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Abstract: In the present paper, the cyclic stability of the high-temperature two-way shape memory
effect was studied in high-strength Ni50.3Ti32.2Hf17.5 polycrystals after various thermomechanical
treatments—training (thermocycling under stress) and stress-induced martensite aging. The effect of
training and stress-induced martensite aging on the microstructure, the two-way shape memory effect,
and its cyclic stability was determined. It was found out that both thermomechanical treatments
induce the high-temperature two-way shape memory effect at T > 373 K, with a strain of 1.5% in
tension. The influence of cyclic tests (up to 100 stress-free cycles of cooling/heating) on the two-way
shape memory effect strain, the transformation temperatures, and the microstructure was established.
Different degradation mechanisms of the two-way shape memory effect were established after
thermocycling and stress-induced martensite aging.

Keywords: martensitic transformation; NiTiHf; stress-induced martensite aging; two-way shape
memory effect; cyclic stability

1. Introduction

The NiTiHf system is already known as a reliable, high-strength, high-temperature
material with a wide range of necessary properties and characteristics for use in various fields
of activity such as actuators, sensors, complex working mechanisms, and dampers [1–5].

One of the functional properties that expands the possibilities of the practical applica-
tion of shape memory alloys is the two-way shape memory effect (TWSME) [2]. A material
with the TWSME is more promising for use as an actuator, since there is no need to use
external stresses to return the working element to its original position, which simplifies
the design of working devices. It should be noted that one of the main requirements for
practical application is the cyclic stability of the functional properties during long-term
operation, without any significant degradation. Therefore, the induction of the cyclically
stable TWSME in NiTiHf alloys is an actual problem. In this respect, a NiTiHf alloy with the
addition of the Hf element, from 10% to 20%, is under scientific interest because it makes it
possible to achieve an increase in the transformation temperatures above 100 ◦C (373 K)
and implement the high-temperature TWSME in alloys without facing bad plasticity due
to the high content of Hf [1,6].

Two methods were used to induce the TWSME in NiTiHf systems: the thermal cycling
of the material through the temperature range of the thermoelastic martensitic transforma-
tions (MTs) under the applied external stresses (training) and stress-induced martensite
aging (SIM-aging). It is known from the literature [7] that training is mostly used to obtain
the TWSME in NiTiHf alloys. Such treatment, which leads to the formation of a large
number of dislocations and residual martensite, makes it possible to obtain the TWSME
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with a reversible strain of up to 1.3–1.5% in tension in polycrystals with a small grain size
(d < 1 µm) [7]. However, it was shown in other shape memory alloys (NiFeGaCo and Co-
NiAl) that SIM-aging is more effective at obtaining the high cyclic stability of the TWSME
with a large reversible strain of up to 9% [8,9]. During SIM-aging, the redistribution of point
defects and atoms of different kinds happens in accordance with the martensite symmetry,
and, thus, martensite stabilization occurs. In our previous work [10], it was shown that due
to SIM-aging it is possible to obtain a TWSME of up to 2.3% in aged Ni50.3Ti32.2Hf17.5 and
Ni50.2Ti37.3Hf12.5 alloys, which exceeds the literature data obtained on the polycrystals of
the Ni50.3Ti29.7Hf20 alloy after extrusion.

However, there has not been an in-depth study of SIM-aging and training on the
TWSME and its cyclic stability in a high-temperature NiTiHf system nor a comparison
of both methods to determine the most optimal thermomechanical treatment in order to
obtain a stable TWSME with the maximum strain. Therefore, the aim of the present work
is to find out whether the method of inducing the high-temperature TWSME (training or
SIM-aging) affects its cyclic stability, martensite morphology, and microstructure in the
polycrystalline Ni50.3Ti32.2Hf17.5 (at.%) alloy.

