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Abstract: The emergence of additive manufacturing technologies has brought about a significant
transformation in several industries. Among these technologies, Fused Deposition Modeling/Fused
Filament Fabrication (FDM/FFF) 3D printing has gained prominence as a rapid prototyping and
small-scale production technique. The potential of FDM/FFF for applications that require improved
mechanical, thermal, and electrical properties has been restricted due to the limited range of materials
that are suitable for this process. This study explores the integration of various reinforcements, includ-
ing carbon fibers, glass fibers, and nanoparticles, into the polymer matrix of FDM/FFF filaments. The
utilization of advanced materials for reinforcing the filaments has led to the enhancement in mechani-
cal strength, stiffness, and toughness of the 3D-printed parts in comparison to their pure polymer
counterparts. Furthermore, the incorporation of fillers facilitates improved thermal conductivity,
electrical conductivity, and flame retardancy, thereby broadening the scope of potential applications
for FDM/FFF 3D-printed components. Additionally, the article underscores the difficulties linked
with the utilization of filled filaments in FDM/FFF 3D printing, including but not limited to filament
extrusion stability, nozzle clogging, and interfacial adhesion between the reinforcement and matrix.
Ultimately, a variety of pragmatic implementations are showcased, wherein filled filaments have
exhibited noteworthy benefits in comparison to standard FDM/FFF raw materials. The aforemen-
tioned applications encompass a wide range of industries, such as aerospace, automotive, medical,
electronics, and tooling. The article explores the possibility of future progress and the incorporation
of innovative reinforcement materials. It presents a plan for the ongoing growth and application of
advanced composite materials in FDM/FFF 3D printing.

Keywords: 3D printing; additive manufacturing; composite materials; filled filaments; FDM; FFM

1. Introduction

Additive manufacturing, commonly referred to as 3D printing, involves the production
of three-dimensional objects through the sequential deposition of material layers under
the guidance of computerized instructions, known as gcode. It is a technology that has
revolutionized the way that engineers perceive the concept of manufacturing and has the
potential to change the modus operandi of various industry 4.0 processes [1–5].

Numerous 3D printing technologies exist, each possessing distinctive features and
benefits [6]. Fused Deposition Modeling (FDM)/Fused Filament Fabrication (FFF) is a
prevalent and extensively utilized technique for generating three-dimensional objects. This
method involves the melting of a thermoplastic material and its subsequent extrusion
through a nozzle [7,8]. The aforementioned technology is characterized by its affordability
and frequent utilization in the creation of prototypes and limited production runs. It is
important to note that Fused Deposition Modeling (FDM) is a proprietary term that has
been trademarked by Stratasys, whereas Fused Filament Fabrication (FFF) is an open-source
term that has been adopted by the RepRap community. The primary distinction between
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Fused Deposition Modeling (FDM) and Fused Filament Fabrication (FFF) 3D printing lies
in the utilization of a thermoplastic filament that is heated and extruded through a nozzle in
the former, whereas the latter employs a comparable process but with a broader spectrum
of materials, encompassing metals, woods, and ceramics. According to the published
literature [9,10], FFF printers are characterized by a higher degree of customization options,
which enable users to fine-tune print speed, temperature, and layer height. Conversely,
FDM printers are generally considered more user-friendly and require less setup time.

Stereolithography (SLA) is a prevalent 3D printing technology that utilizes a liquid
resin that undergoes curing by a laser to fabricate a three-dimensional object. The afore-
mentioned technology has garnered a reputation for its exceptional precision and accuracy,
rendering it well-suited for the production of intricate and elaborate objects [11–13]. Selec-
tive Laser Sintering (SLS) is a 3D printing methodology that utilizes a laser to selectively
bond powdered materials, leading to the creation of a three-dimensional entity. The technol-
ogy mentioned above is commonly utilized for the production of components that possess
strong mechanical characteristics, extended durability, and exceptional thermal stability.
As a result, it is a feasible alternative for the creation of functional prototypes and end-use
products, as documented in references [14–16].

The utilization of 3D printing technology offers numerous benefits when compared
to conventional manufacturing techniques. The aforementioned technology exhibits ex-
ceptional velocity, efficacy, and economic viability, making it exceedingly appropriate
for prototyping and limited-scale manufacturing. In addition, it promotes enhanced
adaptability in the design process, thus allowing for the creation of complex and unique
objects that would be difficult or impractical to produce using traditional manufacturing
methods [17–23].

The utilization of 3D printing technology has been on the rise in various sectors, includ-
ing healthcare, aerospace, automotive, and architecture. The healthcare sector employs 3D
printing technology to manufacture prosthetics, implants, and surgical guides [24–29]. The
application of this technology is widely observed in the aerospace sector for the manufactur-
ing of complex engine components and structures designed for aerospace purposes [30–32].
Additive manufacturing technology is employed in the automotive sector to manufacture
prototypes and final products [33–35]. The application of 3D printing within the field of
architecture is widespread, primarily for the purpose of producing models for architectural
design, prototyping, and constructing full-scale buildings [36–38].

The raw materials used in FFF/FDM 3D printing are typically filament-based ma-
terials that are either thermoplastics or thermoplastic composites. The raw materials
exhibit diverse physical configurations, such as spools, pellets, and granules. The primary
attribute of the raw materials employed in Fused Filament Fabrication (FFF) or Fused
Deposition Modeling (FDM) 3D printing is their respective melting points. Since FFF/FDM
3D printing involves melting the raw materials, the melting point is a crucial factor that
determines the printing temperature. The melting points of frequently utilized FFF/FDM
materials, including ABS, PLA, and PETG, typically fall within the range of 170 ◦C to
250 ◦C. The melting point of the material determines how easily it can be melted and
extruded through the printer nozzle, and also affects the strength and durability of the final
printed object [39–44].

