPs in nature [122]. All living
entities make and have genetically encoded AMPs from ribosomal translation, whereas
non-ribosomally synthesized peptides originate from bacteria [122]. Ribosomally pro-
duced AMPs are increasingly employed as therapeutic agents for their immunological
responses [35,62,109]. When AMPs are created as inactive precursors, proteases and their
own expression are responsible for controlling how they are expressed [123].

According to the classification system for AMPs [124,125], most AMPs are classed as
having β-sheet or α-helical structures. Despite not having a well-defined structure, the
helical peptides bind with membranes to produce an amphipathic structure [126]. The
two peptides from this category that have been examined as the most common are human
lactoferrin and LL-97. Many AMPs are made up of β-sheet peptides, which are present
in many kinds of plants, amphibians, marine invertebrates, etc. [127,128]. In the aqueous
state, the β-sheet peptides have a rigid and well-organized structure and do not alter
conformation as helical peptides. The antimicrobial properties of the β-sheet peptides
include antibacterial, antiviral, antifungal, and anti-inflammatory effects [129]. Protegrins,
defensins, and tachyplesins are some of the class’s more traditional members. The most
studied β-sheet peptides are defensins, which are generated by neutrophils, epithelial cells,
and macrophages as inactive precursor molecules [123,126]. These AMPs exhibit potent
antibacterial action and are found in plants, invertebrates, and vertebrates [3]. Loops and
extended-coil structures are included in the third class of AMPs. The extended-coil structure
lacks β-sheets and -helices and is made up of amino acids such as proline, tryptophan, and
arginine [35]. These AMPs work against Gram-negative bacteria by disrupting membranes
and have anticancer effects as part of their broad-spectrum function [130]. Other significant
examples are histatin (human saliva), tritrpticin, and indolicidin, a 13-amino acid peptide
with strong antibacterial action [3,130].

3.3. Antimicrobial Peptides and Their Mechanism to Tackle Antibiotic Resistance

AMPs offer an advantage over conventional antibiotics since they are less prone
to microbial resistance. These peptides act by disrupting membrane-bound pathogen
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activities and triggering the host immune system [131]. However, several issues must be
resolved before AMP may be widely used as an antibiotic arsenal. Some related issues
include production costs, toxicity parameters, and optimization (stability of AMPs). The
development of new AMPs as therapeutic agents depends on significant research into
the AMPs’ mechanism of action. Membrane-acting and non-membrane-acting AMPs are
different types of AMPs. While non-membrane peptides pass across the membrane without
disrupting it, membrane-acting AMPs are essentially cationic peptides that cause membrane
disruption [132]. Antibacterial peptides that produce trans-membrane holes in the target
membrane include LL-37 [133], defensins [134], and melittin [135]. Dermaseptin [136],
buforin [137], and pleurocidin [138] are a few examples of AMPs that translocate across
membranes (without producing disruption), among others. The transfer of these AMPs
across cell membranes and the interruption of normal processes is their distinct mechanism
of action [139]. Cell permeability and disruption are due to the cationic peptide’s interaction
with the negatively charged lipopolysaccharide-containing cell membrane. Additionally,
while interacting with microbial membranes, these AMPs display structural dynamics [140].
The other method of action involves blocking the creation of nucleic acids, proteins, and cell
walls [141]. Additionally, AMP insertion into cell membranes is impacted by the fluidity
of the membranes. The charge on the outer membrane, fluidity, etc., is essential for AMP
membrane transport and influences AMP activity [142]. Additionally, certain AMPs target
intracellular components by passing through the lipid bilayer and inhibit cellular processes
including protein and nucleic acid production [143]. The mechanism of action of AMPs on
bacterial membranes has been thoroughly studied in several models, including the carpet
model [144], the toroidal pore model [145], and the barrel–stave mechanism [146].