2. Materials and Methods

Polycrystals of Ni50.3Ti32.2Hf17.5 alloy (at.%), obtained by electric arc melting from high-
purity components (99.99%), were used in the present work. The samples for tension were
cut to the size of 20 × 1.5 × 2.5 mm3 in the dog-bone form by using the electro-discharge
machine and were, subsequently, mechanically ground and electrolytically polished. The
average grain size in polycrystals was ~36 µm, and no significant change was observed
after additional thermal treatments. To date, polycrystals after extrusion with a small
grain size have been mostly studied [11,12], whereas polycrystals with a large grain size
d > 10 µm, in which the texture is absent or has a weakly pronounced shape, have been
poorly studied.

The chemical composition of the material was controlled by using an XRF-1800 X-ray
fluorescence wave-dispersion spectrometer (Shimadzu, Kyoto, Japan). It was experimen-
tally shown that the chemical composition of Ni50.3Ti32.2Hf17.5 (at.%) polycrystals on aver-
age over a surface of 10 mm2 corresponds to the nominal, within the measurement error of
5% from the measured value. The chemical composition was chosen based on [13], which
shows that the addition of Hf from 10 to 20 at.% contributes to a significant increase in the
characteristic temperatures of MT (20–25 K per 1 at.%).

The material was studied in the following states: (I) polycrystals after melting were
aged in austenite in stress-free state at 773 K for 3 h, followed by slow cooling;
(II) (I) + SIM-aging (300 MPa, 428 K, and 12 h); (III) (I) + training at applied stress of
300 MPa (thermal cycling for 10 cycles through the MT interval, which corresponds to a
total time of 12 h).

Thermomechanical treatments were carried out using a dilatometer (IMRS-1, Micros-
plav, Tomsk, Russia).

Mechanical tests were carried out on a specially designed installation for measuring
SME at cooling/heating cycles under constant tensile stress (IMRS-1, Microsplav, Tomsk,
Russia). The measurement error was ~0.3% for deformation and 3K for temperature. The
microstructure of crystals was obtained using a transmission electron microscope Hitachi
HT-7700 (Hitachi, Tokyo, Japan). The electron microscopic studies were carried out on the
equipment of the Krasnoyarsk Regional Center for Collective Use SB RAS.

The aging temperature in austenite, 773 K for 3 h, was chosen based on [13–15], where it
was shown that during this heat treatment the nanoscale dispersed particles of the H-phase
are precipitated, strengthening the material and increasing the characteristic temperatures
of MT [14–16]. Transformation temperatures of aging in austenite in stress-free state,
at 773 K for 3 h crystals (initial polycrystals), were obtained using differential scanning
calorimeter DSC 404F1 Pegasus (NETZSCH, Selb, Germany) with a cooling/heating rate of
10 K/min.
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The regime of SIM-aging was as follows: the sample was preloaded to 300 MPa
and cooled below the martensite finish temperature Mf so that an oriented martensite
grew in the entire volume of the material. Then, the heating was carried out to the
austenite start temperature As, in order to reach the highest possible holding temperature
without the implementation of reverse MT. After that, the material was kept for 12 h under
these conditions and then, subsequently, heated to a temperature above austenite finish
temperature Af, so the reverse MT would occur. The SIM-aging time was selected on the
basis of previous work [10] so that no changes in the “deformation-temperature” curve
were observed during the last hour of SIM-aging.

The number of training cycles was selected in such a way that the total time spent by
the material under an applied stress of 300 MPa corresponded to the time of SIM-aging.

The stresses for both thermomechanical treatments to induce TWSME (training and
SIM-aging) were chosen in such a way that the material did not collapse and had the largest
reversible strain and the minimum irreversible strain (0.3–0.5%).

3. Results

It was shown by electron microscopic studies that Ni50.3Ti32.2Hf17.5 (at.%) polycrystals
aged at 773 K for 3 h contain nanoscale dispersed H-phase particles with sizes of 10–15 nm.
Figure 1 shows the microstructure of the initial polycrystals aged at 773 K for 3 h before
thermomechanical treatments. On the selected area electron diffraction pattern (SAEDP),
the reflexes of the B2 matrix and characteristic reflexes 1/2<111>B2, which indicate the
presence of H-phase particles, are clearly shown [13–15]. The H-phase particles have a face-
centered orthorhombic lattice with parameters a = 4a0, b = 2

√
2a0, and c = 6

√
2a0 [13–15].