The second characteristic of FFF/FDM raw materials is their viscosity. Viscosity is
a measure of the material’s resistance to flow, and it determines how easily the material
can be extruded through the printer nozzle. FFF raw materials with higher viscosities
require higher temperatures and pressure to extrude, which can lead to issues such as
nozzle clogging, stringing, and warping. Lower-viscosity materials, on the other hand, can
flow more easily and can produce smoother and more detailed prints. Materials such as
ABS and Nylon have higher viscosities compared to materials like PLA and PETG [45–47].

The determination of the quality and accuracy of the printed object in FFF/FDM
3D printing is contingent upon the diameter of the raw materials utilized. The prevalent
Fused Filament Fabrication (FFF) or Fused Deposition Modeling (FDM) materials are
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typically available in standard diameters of 1.75 mm and 2.85 mm, with some minor
deviations in between. The extrusion rate of the filament and the printing speed, as well
as the amount of material deposited per unit length, are influenced by the diameter of
the raw material. The precision and exactness of the printed entity are also influenced
by the diameter of the filament. Filaments with smaller diameters, such as 1.75 mm, are
typically characterized by greater precision and accuracy when compared to filaments
with larger diameters, such as 2.85 mm. The reason for this phenomenon is that filaments
with smaller diameters necessitate less force to be exerted through the printer nozzle,
thereby reducing material deformation and promoting uniform extrusion. Moreover,
filaments with a reduced diameter possess a diminished cross-sectional area, thereby
facilitating the production of intricate features and more defined contours in the printed
artifact. Maintaining filament diameter consistency across the entire spool is crucial, as
any fluctuations in diameter can result in irregular extrusion, ultimately compromising the
quality of the printed output [48–51]. The first illustration, denoted as Figure 1, portrays
the raw material of PLA in two distinct forms: filament on the left and pellets on the right.
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PLA, ABS, PETG, and TPU are among the frequently utilized materials in Fused
Filament Fabrication (FFF) or Fused Deposition Modeling (FDM) 3D printing. Distinctive
properties and attributes are inherent in every material, rendering it appropriate for diverse
purposes. To begin with, PLA, also known as Polylactic Acid, is a thermo-plastic material
that is capable of undergoing biodegradation. This material is derived from renewable
resources, including but not limited to cornstarch, sugarcane, and cassava. The printing
process is facilitated by its ease of printability, low melting threshold, and minimal suscep-
tibility to warping and shrinkage. PLA is a popular choice for 3D printing because it is
environmentally friendly and produces a high-quality surface finish. ABS (Acrylonitrile
Butadiene Styrene) is a thermoplastic polymer renowned for its robustness, pliability, and
capacity to withstand impact. This material is widely used in various applications due
to its exceptional mechanical properties. It is also relatively inexpensive and has good
thermal and chemical resistance [52]. The Acrylonitrile Butadiene Styrene (ABS) material
is frequently employed in various industrial sectors that necessitate robustness and en-
durance, including but not limited to automotive components, playthings, and electronic
casings [53,54]. Also, PETG (Polyethylene Terephthalate Glycol) is a thermoplastic material
that combines the best properties of both PLA and ABS. It has good strength and durability,
is easy to print, and has good chemical and impact resistance. PETG is a popular choice
for 3D printing because it is food safe and produces a glossy finish. It is also suitable
for outdoor applications due to its UV resistance [55]. In addition, TPU (Thermoplastic
Polyurethane) is a flexible and elastic material that is commonly used for applications
that require flexibility and impact resistance, such as phone cases, toys, and shoe soles.
According to reference [56], TPU exhibits resistance to oil, grease, and abrasion.
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Another greater material category that can be utilized as raw materials in FDM/FFF
3D printing technology are the so called “filled” materials. They also come in a filament
form like the aforementioned materials but feature key differences. The main difference
is that filled material filaments are a type of 3D printing material that contain additives
or fillers that improve their mechanical, thermal, or aesthetic properties. In this context,
these materials feature a polymeric matrix and another material such as an additive or filler,
therefore categorizing them as composite materials. There are several categories of filled
material filaments, each with its own unique set of properties and advantages [57,58].

Metal-filled filaments constitute a category of filled material filaments, wherein a poly-
mer base is blended with fine metal powder [59]. The aforementioned filaments are capable
of generating components that exhibit enhanced thermal and electrical conductivity, as well
as a metallic surface finish. These materials are appropriate for use in contexts that demand
elevated levels of potency, longevity, and thermal resilience, such as the manufacturing of
automobile components and aerospace constituents. A distinct classification pertains to
carbon fiber-infused filaments that encompass a polymer base blended with either chopped
or continuous carbon fibers [60]. The utilization of said filaments results in the production
of components characterized by elevated levels of rigidity, potency, and reduced mass.
These materials exhibit favorable strength-to-weight ratios, rendering them appropriate for
deployment in contexts that demand such attributes, such as unmanned aerial vehicles,
automated machines, and artificial body parts. Glass fiber-filled filaments are a type of
filled material filament that comprises a polymer base mixed with chopped or continuous
glass fibers [61]. The aforementioned filaments have the ability to generate components that
exhibit elevated levels of strength, stiffness, and dimensional stability. These components
are well-suited for utilization in scenarios that necessitate precise measurements and consis-
tent dimensions, such as engineering prototypes and parts. Wood-filled filaments are a type
of filled material filament that comprise a polymer base blended with wood particles or
fibers. The utilization of said filaments results in the production of components that exhibit
a wood-like aesthetic and tactile quality, rendering them appropriate for employment in
decorative or artistic contexts. According to the published literature findings [62], these
products exhibit eco-friendliness and biodegradability.

Optimal printing conditions for filled filaments, which incorporate additives like
metals, carbon fiber, or wood, can vary based on the material composition. Generally,
carbon fiber-filled filaments benefit from nozzle temperatures in the range of 230 ◦C to
260 ◦C due to the abrasive nature of carbon fiber. Metal-filled filaments, such as bronze,
copper, or stainless steel, usually print well between 195 ◦C and 230 ◦C. Wood-filled
filaments perform best at temperatures ranging from 175 ◦C to 220 ◦C to maintain a wood-
like appearance. While chamber temperature is less critical than nozzle temperature,
maintaining a chamber temperature between 40 ◦C and 60 ◦C can help improve adhesion
and reduce warping for filled filaments. However, these guidelines should be adapted to
the specific filament brand and composition, while experimentation may be necessary to
achieve optimal print quality on each specific 3D printer.