3.4. AMPs as Antimicrobial Therapeutics: Clinical Validation and Trials

The AMPs highlight several benefits of their synthesis and use as antimicrobials,
including high efficacy, negligible toxicity, and limited tissue accumulation. The AMPs
are emerging pharmacological candidates, subject to clinical trials and validation, creating
hope to expand their therapeutic applications [147]. The wider use of AMPs as therapeutics
will be made possible by recent developments in peptide technology, including peptide
drug conjugates, multifaceted peptides, and cell-penetrating peptides [148]. Globally,
the United States produces and markets the most peptide-based medications, followed
by Europe (Vicuron Pharmaceuticals and Theravance), which is principally engaged in
peptide therapy research and development. Currently, over 60 peptide medications are
commercially available, with additional new peptides undergoing clinical research and
testing [149]. In 1999, magainin was discarded due to poor trial design, but there are still
issues with peptide therapeutics that need to be resolved. One such peptide is MSI-78
which was unsuccessful in phase III clinical trials despite being effective against infections
of diabetic foot ulcers. Three antimicrobial peptides (associated with indolicidin) were
included in clinical trials [150]. MBI-226 was just recently launched and is currently
in phase III of a clinical trial to treat catheter-related bloodstream infections [146]. By
successfully reducing bacterial colonization in catheter-related infections [151] and showing
antifungal activity against Candida albicans in guinea pigs [152], the clinical trials of MBI-226
have shown its efficiency in animal models. In a different study, Micrologix conducted
phase II and III clinical trials for indolicidin-like peptides to treat acute acne and suppress
MRSA [153]. AMPs and their derivatives have seen global commercial success in the
treatment of infections [154]. The worldwide antimicrobial endeavors have given rise to
extensive knowledge of AMPs’ effectiveness, mechanisms, safety, and other factors [155].
Additionally, greater funding for AMP research is needed to create peptide-based antibiotic
drug arsenals.

4. Antimicrobial Peptide Production in Plants—Prospects and Advantages

Antimicrobial peptides (AMPs) comprise the first line of defense and comprise the
integral component of immunity in all organisms. Recent years have witnessed increasing
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research on AMPs, which is attributed to their low toxicity to mammalian cells, unique
action, and broad-spectrum functions [156]. The plant-based expression, also designated
as molecular farming, offers a cost-effective approach to large-scale production of these
therapeutic agents. Although the production of AMPs in plants is considered a prospective
and emerging field of research in the present time, crucial challenges in terms of stability,
function, and yield of the product account for some major concerns [157]. While plant-
based expression systems are prospective as AMP production systems, an extended time is
required for the optimization/generation of stable expression systems.

4.1. Plant Systems and Production of AMPs

Plants or animals are shielded from pathogenic attack by AMPs, serving as innate
defense mechanisms [158]. There are currently more than 1700 known natural AMPs.
Numerous derivatives and analogs have been created using computational systems or syn-
thetically manufactured systems using natural AMPs as models. Because of advancements
in biotechnology, it is now possible to produce proteins, peptides, and medicinal substances
in large quantities using plants as bioreactors [156]. Plants produce AMPs for a variety of
purposes, comprising large-scale synthesis in plants and plant protection from diseases.
Due to well-organized peptides (correct folding, disulfide bond, and glycosylation) and
cost-effective purification, plants are favored for the manufacturing of AMPs [43]. Addition-
ally, compared to bacterial and yeast expression systems, plant-based molecular farming
is safer since there is essentially no chance of product contamination with endotoxins or
infections that affect humans or animals because plants do not have these pollutants. There
are two main methods for producing AMPs in plants: steady integration of AMP genes
into the plant genome, or a temporary transformation technique [159]. An illustration of
molecular farming of antimicrobial peptides in plants is shown in Figure 2.