It was shown that the microstructure is characterized by the presence of wide martensitic
lamellae with dimensions of 50–300 nm, which contain internal compound twins (001)B19′

(Figure 1b,c). These martensitic lamellae are twinned by {011} type I, and the dispersed
particles of the H-phase are completely embedded in the martensite variants, which is
consistent with [17], where internally twinned lamellae of B19′-martensite were also found.
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Figure 1. Bright-field images with corresponding SAEDPs of Ni50.3Ti32.2Hf17.5 polycrystals aged in 
austenite at 773 K for 3 h presenting H-phase dispersed particles (a), internally twinned martensite 
lamellae (b), and the width of martensite lamellae (c). 

Figure 1. Bright-field images with corresponding SAEDPs of Ni50.3Ti32.2Hf17.5 polycrystals aged in
austenite at 773 K for 3 h presenting H-phase dispersed particles (a), internally twinned martensite
lamellae (b), and the width of martensite lamellae (c).

Before applying any thermomechanical treatment to the initial polycrystals, the trans-
formation temperatures were obtained (Figure 2), which were found to be in accordance
with the literature [1–5].
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Figure 2. Differential scanning calorimetry for Ni50.3Ti32.2Hf17.5 polycrystals aged in austenite at
773 K for 3 h (initial polycrystals).

Initial polycrystals aged at 773 K for 3 h were subjected to thermomechanical treat-
ments in accordance with Section 2—thermal cycling under stress of 300 MPa (10 cycles~12 h)
(Figure 3a) and SIM-aging at T = 428 K, 300 MPa, and 12 h (Figure 3b).
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Figure 3. The strain–temperature curves for aged Ni50.3Ti32.2Hf17.5 polycrystals during (a) training
and (b) SIM-aging.

During training, at cooling/heating cycles under stress of 300 MPa, the reversible strain
was 5.3% (Figure 3a), which is in accordance with the literature [18]. The accumulation
of an irreversible deformation εirr of 0.3% occurred during training. This irreversibility
is associated with plastic deformation and the appearance of residual martensite. At the
same time, there was a staging on the curve during the training process related to the
macrolocalization of the deformation in one part of the sample.

The strain–temperature curve during SIM-aging is shown in Figure 3b. The solid part
of the curve corresponds to the initial state of the polycrystals, while the dotted part of
the curve is the heating after SIM-aging and responds to the already-SIM-aged state of the
polycrystals. It should be noted that the curve also shows an irreversibility of 0.35%, as
in the samples after training, which may be caused by the presence of both the stabilized
martensite and the partial plastic deformation occurring near the grain boundaries.
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The optical studies of the samples’ working surface were carried out at room tempera-
ture after training and SIM-aging. It was found that, after SIM-aging, the working surface of
the material is homogeneous—a relief associated with the formation of oriented martensite
during cooling was observed throughout the material’s volume. On the contrary, after
training, the surface of the working part of the sample was inhomogeneous—a localized
area consisting of a mixture of residual martensite and plastic deformation bands was
optically observed. Such localization of the deformation may be the reason for the stages of
the ε(T) curves during training. It was found that neither training nor SIM-aging affect the
grain size or H-phase particles in aged Ni50.3Ti32.2Hf17.5 polycrystals.

Figures 4 and 5 show the microstructure of polycrystals after SIM-aging and training,
respectively. Since polycrystals are characterized by a high temperature of martensitic
transformation, starting at Ms > 400 K, the material was in a martensite during the electron
microscopic studies, and thermal-induced martensite is observed in both figures.
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Figure 5. Bright-field images with corresponding SAEDPs of aged Ni50.3Ti32.2Hf17.5 polycrystals after
training from two parts of the sample (a) without traces of plastic deformation, [100]B19′ zone axis,
and (b) with mixture of several intersecting split martensitic systems. (c) Dark-field image of split
martensite systems taken in circled reflex of (b).