Overall, filled material filaments offer many advantages over standard filaments,
including improved strength, stiffness, thermal and electrical conductivity, dimensional
stability, and aesthetic properties. They are suitable for a wide range of applications in
various industries, such as automotive, aerospace, engineering, and art. It is important to
select the appropriate filled material filament for the specific requirements of the application
to ensure the best results.

2. Materials
2.1. Wood-Filled PLA

Wood-filled PLA is a composite material that combines the biodegradable thermo-
plastic PLA (Polylactic Acid) with wood fibers or particles. The wood content can range
from finely ground wood flour to larger wood chips, depending on the desired appear-
ance and mechanical properties. Wood-filled PLA offers a unique solution for 3D print-
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ing enthusiasts and professionals who seek to add a natural and organic touch to their
printed objects [63–66].

The addition of wood fibers or particles provides Wood-filled PLA with distinctive
characteristics. First and foremost, it imparts a visually appealing wood-like texture and
appearance to the printed objects. The presence of wood particles creates a natural grain
pattern and surface roughness that can mimic the aesthetic qualities of real wood. This
makes Wood-filled PLA an excellent choice for applications where the look and feel of
wood are desired but the advantages of 3D printing, such as customization and intricate
designs, are also sought. Figure 2 depicts an item printed with wood-filled filament [67].
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Figure 2. Item printed with wood-filled filament [67].

Furthermore, Wood-filled PLA is known to exhibit varied mechanical properties
compared to pure PLA filaments. The presence of wood particles introduces interruptions
in the polymer bonds, resulting in a decrease in stiffness and structural integrity of the
printed objects. As a result, Wood-filled PLA is more commonly utilized in applications
such as artistic sculptures, architectural models, and various decorative items, rather
than functional prototypes. It is important to note that the material may pose challenges
during the printing process. Achieving proper layer adhesion can be problematic, and it
generally necessitates extensive experimentation with slicer settings to mitigate issues such
as clogging and stringing [68–70].

Applications for Wood-filled PLA can be found in a wide range of industries. In the
field of product design, this filament can be utilized as raw materials to create furniture
prototypes, custom handles, or decorative trims. In the arts and crafts domain, Wood-filled
PLA enables the production of sculptures, figurines, or jewelry with a wood-like appearance.
Additionally, in the architectural field, it can be utilized to fabricate scaled models, building
components, or even entire structures with an organic touch. By harnessing the benefits of
Wood-filled PLA, makers and designers can explore the intersection between the natural
look of wood and the innovative capabilities of 3D printing technology, opening up new
creative possibilities [71,72].

2.2. Metal-Filled Filaments

Metal-infused filaments represent a noteworthy category of raw materials that com-
bine the flexibility of 3D printing with the advanced mechanical properties of metal. The
filaments are composed of a substrate material, such as PLA or ABS, that has been in-
fused with finely ground metallic particles. The inclusion of metallic elements such as
copper, bronze, or stainless steel confers unique metallic attributes to the printed articles,
encompassing their visual appeal, mass, and even their magnetic properties [73,74].
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Metal-filled filaments possess the capability of replicating the gleaming visual appeal
of conventional metals. The printed items exhibit an alluring metallic luster that arrests
the viewer’s attention with their polished exteriors and reflects light with a captivating
radiance. The aesthetic appeal of metal-infused filaments renders them a desirable option
for ornamental purposes, wherein the aim is to emulate the opulent appearance of metals
while circumventing the constraints of conventional manufacturing techniques.

Metal-infused filaments possess superior mechanical characteristics that distinguish
them from standard filaments, in addition to their visual allure. The inclusion of metal-
lic particles serves as a means of enhancing the mechanical behavior of the printed ob-
jects, specifically their strength, stiffness, and durability. The aforementioned charac-
teristics render them highly appropriate for the development of functional prototypes,
mechanical components, and even industrial parts of limited scale that require durability
and longevity [75,76].

Nevertheless, it is imperative to take into account that the utilization of metal-infused
filaments for printing entails a distinct array of difficulties. The printing process parameters
require meticulous attention due to the high density and thermal conductivity exhibited
by metals. To achieve successful outcomes, it is crucial to prioritize the proper setting
of optimal extrusion temperatures, print speeds, and cooling mechanisms. In addition,
supplementary post-processing procedures may be necessary to enhance the surface texture
and attain the intended metallic attributes.

Metal-filled filaments have a wide range of applications that are utilized across various
industries. In the fields of engineering and manufacturing, the utilization of advanced
techniques facilitates the production of functional prototypes, jigs, and fixtures that exhibit
properties closely resembling those of metal parts. Metal-filled filaments are a viable and
economical substitute for conventional casting techniques in the field of jewelry design.
This alternative approach enables the production of intricate and personalized designs.
Furthermore, the magnetic characteristics of specific metal-infused filaments present poten-
tial opportunities for utilization in the fields of electromagnetics, sensors, and educational
exhibitions [77,78]. Figure 3 depicts an item being 3D printed out of metal filled filament.
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To sum up, the utilization of metal-infused filaments offers an opportunity to combine
the adaptability of 3D printing technology with the enduring appeal of metallic materi-
als. These filaments present a compelling option for individuals interested in exploring
the world of metallic 3D-printed objects due to their captivating appearance, enhanced
mechanical properties, and diverse range of potential applications.

2.3. Carbon Fiber-Filled Filaments

Carbon fiber-filled filaments combine a base material, such as PLA or ABS, with carbon
fiber strands or particles, resulting in printed objects that exhibit remarkable mechanical
properties and a unique aesthetic appeal. One of the defining characteristics of carbon fiber-
filled filaments is their exceptional strength-to-weight ratio. The incorporation of carbon
fibers imparts outstanding stiffness and tensile strength to the printed objects, making
them ideal for applications where lightweight yet robust components are essential. The
carbon fiber reinforcement creates a structural integrity that surpasses traditional filaments,
enabling the production of functional prototypes, aerospace components, automotive parts,
and sporting equipment that demand high performance [80,81].