4.2. Plant Tissue Culture as Expression Systems

Tissue cultures, cell suspension cultures, callus cultures, and hairy root cultures are
all methods used to sustain in vitro plants. Before creating a viable transgenic plant, the
in vitro plant tissue culture approach is a strong tool for evaluating various expression
processes [160]. This is so because plant cells or tissues may be grown in a controlled
environment using regulated applications of phytohormones and culture media in in vitro
cultures, which are independent of climatic variables. Agrobacterium rhizogenes is utilized in
hairy root cultures in plant biotechnology to produce medicinal proteins and phytochem-
icals [161,162]. The platforms for molecular farming of antimicrobial peptides in plants
are discussed. Every living plant tissue can be utilized to create a callus culture; however,
young, meristematic tissues are the best sources of starting material [163]. Either direct
or explant transformation of the callus and subsequent culture is used to create callus
cultures that contain transgenes [164,165]. Monocotyledonous agricultural plants are typi-
cally resistant to in vitro regeneration and lack a screening platform for expression. As an
alternate technique for screening stable transformants, callus cultures are used. With barley
callus cultures, stable transgenics that express barley protein were created [166]. Hairy root
cultures (HRCs) are the result of a plant becoming infected with the bacterium Rhizobium
rhizogenes (initially A. rhizogenes). It may be generated from a variety of crops and allows the
creation of extremely varied compounds [167]. HRCs have a steady biosynthetic capability
and accumulate recombinant proteins in amounts comparable to those of entire plants.
The stable integration of the gene of interest into the host plant genome is caused by root-
inducing plasmids from A. rhizogenes [167]. A. rhizogenes was used to produce the chimeric
antimicrobial peptides lactoferrampin and lactoferricin from bovine lactoferrin in tobacco
hairy root cultures [44]. An appealing manufacturing strategy in terms of product consis-
tency and the subsequent purification procedure is the expression of therapeutic proteins
in in vitro plant systems under controlled circumstances [168]. ‘Next-generation human
therapeutic antibodies’ are being created utilizing plant hairy root cultures [169–171]. Hairy
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root cultures of N. benthamiana are used to produce the tumor-targeting antibody-mAb H10
as part of an effort to discover next-generation therapeutic human antibodies [172].

4.3. Genetically Manipulated Plant Systems

Plant cells or tissues are used in plant molecular farming to express and process re-
combinant proteins or peptides with medicinal potential. This procedure is recognized
as one of the most successful AMP manufacturing strategies [173]. Previously, potatoes
and tobacco were commonly utilized as model plants for producing recombinant pro-
teins, antigens, and medicines [174]. The two strategies that affect recombinant protein
production in a plant are altering plant systems during synthesis (subcellular targeting,
translation, and post-translational modifications) and controlling promoter-mediated tran-
scription [175–177]. Constitutive production of the antimicrobial peptide cecropin P1 in
transgenic potatoes resulted in plant resistance to the causal fungal pathogens of white rot
and potato blight [178]. Most of the research employs constitutive expression of AMPs via
ubiquitin and CaMV35S promoters [179–181]. Citrus Huanglongbing (HLB) and Candidatus
Liberibacter asiaticus’ (Las) infections caused by Xanthomonas citri are the most damaging to
citrus trees globally. Antimicrobial peptide D2A21 expression was performed to develop
canker and HLB disease-resistant cultivars. Transgenic tobacco plants expressing D2A21
outperformed control plants in terms of disease resistance [182]. The LL-37 antibacterial
peptide was also produced using transgenic barley. In a study, an alfalfa-plant-derived an-
tifungal peptide was used to genetically modify potato plants [183]. Similarly, tachyplesin
I, which offers defense against bacterial and fungal infections, was developed from the
horseshoe crab [184]. In a different investigation, transgenic Ornithogalum plants expressed
tachyplesin I [184]. The wild tobacco Nicotiana was modified for constitutive expression
of the antimicrobial peptide (Mc-AMP1) from the common ice plant to examine the envi-
ronmental and ecological implications of plant–microbe interactions. The outcome was
that the transgenic plants displayed in-plant action against beneficial microorganisms for
plants [185]. By using both direct and indirect transformation techniques, a Dermaseptin
B1 recombinant antimicrobial peptide (C2-B1) was expressed in transgenic tobacco hairy
root (HR) cultures. The total recombinant protein content of transgenic clones produced
using direct and indirect transformation techniques and in liquid medium differs notice-
ably. According to the study, recombinant peptide production from the hairy root derived
from the indirect transformation approach was noticeably greater [186]. Verticillium dahlia,
an economically significant plant pathogen, is very resistant to the antimicrobial peptide
BTD-S. Plants of the wild-type Columbia-0 ecotype of Arabidopsis thaliana expressed this
peptide. In both in vivo and in vitro tests, BTD-S transgenic lines enhanced resistance
toward V. dahliae [187]. The antimicrobial peptide PaDef (from Mexican avocado fruit) was
heterologously expressed in Pichia pastoris, and the peptide restricted the development of
S. aureus and E. coli [188] (Table 2).