It was experimentally found that, after SIM-aging, a high density of nanotwins was
observed along the planes of the (001) B19′-martensite. It should be noted that, after SIM-
aging, the width of the B19′-martensite lamellae increased to 500 nm (Figure 4), compared
with the initial state. The wide lamellae in Figure 4 are the witness of the oriented growth
of thermally induced martensite after SIM-aging.

A different morphology of thermal-induced martensite was observed after training
(Figure 5), compared with the SIM-aged crystals. Foils for the electron microscopic studies
were cut from two parts of the sample—a strongly deformed particle of the sample, in which
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the localization of residual deformation was observed, and a second part of the sample,
where, macroscopically, there were no traces of plastic deformation. It is assumed that in
the clean area of the sample after training, type I {011} twins with a lamella width of up to
100 nm were found, inside of which thinner compound twins were presented (Figure 5a).
Such a microstructure of martensite differs little from the one, which was observed in the
initial crystals. However, a complex microstructure was found in the deformed part of the
sample (Figure 5b,c), which is a mixture of several “split” martensitic systems intersecting
each other. Such behavior may be a consequence of the high density of dislocations and the
presence of residual martensite and internal stresses that induce the formation of various
martensite variants, in contrast with SIM-aged crystals (Figures 4 and 5).

Both regimes (training and SIM-aging) lead to the induction of a high-temperature
TWSME at T > 373 K for stress-free cooling/heating cycles (Figure 6).
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The value of the TWSME for stress-free cooling/heating cycles after training is de-
termined by the number of thermal cycles under stress during training. The TWSME
strain was equal to 1% after the 1st training cycle and increased to 2.3% after the 10th
training cycle.

SIM-aging for 12 h led to a TWSME of 1.5%. It should be noted that, in our previous
work on the same polycrystals, after SIM-aging a TWSME strain of up to 2.3% was obtained,
which differs from the results shown in the present paper. Such behavior can be explained
as follows. First, the maximum reversible strain is affected by the strong orientation
dependence of the B2-B19′ transformation in polycrystals with a sufficiently large grain
size. Therefore, if grains with a predominantly [001] orientation are presented in the
sample, then the total transformation strain becomes significantly less, since along the [001]
direction one of the lowest strain values is observed (2.92%) in tension, whereas along the
[011] and [111] directions the transformation deformation is higher by 2.5–3.5 times. Second,
in the NiTiHf system, both in polycrystals and single crystals, the full lattice deformation
resource is not realized, so only local regions are observed in which the deformation can
reach theoretical values [19].

To estimate the stability of the functional properties of the TWSME, cycling (100 stress-
free cooling/heating cycles) was carried out after training and SIM-aging (Figure 7). Using
the curves ε(T), the change in reversible strain εrev (presented in a fraction as a ratio of
the “i” cycle to the first cycle, εrev

i/εrev
1), thermal hysteresis ∆T, and Ms temperature

were calculated depending on the number of cycles (Figure 8). Based on the dependence
of the reversible strain εrev, thermal hysteresis ∆T, and Ms temperature on the number
of cycles, two stages of degradation can be distinguished, which is typical for shape
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memory alloys—the first stage of initial degradation (from 1 cycle to 30 cycles), at which
the parameters of the TWSME significantly change, and the stage of cyclic stability (from
31 cycles to 100 cycles).
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1),
thermal hysteresis, and (b) Ms temperature on the number of cooling/heating cycles for aged
Ni50.3Ti32.2Hf17.5 polycrystals after training and SIM-aging.