Beyond their mechanical properties, carbon fiber-filled filaments offer a distinct visual
allure. The printed objects showcase a strikingly sleek and textured surface, accentuated by
the visible carbon fiber patterns. The aesthetic attribute of the finished pieces confers a sense
of refinement and contemporaneity, rendering them especially coveted for employment in
the domains of design, architecture, and consumer goods [82].

While printing with carbon fiber-filled filaments presents advantages, it also presents
certain challenges. Due to the abrasive nature of carbon fibers, specialized nozzles and
extruders are often recommended to prevent excessive wear. Furthermore, attaining
the ideal outcomes necessitates the identification of an appropriate equilibrium among
printing temperature, printing speed, and cooling. Nevertheless, through meticulous
modifications and empirical testing, the benefits in relation to mechanical efficiency and
aesthetic attractiveness can be exceedingly noteworthy [83,84].

The numerous and varied uses of filaments infused with carbon fiber are plentiful.
Filaments have the potential to be utilized in the automotive industry for the purpose
of manufacturing lightweight components such as custom accessories, engine parts, and
interior trim. This can be achieved without compromising their structural integrity and
safety. The incorporation of filaments infused with carbon fiber in the field of robotics
enables the creation of durable and intricately designed structural elements. Further-
more, in the realm of sports and recreation, these fibers are employed in the production
of bicycle frames, drone parts, and musical instruments, enhancing effectiveness while
decreasing weight [85,86]. Figure 4 illustrates a 3D-printed item made out of a carbon
fiber-filled filament.

In this context, the utilization of carbon fiber-filled filaments provides an avenue
for exploiting the advanced mechanical and low-weight properties of carbon fiber in the
context of 3D printing. The combination of their advanced mechanical capabilities and
visually appealing design makes them a highly desirable option for end-users looking to
innovate in diverse fields, by exploring the limits of both form and function.
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2.4. Glass-Filled Filaments

Glass-filled filaments have advanced mechanical properties by incorporating glass
fibers into a base material, typically PLA or ABS, for 3D printing. These filaments lever-age
the reinforcing properties of glass fibers to enhance the mechanical characteristics of the
printed objects.

The addition of glass fibers to the filament composition imparts remarkable strength
and rigidity to the printed parts. The fibers create a reinforcing network within the material,
effectively fortifying the structure and providing increased resistance to bending, torsion,
and impact. These properties make glass-filled filaments ideal for applications that demand
robustness, such as functional prototypes, industrial components, or mechanical parts
subjected to higher stress levels [87,88].

In contrast to transparent and translucent filaments, glass-filled filaments do not pos-
sess transparency properties. Instead, the glass fibers contribute to the mechanical integrity
of the printed objects. By optimizing the fiber content and distribution, engineers can
achieve a desired balance between strength and printability, ensuring successful outcomes
while harnessing the reinforcement benefits of glass fibers [89].

Working with glass-filled filaments does present certain considerations. The presence
of glass fibers in the material can increase the wear on the printer nozzle, necessitating
regular maintenance and potential nozzle upgrades. The careful calibration of printing
parameters, including temperature, extrusion rate, and cooling, is crucial to achieve optimal
results and mitigate issues such as clogging or warping [90,91]. Figure 5 depicts a 3D-
printed item made out of a glass-filled filament.
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The applications of glass-filled filaments span across various industries. In engineering
and manufacturing, these filaments are favored for creating robust functional prototypes,
jigs, fixtures, and even end-use parts where strength and durability are paramount. They
find utility in industries such as automotive, aerospace, and electronics, where reliability
and mechanical performance are crucial.

2.5. Conductive Filaments

Conductive filament represents a novel class of 3D printing raw materials that exhibit
electrical conductivity while retaining the versatility of 3D printing technology. These
filaments incorporate conductive additives, such as carbon nanotubes or graphene, into
a base polymer matrix, enabling the printed objects to conduct electricity. This unique
property opens up a wide range of possibilities in various fields, including electronics,
sensors, and wearable devices [92,93].

The integration of conductive additives within the filament matrix facilitates the
formation of a conductive pathway throughout the printed object. This pathway enables
the flow of electrical current, allowing for the transmission of signals, the generation of
heat, or the sensing of environmental parameters. The ability of inherent conductivity in
3D-printed objects with inherent conductivity offers great potential for the fabrication of
custom electronic components, smart devices, and even integrated circuits [94,95].

The conductivity of these filaments can be tailored by adjusting the concentration and
distribution of conductive additives. Higher loading levels of conductive particles generally
result in increased electrical conductivity. However, careful control of the dispersion
and alignment of the additives is crucial to ensure consistent and reliable conductivity
throughout the printed object. Additionally, optimizing printing parameters, such as nozzle
temperature and extrusion speed, is essential to maintain the structural integrity of the
printed part while preserving its electrical properties [96].
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The applications of conductive filaments are numerous and diverse. In the field of
electronics, it enables the creation of flexible circuits, connectors, and antennas that can
be seamlessly integrated into 3D-printed structures. These filaments also find utility in
the development of sensors for detecting and monitoring various parameters, including
temperature, strain, or touch. Furthermore, conductive filament paves the way for the
production of wearable devices, such as smart textiles or personalized medical sensors,
which benefit from the combination of electrical functionality and the freedom of design
afforded by 3D printing [97].