Table 2. Representative examples of genome editing in biological organisms for applied biotechnologies.

S. No. Genome-
Editing Tool Biological System Method of Genome

Editing Applications Reference

1. Cas9/sgRNA
system

Cucumis
sativus

eIF4E (eukaryotic
translation initiation factor
4E) gene was targeted by
Cas9/sgRNA construct

Plant resistance to
viruses [189]

2. RNA interference
(RNAi) Synechocystis sp.

CRISPR-RNA (crRNA) in
Synechocystis sp.

degrades target mRNA

To address drug
resistance in

microbes
[190]
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Table 2. Cont.

S. No. Genome-
Editing Tool Biological System Method of Genome

Editing Applications Reference

3. Genetic
engineering

Arabidopsis
thaliana

Cht1 signal peptide
(Cht1SP)-

thanatin(S)-GFP construct
was introduced in the plant

Antifungal and
antibacterial

activity of
Thanatin(S),

antimicrobial
peptide

[191]

4.
Metabolic

engineering/
overexpression

Poplar spp.
MsrA2 (antimicrobial

peptide) overexpression in
the plant

Improved
pathogen
resistance

[192]

5.
De novo designing of

AMP and engineering in
plant

Nicotiana
benthamiana

SPI-I (AMP) was designed
and introduced in

plant system

Antimicrobial
function against

pathogens
[193]

6. Plant
transformation Oryza sativa Plant transformation with

cecropin A gene

Fungal and
bacterial pathogen

resistance
[194]

4.4. Approaches for Transient Expression of AMPS

Due to its high expression levels, relative quickness, and high yield, transient trans-
formation is a technology that is ideal for expressing a gene in plants and producing
recombinant proteins [195]. The desired gene is expressed transiently in a plant host
using a genetically designed vector, often Agrobacterium or a plant virus, and recombi-
nant protein is obtained through expression within plant cells. This method allows for
expression to begin within 24 h and continue for a week [196]. For temporary expression,
plant viruses’ natural propensities for infection and Agrobacterium-mediated transforma-
tion are used. Entire plant leaves, plant suspension cells, or hairy root cultures are some
of the components employed in temporary transformation [197]. Numerous peptides
and proteins have been produced through temporary expression based on viral infection,
including human interleukin-2, bovine lysozyme, human-galactosidase A, and bovine
aprotinin, among others [198]. Using a TMV-based vector, the AMP recombinant aprotinin
was created in tobacco plants. The second strategy involved employing a plant virus
with high levels of expression and fast replication together with Agrobacterium to transfer
DNA [199,200]. Heterologous proteins such as interferons, cytokines, growth hormones,
etc., were produced using this method [187]. Vacuum penetration of Agrobacterium cultures
changed tobacco plants. Even the creation of medicinal proteins or peptides for industries
uses transient systems. Recombinant aprotinin was synthesized utilizing a Nicotiana sp.
through a TMV-based vector in research. This work served as the initial illustration of
the transient transformation technique for molecular farming’s generation of AMPs. The
production of the avian H5N1 influenza vaccine in tobacco leaf tissues and its expression
was carried out [201]. The Agrobacterium-mediated expression was used to synthesize
the broad-spectrum AMP protegrin-1 (PG-1) in Nicotiana tabacum. According to Patio-
Rodrguez et al. [202], this peptide was physiologically active against several bacterial and
fungal species. The fruits of Raphanus sativus were resistant to bacterial spot disease by the
induced production of SP1-1, an AMP targeted to the apoplast [203].