The following changes in the characteristics of the material’s functional properties
were experimentally established. First, the reversible strain decreased at the first stage of
degradation by 27% and in polycrystals after training and SIM-aging by 17%, respectively.
During the second stage of degradation (from 31 to 100 cycles), the reversible strain
practically did not change and was ~1.5% and ~1.2% for samples after training and after
SIM-aging, respectively. Second, thermal hysteresis almost does not change in polycrystals
after training and is ~30 K. After SIM-aging, thermal hysteresis was reduced by 20% in
the first 30 cycles to ~27 K and did not change with a further increase in cycles. Third, in
polycrystals after training, the Ms temperature decreased during cycling by 10 K for the
first 30 cycles and then slightly changed. In polycrystals after SIM-aging, on the contrary,
the Ms temperature increased by 10 K during the first 30 cycles and weakly increased by an
additional 5 K from 31 to 100 cycles.
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4. Discussion

Despite the different mechanisms of TWSME induction and its degradation, it was
found that both methods of TWSME generation (training and SIM-aging) induce a stable
high-temperature TWSME of up to 1.5% in tension in the heterophase polycrystals of the
Ni50.3Ti32.2Hf17.5 alloy with a large grain size containing dispersed H-phase particles. A
previous study [5] showed that the maximum strain of the TWSME caused by the trainings
was ~1.5%, which was obtained in the Ni50.3Ti29.7Hf20 polycrystals after extrusion in the
tension. The value of thermal hysteresis and the temperature intervals of MT slightly
differed in both states.

The analysis of both thermomechanical treatments (training and SIM-aging) should
start from the observed irreversible strain. On the one hand, in trained samples it is
associated with plastic deformation and the appearance of residual martensite. There is
a staging on the curve during the training process related to the macrolocalization of the
deformation in one part of the sample (Figure 3a). On the other hand, in SIM-aged samples
the irreversibility may be caused by the presence of both the stabilized martensite, which is
verified by the widening of martensite lamellae up to 500 nm (Figure 4), and the partial
plastic deformation occurring near the grain boundaries.

Electron microscopy studies and metallographic studies of the surface confirmed that
the microstructure of samples after training and SIM-aging differs. After training, the
two regions can be distinguished: the first one without any traces of plastic deformation
and the second one with residual martensite and deformation bands. In the second region,
the high density of dislocations and the presence of residual martensite and internal
stresses that induce the formation of various martensite variants are the reasons for the
complex microstructure observed in polycrystals after training in Figure 5b,c. A similar
microstructure was earlier observed on polycrystalline tubes of the Ni50.3Ti29.7Hf20 alloy [2].
Thus, thermoelastic MT occurred in a different way in these two regions, and the staging
on the curve is the evidence of such a behavior (Figure 3). On the contrary, SIM-aged
crystals, compared to polycrystals aged in austenite at 773 K for 3 h, possess the same
microstructure without a high density of dislocations or regions with macrolocalization of
the plastic deformation (Figure 4).

The above changes are associated with different degradation mechanisms in poly-
crystals, depending on the thermomechanical treatment. In polycrystals after training, a
microstructure consisting of a large number of dislocations and residual martensite was
formed, which induced the formation of various intersecting variants of martensite, as
shown in Figure 5b,c. In [20,21], the appearance of a large number of dislocations near the
residual martensite during thermal cycling was detected on Ni-rich NiTi alloys. The main
part of the dislocations formed during the reverse movement of the interphase boundary.
Therefore, in the samples after training, the presence of residual martensite led to the
formation of a large number of dislocations in the process of the repeated movement of the
interphase boundary. These newly appeared dislocations caused the pinning of residual
martensite during cycling.

On the other hand, the internal stresses <∆σin> formed at training relax during subse-
quent cooling/heating cycles due to the presence of pinned residual martensite as well as
due to the possible dislocations’ annihilation, which is caused by a significant increase in
their density. The combination of these factors led to the sharp drop in the Ms temperature
during cycling at stage I due to the relaxation of internal stresses, which indicates an austen-
ite stabilization (Figures 7 and 8). As long as the microstructure became stabilized, then the
further stress-free thermal cycling did not lead to a change in the TWSME parameters.