Despite the potential benefits of conductive filament, there are still obstacles to over-
come in order to achieve optimal levels of electrical conductivity, consistency, and printabil-
ity. Researchers are persistently investigating innovative formulations and manufacturing
methodologies to augment the conductivity of the aforementioned filaments and ameliorate
their performance attributes. Furthermore, progress in post-processing techniques, such as
annealing or surface modifications, present prospects for further augmenting the electrical
characteristics of printed entities [98,99]. Figure 6 shows a 3D-printed item made out of
conductive material.
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Therefore, the utilization of conductive filament presents an intriguing opportunity
to integrate electrical conductivity within 3D-printed items. Through the integration of
conductive additives with the underlying polymer matrix, these filaments facilitate the
achievement of operational electronic components and devices. As the research and devel-
opment process continues, the conceivable uses for conductive filament are anticipated to
broaden, fundamentally transforming domains that are dependent on electronics and 3D
printing technology.
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2.6. Flexible TPU/TPE (Thermoplastic Elastomer)-Filled Filaments

Thermoplastic Elastomer (TPE) filaments are a noteworthy category of materials that
combine the elasticity and pliability of elastomers with the advanced capabilities of ad-
ditive manufacturing. The filaments are composed of a combination of polymers, which
commonly comprise elastomeric materials like styrene–butadiene–styrene (SBS) or thermo-
plastic polyurethane (TPU). These materials possess distinctive mechanical characteristics
that facilitate the creation of objects with exceptional elasticity and resilience.

The principal characteristic of thermoplastic elastomer (TPE) filaments that are flexible
is their ability to undergo substantial deformation without causing permanent damage.
The possession of a distinctive molecular configuration enables the polymer chains to
readily undergo sliding and reorganization when subjected to external force, thereby
conferring exceptional properties of elongation and recovery. The exceptional ability of
flexible filaments to withstand bending, flexing, and impact absorption makes them ideal
for deployment in various applications, including wearable devices, gaskets, and flexible
joints [101–103].

Filled TPU (Thermoplastic Polyurethane) and TPE (Thermoplastic Elastomer) fila-
ments represent a newly introduced intersection of flexibility and versatility in 3D printing
materials. These materials are renowned for their rubber-like properties, including excel-
lent elasticity, impact resistance, and durability. What sets filled TPU and TPE apart is the
incorporation of additives or fillers into the base polymer to enhance specific attributes.

The rheological behavior of flexible filaments in 3D printing plays a significant role
in determining their processability. This behavior is characterized by parameters such as
viscosity, elasticity, and shear thinning. The extrusion process is influenced by various
factors that necessitate the proper setting of the printer parameters, including nozzle
temperature and print speed, in order to attain the desired outcome. Furthermore, it is
imperative to optimize the adhesion of the printer bed and support structures in order to
mitigate the risk of deformation or warping during the printing process [104–106]. For
instance, carbon fiber-filled TPU/TPE offers increased stiffness and strength, making it
suitable for applications that demand both flexibility and structural integrity, such as drone
components or functional prototypes. On the other hand, TPU/TPE filaments infused
with softer materials like thermoplastic elastomers can provide an even higher degree
of flexibility, ideal for producing comfortable wearables, soft grips, and shock-absorbing
components.

Such filaments can be applied across various fields, including robotics, prosthetics,
and soft robotics. In robotics, these filaments enable the fabrication of flexible grippers,
compliant actuators, and sensor integration, enhancing the dexterity and adaptability of
robotic systems. In the field of prosthetics, flexible filaments offer the potential to create
personalized and functional prosthetic components that can conform to the user’s anatomy
and provide natural movement [107,108]. Another notable variant is the addition of
conductive additives, which impart electrical conductivity to the material. This is valuable
for creating custom, flexible circuitry, capacitive touch sensors, or EMI shielding solutions.
The versatility of filled TPU and TPE filaments makes them prized assets in industries like
healthcare, automotive, consumer electronics, and beyond, where the demand for both
flexibility and specialized properties continues to grow. Moreover, the medical industry
benefits from flexible filaments for the production of medical devices, such as surgical
guides or anatomical models, which require a balance of flexibility and accuracy. Flexible
filaments are integral to the development of soft, bio-inspired robots that can safely interact
with humans and navigate intricate surroundings within the realm of soft robotics [109].

Ongoing research and development endeavors are being undertaken in the field of 3D
printing to enhance the mechanical properties and printability of flexible filaments, and
material alternatives to them. The applications of fabricating flexible 3D-printed objects are
being expanded through innovations in material formulations and modifications, which
may involve the incorporation of additives or blending with other polymers [110,111].
Figure 7 depicts 3D-printed items made out of filled flexible filament.
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In this context, the utilization of filled TPU/TPE filaments presents a compelling
opportunity for the manufacturing of objects that possess exceptional elasticity, resilience,
and adaptability. These filaments possess distinctive mechanical properties that facilitate
progress in the fields of robotics, prosthetics, and soft robotics, thereby expanding the
horizons for applications that necessitate both flexibility and durability. As formulation
and processing techniques are further developed by researchers, the potential for flexible
filaments in the field of additive manufacturing is expected to expand. This expansion will
facilitate the creation of increasingly intricate and practical printed objects.

2.7. Ceramic-Filled Filaments

Ceramic-filled filaments represent a category of 3D printing raw materials that in-
tegrate the adaptability of thermoplastic filament raw materials with the outstanding
characteristics of ceramics. The filaments are composed of a matrix of thermo-plastic
polymer that has been infused with ceramic particles of a small size. Filaments that are
filled with ceramic materials provide benefits such as exceptional mechanical strength,
electrical-insulation properties, and resistance to high temperatures.

Ceramic-filled filaments possess a notable benefit of exhibiting high-temperature resis-
tance, rendering them appropriate for utilization in aerospace, automotive, and industrial
domains. The presence of ceramic particles serves as a means of thermal insulation, thereby
endowing the printed objects with the ability to withstand high temperatures without
experiencing substantial deterioration [112].

Ceramic-infused filaments not only exhibit exceptional thermal stability but also
augment the mechanical characteristics of the printed items. Ceramic materials are known
for their hardness, rigidity, and abrasion resistance, transferring these qualities to the
printed components. This makes ceramic-filled filaments suitable for applications that
demand durability and precision [113–115].

However, it is important to note that ceramic-filled filaments can be brittle. The
presence of ceramic particles can decrease the overall flexibility of the printed objects,
making them more prone to breakage under certain conditions. Care must be taken to
design and print components that can withstand mechanical stresses.