The use of plant cell suspension cultures requires consistent and specified conditions,
which provide superior quality monitoring with a suitable medium, particularly during
continuous manufacturing operations [195]. The scalability of plant cells, which is lower
than that of full plants, is the main limitation of plant cell cultures. Additionally, it is not
always possible to apply techniques that have been refined for plant cell cultures to actual
plants [204]. Therefore, more screening and translational studies are further required. To
establish a connection between plant cells and the scalability of complete plants, a plant
cell pack (PCP), usually referred to as “cookies”, is created. The foundation of this platform
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is plant cell cultures without a liquid medium. Because of this, plant cell packs offer a
viable platform for metabolic engineering, synthetic biology, and typical recombinant pro-
tein expression techniques that need high throughput screening of a variety of constructs
for effective product development [205]. Human antibody chain proteins were molec-
ularly farmed using PCP technology [206]. Rademacher developed a technique for the
development and growth of a plant cell pack in 2020. A limitation to the industrial use of
plant-based expression systems is the limited quantity of transiently expressed recombinant
proteins generated via entire plants or plant cells. PCPs offer a quick and high-throughput
screening approach with increased recombinant protein expression. In cell suspension
cultures, namely A. thaliana, Catharanthus roseus, N. tabacum, etc., PCPs are effective. Due
to fewer host proteins and secondary metabolites than in leaf-based expression systems,
the approach also facilitates product purification. Agrobacterium tumefaciens-infused plant
cell packs (PCPs), which are three-dimensional, porous aggregates of plant cells, were de-
veloped as an expression method [207]. For plant species like Nicotiana spp. and D. carota,
these PCPs are more suited and effective than the transient expression approach in a liquid
plant cell culture [206]. This uses both fast-growing cell suspension cultures and protein
expression assays to understand vector replication efficiency detected as red and green flu-
orescent proteins [207]. The high-throughput screening of recombinant protein expression
has been aided by the development of PCPs. The newly automated technique offers an
affordable platform with more sample detection [208]. The same team of researchers has
developed a technique for automatically transforming plant cell packs [208].

5. Computational Resources and Antimicrobial Research

The advancement of computational biology has made it easier to create vaccines and
medicines with greater effectiveness. The development of antibacterials has centered on
a combinational chemistry approach combined with computational modeling of the 3D
structure of the antibacterial using energy minimization and other methods [209]. This
approach aims to identify an effectively docked compound to a virulent gene, restrict-
ing the growth of the pathogen. The capacity to store proteomics/genomics findings
and retrieve biological information has solved the issues connected with combating drug-
resistant diseases. This has been made possible by the decoding of biological genomes and
genome analysis using automated techniques [210]. The advancements in computational
biology have made it easier to create vaccines and medicines with greater effectiveness.
The antibacterial development has centered on combinational chemistry combined with
computational modeling of the 3D structure of the lead compound using energy mini-
mization and other techniques [209]. This approach aims to identify an effectively docked
compound to a virulent gene, restricting the growth of the pathogen. The capacity to store
proteomics/genomics findings and retrieve biological information has solved the issues
connected with combating drug-resistant diseases. This has been made possible by the
decoding of biological genomes and genome analysis using automated techniques [210].
Several bioinformatics databases and tools have also been created to give data on AMPs,
information on microorganisms, and in silico methods to examine interactions between
human pathogens.