In polycrystals after SIM-aging, the TWSME was formed due to a different mechanism,
in contrast to training, namely, the martensite stabilization, in which the chemical and
mechanical contributions can be distinguished [22]. Chemical stabilization occurs due to
the redistribution of point defects and atoms and the changes in their short-range order, in
accordance with the martensite symmetry. In turn, mechanical stabilization is associated
with the pinning of twin/interphase boundaries by dislocations and point defects. Addi-
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tionally, during prolonged exposure in martensite under stress at elevated temperature, the
change (increase) in coherence between the H-phase particles and martensite may occur,
which, in turn, leads to a mismatch between the particles and austenite and contributes
to the appearance of internal stresses in the material; however, the confirmation of this
fact requires additional research. Previous studies [23] showed that the coherency of H-
phase particles plays an important role in controlling both transformation temperatures
and stresses.

The above-mentioned factors related to TWSME induction result in different degra-
dation mechanisms during cycling in SIM-aged polycrystals, compared with the trained
polycrystals. The contribution of both the chemical martensite stabilization and the change
in coherency between the dispersed nanosized H-phase particles and the matrix into the
internal stresses <∆σin>, causing TWSME, remains almost the same during cycling. The
reason for such behavior is that neither chemical stabilization nor coherency should not
change during thermal cycling, having a non-mechanical nature of appearance. At the same
time, the residual martensite formation appears during cycling, and it becomes pinned by
the newly appeared dislocations during the reverse motion of the interphase boundary.
This indicates the decrease in TWSME strain with each cycle, as in the trained crystals,
since the overall volume of the matrix undergoing the MT reduces. In SIM-aged polycrys-
tals, the further mechanical stabilization of martensite occurs during cycling, resulting in
the easier formation of martensite lamellae, an increase in the Ms temperature with the
growth of the cyclic number, and a slight increase in MT temperature intervals (by 5–7 K).
Thus, the internal stresses <∆σin> in SIM-aged polycrystals do not decrease with cycling.
That is why the sharp increase in the Ms temperature during thermal cycling is observed
with an increase in the number of cycles (Figure 7). In contrast, the relaxation of internal
stresses <∆σin> in trained polycrystals leads to the decrease in Ms temperature because of
austenite stabilization.

5. Conclusions

In the current work, the cyclic stability of the TWSME in Ni50.3Ti32.2Hf17.5 polycrys-
tals with a large grain size after SIM-aging and training (thermocycling under stress)
is investigated.

It is experimentally established that both thermomechanical treatments induced a
stable high-temperature TWSME at T > 373 K, with a reversible strain of up to 1.5% in
tension in heterophase Ni50.3Ti32.2Hf17.5 polycrystals. The microstructure of polycrystals,
the mechanisms of the TWSME, and the degradation mechanisms of the TWSME (during
100 cooling/heating cycles) strongly depend on the thermomechanical treatment.

After SIM-aging, TWSME is formed due to several factors: the chemical and mechani-
cal stabilization of martensite, with an additional possible change in coherence between the
dispersed particles of the H-phase and the matrix. The degradation (a decrease in reversible
strain and an increase in the characteristic temperatures of the MT) of the TWSME during
100 cooling/heating cycles occurs due to the formation of residual martensite. However,
internal stresses (caused by a coherency change between the dispersed particles and the ma-
trix and by martensite stabilization), which do not decrease because of the non-mechanical
nature, leads to the formation of oriented martensite and, consequently, to the increase in
the Ms temperature and the slight increase in the MT temperature intervals (by 5–7 K).

In turn, training (thermocycling under stress) leads to a complex internal
microstructure—several “split” martensitic systems intersecting each other are observed—
due to the high density of dislocations. In these samples, the TWSME occurs due to a
large amount of residual martensite and the presence of a high density of dislocations,
which leads to the appearance of internal stresses. During TWSME cycling, the relaxation
of internal stresses occurs due to the presence of residual martensite as well as due to
the possible dislocations’ annihilation, which is caused by a significant increase in their
density during the repeated movement of the interphase boundary, which indicates an
austenite stabilization.
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