Printability can also be a challenge with ceramic-filled filaments due to the abrasive
nature of ceramics. Regular maintenance and potential nozzle upgrades are necessary to
mitigate increased wear on the printer nozzle. Furthermore, optimizing print settings, such
as temperature, extrusion rate, and cooling, is crucial to ensure successful prints while
preserving the mechanical and thermal properties of the ceramics.
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Ceramic-filled filaments can be utilized in various industries, such as aerospace, where
they are used for high-temperature components such as engine parts and thermal shields.
The automotive sector benefits from ceramic-filled filaments in the manufacturing of heat-
resistant parts like brake components and engine mounts [116–118]. Figure 8 depicts an
item being 3D printed out of ceramic-filled filament.
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Thus, ceramic-filled filaments offer the ability to incorporate ceramics into 3D-printed
objects, providing high-temperature resistance and enhanced mechanical properties. How-
ever, the brittleness of ceramic-filled objects should be considered, and careful attention
must be given to printability to ensure successful prints.

2.8. Magnetic Filaments

Magnetic filaments, alternatively referred to as magnetically responsive filaments,
represent a class of 3D printing raw materials that feature the capacity to manifest magnetic
characteristics. These filaments are commonly composed of a thermo-plastic polymer
that has been infused with magnetic particles, including but not limited to iron, ferrite,
or neodymium. The inclusion of magnetic additives confers distinctive properties to the
printed articles, facilitating their interaction with magnetic fields and affording a variety of
applications in various domains [119].

The inclusion of magnetic particles in the filament matrix results in the manifestation
of magnetic properties in the printed objects. The capacity of these entities to attract or
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repel magnetic fields confers upon them magnetic responsiveness, which can be exploited
for the purposes of manipulation and control across diverse applications. The manipu-
lation of magnetic characteristics can be achieved through the modulation of magnetic
particle concentration and composition, thereby facilitating a diverse spectrum of magnetic
intensities and dynamics [120].

The ability to 3D-print objects with inherent magnetic properties opens up numerous
possibilities in fields such as robotics, sensing, and education. In robotics, magnetic fila-
ments can be utilized to create custom magnetic grippers, actuators, or joints that enable
the precise control and manipulation of objects. In sensing applications, these filaments can
be employed to fabricate magnetic sensors, proximity switches, or even magnetic encoders
for precise position detection [121].

The educational value of magnetic filaments is also noteworthy, as they offer a hands-
on approach to learn about magnetism and its applications. Students can design and
print objects that demonstrate magnetic behavior, allowing for interactive and engaging
learning experiences [122].

However, it is important to note that magnetic filaments may pose challenges in terms
of printability. The presence of magnetic particles can affect the flow and extrusion prop-
erties of the filament, requiring adjustments to printing parameters such as temperature
and extrusion speed. Additionally, the orientation and alignment of the magnetic particles
during printing can influence the magnetic behavior of the printed object, necessitating
careful consideration during the design and printing process [123,124].

The applications of magnetic filaments continue to expand as researchers and en-
gineers explore new possibilities. In the medical field, these filaments show potential
for creating magnetically responsive drug delivery systems, magnetic resonance imaging
(MRI)-compatible devices, or even magnetic scaffolds for tissue engineering. In consumer
electronics, magnetic filaments can be used to design and produce customized magnetic
holders, cable management solutions, or sensor mounts [125,126]. Figure 9 depicts a
3D-printed item made out of magnetic filament.
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In this context, magnetic filaments combine the versatility of 3D printing with the
magnetic properties of the embedded particles, offering unique opportunities in robotics,
sensing, education, and other fields. While challenges exist in terms of printability and
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particle alignment, ongoing research and development efforts are expanding the range of
applications and optimizing the performance of magnetic filaments. As the field progresses,
these filaments hold promise for the creation of innovative, magnetically responsive objects
that enhance functionality and interaction in various domains.

2.9. Glow-in-the-Dark Filaments

The addition of glow-in-the-dark 3D printing filaments has been a noteworthy ad-
vancement in the field of additive manufacturing, as it has brought about advanced lumi-
nescent characteristics to the printed items. Such filaments are composed of phosphorescent
materials that are designed to absorb and retain light energy, resulting in a bright lumines-
cence in environments with low levels of light or complete darkness.

The manufacturing procedure of luminescent filaments entails the incorporation of
phosphorescent pigments into fundamental materials, such as Polylactic Acid (PLA) or
Acrylonitrile Butadiene Styrene (ABS), materials that are frequently utilized in 3D printing
operations. The pigments consist mainly of strontium aluminate, which are supplemented
with additional additives to augment their luminescent properties. The pigments have the
ability to capture photons upon being exposed to light sources, and subsequently store the
absorbed energy. This stored energy is then released as visible light when the luminosity
is reduced [128].

The adaptability of luminescent filaments is a highly desired feature, as it enables
the production of a diverse array of items, spanning from ornamental objects to practical
constituents and prototyping substances. The precise calibration of printing parameters is
imperative for the optimization of the performance of glow-in-the-dark filaments. The uti-
lization of these filaments typically requires a moderate increase in temperature compared
to standard filaments. Additionally, modifications to the printing speed and layer height
are conducive to improved adhesion and print quality. In addition, the incorporation
of printers featuring a heated platform serves as an efficient measure to minimize the
possibility of warping that may occur during the printing procedure [129].

It is noteworthy that the luminescent characteristics demonstrated by these filaments
may vary depending on the particular brand and composition utilized. Certain filaments
exhibit a muted and understated luminescence, while others demonstrate a vivid and
powerful radiance. The duration of the luminous effect is variable and dependent on
the type of filament utilized, as some filaments exhibit a longer lifespan in comparison
to others. Therefore, it is advisable to conduct a thorough examination of the product
specifications and user feedback in order to choose a filament that corresponds to the
intended luminosity and longevity [126,130,131]. Figure 10 depicts an item being 3D
printed out of glow-in-the-dark filament.
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To summarize, the introduction of glow-in-the-dark 3D printing filaments constitutes
a noteworthy advancement in additive manufacturing, enhancing both the visual appeal
and practicality of printed items. The incorporation of phosphorescent substances provides
a captivating visual aspect to diverse applications, promoting ingenuity and aesthetic
representation.