Most of the research into the creation of antibacterial drugs has, up to this point,
concentrated on the synthesis of lead candidates via inhibiting the synthesis of nucleic
acids, limiting the biosynthesis of peptidoglycan, and blocking crucial metabolic path-
ways [210,211]. Through the identification of plasmid genes that inhibit the pathway,
sequencing of genomes, and metabolic pathway reconstitution, computational biology
has made a substantial contribution to drug development efforts [210]. To fully integrate
bioinformatics and biochemical analysis for the generation of prospective drug candidates,
key studies are still required. The advances in bioinformatics have contributed to our
understanding of the existence of surface antigens and pathogenic genes. To create effective
antimicrobial candidates for drug discovery and development, a deeper knowledge of
microbial dynamics is required.
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6. Bottlenecks in Research on AMPs as Antimicrobial Therapeutics

The substantial research and progress on AMPs, has necessitated the exploration of
natural products to develop novel and potent candidates as antimicrobial agents. More than
3000 AMPs have been found and described to date [212], yet the bulk of them are unsuitable
for treating humans (in their natural state) and many of them failed in clinical trials. AMPs,
including telavancin, dalbavancin, vancomycin, daptomycin, oritavancin, and gramicidin
D, have received FDA approval and are being marketed for use in medicine [213]. Many
peptide-based therapies in the market function by activation or blocking of receptors, and
others include pathway inhibitors and peptides that act on membranes. For usage as drug
molecules, peptide-based treatments must be stable; most peptides authorized by the FDA
exhibit stability in vivo [214]. Designing antimicrobials from bacteria and their biochemical
aspects, combining AMPs with drugs for better function, and developing in vitro systems
to study the antimicrobial effects are all necessary for creating synthetic AMPs [213]. An-
timicrobial agents’ broad-spectrum action is caused structurally by the union of a clearly
defined cationic region with a hydrophobic surface area, yet the rigidity of AMPs’ structure
impairs their abilities to carry out the functions [128]. The main obstacles to AMP usage
are its effectiveness and toxicity. Since some AMPs have in vivo side effects, they are
exclusively employed in topical applications [215]. Additionally, the presence of serum
and excessive salt levels might impact the antibacterial effects [144]. The vulnerability of
AMPs to host proteolytic enzymes, which break down AMPs and influence their stability
and pharmacokinetics, is another significant issue [216]. As a result, several AMPs are only
recommended for use in tropical climates and are not recommended for oral administration.
Current research has shown a more varied and complicated mechanism of AMPs, empha-
sizing a larger and multifaceted approach to combating microbial infections. In addition to
their biological characteristics, additional elements such as in vivo stability [214], together
with the resulting side effects and production costs, must be taken into consideration. To
create AMPs with enhanced function, it will be crucial to have a thorough understanding
of structure–function studies of AMPs and their effectiveness range.

7. Commercial Potential and Prospects of AMPs as Therapeutic Agents

AMPs are being developed as next-generation antibiotics to treat a variety of microbial
illnesses, notably MDR strains, despite the numerous projected limitations. The tremendous
therapeutic potential of AMPs, both natural and synthesized, as novel antimicrobials is
highlighted by their multiple mechanisms of action. Our understanding of the structure and
characteristics of AMPs has recently progressed, which is attributed to scientific advances,
but there is still a long way to go before these therapeutic options can be fully utilized.
Additionally, modified AMPs target or show specific antimicrobial activity with enhanced
characteristics [217]. These modified AMPs include hybrid peptides, peptide mimetics,
immobilized peptides, and peptide conjugates. These innovative peptides have potential
uses in both industry and medicine, including as arsenals against antibiotic-resistant
bacterial strains and for food preservation. AMR is on the rise all over the world, and
AMPs have the potential to combat drug-resistant organisms, emphasizing the development
of new antimicrobial options for viral, fungal, and bacterial illnesses. Short synthetic AMPs
are frequently used to combat MDR microbial strains, and significant progress has recently
been achieved in the design and synthesis of short peptides with increased effectiveness
and decreased toxicity. The discovery of AMPs offers promising opportunities to replenish
the depleting antibiotic pipeline and combat the global rise in AMR.
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