2.10. Stone-Filled Filaments

Stone-filled 3D printing filaments are composite raw materials consisting of PLA
mixed with powdered stone, offering a unique matte and rough appearance that closely
resembles authentic stone. These filaments possess a higher density compared to standard
PLA filaments, contributing to the realistic feel and texture of the printed objects. The
density also reduces the risk of warping during the printing process, ensuring more stable
and accurate prints [132].

One notable feature of stone-filled filaments is the variation in color and texture that
occurs naturally in the stone particles. Each print exhibits unique gradient color linings,
further enhancing the realistic stone-like appearance. Moreover, different print settings,
such as temperature and layer height, can be adjusted to achieve different finishes, allowing
for customization and artistic experimentation [133].

However, it is important to consider the drawbacks of stone-filled filaments. One
such drawback is their brittleness. The presence of powdered stone within the filament
matrix reduces the overall flexibility and impact resistance of the printed objects. As a
result, careful handling and post-processing are required to prevent breakage or damage.

Another challenge associated with stone-filled filaments is their abrasive nature. The
stone particles can cause increased wear on the printer nozzles due to their hardness and
roughness. Regular maintenance and nozzle replacements may be necessary to mitigate the
effects of abrasion and maintain print quality over time [134]. Figure 11 shows a 3D-printed
item made out of stone-filled filament, while Table 1 depicts the mechanical properties of
such filaments [134].
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Table 1. Mechanical properties of filled materials [134].

Material Matrix
Material

Heat Deflection
Temperature
(ISO 75) [136]

(Avg. ◦C)

Impact Resistance
(ISO 179-1) [137]

(kJ/m2)

Tensile Strength
(ISO 527-1) [138]

(Mpa)

Wood-filled filaments PLA 50 ◦C 19 kJ/m2 46 Mpa

Metal-filled filaments PLA 53 ◦C 13 kJ/m2 23 Mpa

Carbon fiber-filled
filaments NYLON PA11 192 ◦C 30 kJ/m2 51 Mpa

Glass-filled filaments NYLON PA11 186 ◦C 34 kJ/m2 62.8 Mpa

Conductive filaments PLA 50 ◦C 18 kJ/m2 50 Mpa

Flexible/TPE
(Thermoplastic
Elastomer) filaments

TPU 52 ◦C no break 13 Mpa

Ceramic-filled
filaments PLA 52 ◦C 15 kJ/m2 45 Mpa

Magnetic filaments PLA 53 ◦C 12 kJ/m2 22 Mpa

Glow-in-the-dark
filaments PLA 50 ◦C 6 kJ/m2 55 Mpa

Stone-filled filaments PLA 57 ◦C 2.9 kJ/m2 38 Mpa

In conclusion, stone-filled 3D printing filaments provide a visually appealing and
realistic option for achieving a stone-like finish in printed objects. The higher density
and low risk of warping contribute to the quality and stability of the prints. However,
the inherent brittleness and potential nozzle abrasion are important factors to consider
when working with these filaments. With proper handling and maintenance, stone-
filled filaments offer a compelling choice for creating 3D prints with a distinctive stone
aesthetic [134,139–141].

3. Selection Criteria
3.1. Selection Criteria Based on Mechanical Properties

In the context of 3D printing potential projects requiring materials with advanced
mechanical properties, several options from the aforementioned list stand out as suitable
choices. Carbon fiber-filled filament, metal-filled filament, and glass fiber-filled filament
are particularly noteworthy due to their enhanced mechanical properties. Such composite
filament materials combine their elevated mechanical properties with the ability to fabricate
intricate and complex geometries via 3D printing [142].

Carbon fiber-filled filament is widely recognized for its exceptional mechanical perfor-
mance. The addition of carbon fiber reinforcement significantly enhances the filament’s
strength, stiffness, and lightweight properties. The aligned carbon fibers contribute to
increased tensile strength, rigidity, and resistance to deformation and fatigue. This material
is commonly employed in aerospace, automotive, and engineering applications where
structural integrity and weight reduction are paramount. Metal-filled filaments, featuring
metallic particles within a polymer matrix, also offer compelling mechanical properties.
These filaments exhibit improved thermal and electrical conductivity, as well as enhanced
strength. While their mechanical properties may not be equivalent to fully dense metals,
metal-filled filaments are extensively used for prototyping functional metal parts. Post-
processing techniques such as polishing, plating, or sintering can be employed to further
optimize the material’s mechanical performance.

Glass fiber-filled filament is another noteworthy option for applications requiring
good mechanical properties. The incorporation of glass fibers significantly enhances
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the filament’s strength, stiffness, and dimensional stability. Glass fiber-filled filaments
exhibit excellent tensile and flexural strength, making them suitable for applications where
resistance to impact and bending loads is critical. These materials find applications in
industries such as automotive, aerospace, and consumer goods, where mechanical strength
and durability are essential.

Conversely, materials such as wood-filled, stone-filled, conductive, magnetic, and
glow-in-the-dark filaments may be less suitable for projects prioritizing strong mechanical
properties. While these materials offer unique properties such as aesthetics, conductivity,
or magnetism, their mechanical strength may not be comparable to carbon fiber-, metal-,
or glass fiber-filled filaments. As a result, they are more commonly utilized for artistic,
decorative, or specialized functional purposes rather than for applications requiring high
structural integrity or load-bearing capabilities.

To summarize, when selecting materials for a project that demands high mechanical
properties in 3D printing, carbon fiber-filled, metal-filled, and glass fiber-filled filaments
are recommended due to their excellent strength, stiffness, and performance characteristics.
These materials offer superior mechanical properties compared to wood-filled, stone-
filled, conductive, magnetic, and glow-in-the-dark filaments, which are better suited for
applications where aesthetics, specialized functionality, or unique optical properties take
precedence over mechanical strength.

3.2. Selection Criteria Based on Surface Finish

When considering a project that requires a material with a unique surface finish for 3D
printing, each of the 10 aforementioned materials offers distinctive characteristics. However,
certain materials stand out for their ability to provide exceptional surface finishes, while
others may be less suitable in this regard.

Starting with carbon fiber-filled filament, it primarily excels in mechanical properties
rather than surface finish. Although it offers a textured appearance due to the presence
of carbon fibers, the surface may not possess the smoothness or lustrous finish desired
for certain applications. Therefore, while carbon fiber-filled filament is exceptional for
mechanical strength, it may not be the top choice when surface finish is the primary focus.

Metal-filled filament, on the other hand, offers intriguing possibilities for unique
surface finishes. The presence of metallic particles within the filament can give rise to
a metallic sheen or a textured appearance, depending on the specific metal used. Post-
processing techniques like sanding, polishing, or chemical treatments can further enhance
the surface finish, enabling a range of aesthetic possibilities. This makes metal-filled
filaments well-suited for applications where a metallic appearance or texture is desired.

Wood-filled filament presents a distinctive surface finish, with visible wood fibers
embedded within the printed object. This filament replicates the natural appearance and
texture of wood, making it an appealing choice for applications requiring a rustic or organic
finish. The printed objects exhibit the characteristic grain patterns and textures associated
with wood, lending an authentic and unique surface finish.

Stone-filled filament offers a similar appeal, replicating the appearance and texture of
stone materials. The printed objects exhibit a grainy and textured surface reminiscent of
natural stone. This material can be particularly valuable for architectural models, sculptures,
or designs that aim to capture the aesthetics and tactile qualities of stone.

Conductive filament, as the name suggests, possesses unique electrical conductivity
properties rather than a distinctive surface finish. While it may not provide a specific surface
appearance, it can be used to create functional objects requiring electrical conductivity, such
as sensors, circuit components, or electromagnetic shielding. Magnetic filament, similarly,
does not exhibit a particular surface finish but is designed to possess magnetic properties.
Its primary function lies in applications where magnetic characteristics are required, rather
than offering a distinct surface appearance.

Glow-in-the-dark filament also lacks a specific surface finish but is known for its
ability to emit light in the dark. Objects printed with this filament can absorb and store
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light energy, emitting a soft glow when in a dark environment. This unique property
is suitable for applications that require visibility in low-light conditions or for creating
visually striking objects.

Finally, glass fiber-filled filament, although not renowned for its surface finish, offers
improved mechanical properties and dimensional stability. It may not present a distinct
visual appearance or surface texture, but it contributes to enhanced strength and rigid-
ity, making it a valuable choice for applications where mechanical performance takes
precedence over surface finish.

In summary, while materials such as metal-filled filament, wood-filled filament, and
stone-filled filament can provide unique and aesthetically appealing surface finishes, carbon
fiber-filled filament and glass fiber-filled filament may be less suitable when surface finish is
the primary consideration. Conductive filament, magnetic filament, and glow-in-the-dark
filament, although offering unique properties, may not exhibit specific surface finishes
but are better suited for functional applications. It is important to consider the specific
requirements of the project and the desired surface finish characteristics when selecting the
appropriate material for 3D printing.

4. Discussion

Filled filaments as raw materials in FDM/FFF 3D printing technology exhibit a number
of advantages when compared to “simpler” filaments consisting of solely one material.
Filled 3D printing filaments are a type of 3D printing filament that are infused with different
materials such as wood, metal, or carbon fiber. One of the main advantages of filled 3D
printing filaments is that they can add unique properties to the final printed object, such
as increased strength, durability, and stiffness. Additionally, these filaments can be more
cost-effective than printing directly with metal, as they can mimic the properties of these
materials while being less expensive. Another advantage is that these filaments can add
aesthetic value to the final print, as the added materials can create a unique texture or
appearance that cannot be achieved with traditional 3D printing filaments. Overall, filled
3D printing filaments offer a range of benefits that can enhance the functionality and
appearance of the final printed object [143,144].

However, this kind of filament features a number of potential disadvantages that
end-users must take into account before selecting it. Firstly, reduced print speed is one
potential disadvantage of using filled 3D printing filaments. The added density of filled
filaments can require the printer to work harder to extrude the material, which can result in
slower print speeds and longer print times. This can be a particular concern when printing
larger or more complex objects, as the increased print time can significantly impact the
overall project timeline. To minimize this issue, it may be necessary to adjust printing
settings or use a printer with a higher torque extruder to better handle the added density
of filled filaments [145].

Secondly, another potential disadvantage of filled 3D printing filaments is the risk
of clogging the printer nozzle. Some filled filaments contain particles, such as wood or
metal fibers, that can become trapped in the nozzle and cause blockages, leading to failed
prints and potential damage to the printer. To prevent clogging, it may be necessary to
use a larger nozzle size or a specialized hot end designed to handle filled filaments. It is
also important to regularly clean the nozzle and perform maintenance on the printer to
ensure that any accumulated debris or particles are cleared away. In some cases, it may be
necessary to use a different type of filament altogether to avoid the risk of clogging [142].

Also, limited availability is another potential disadvantage of filled 3D printing fila-
ments. While traditional filaments such as PLA and ABS are widely available from many
different suppliers, filled filaments may be more difficult to find, particularly if you need a
specific type of material. This can be a particular issue for less-common materials, such as
metal or wood-filled filaments, which may only be available from specialized suppliers. In
some cases, it may be necessary to order the filament online or from a specific manufacturer,
which can result in longer lead times and higher shipping costs. To avoid issues with
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availability, it may be necessary to plan ahead and order your filament well in advance
of when you need it, or consider using a more readily available alternative filament if
possible [146].

In addition, cost is another potential disadvantage of filled 3D printing filaments. Filled
filaments can be more expensive than traditional filaments due to the added materials used
to create the unique properties and appearance of the filament. Depending on the specific
type of filled filament, the cost may be significantly higher than traditional filaments, which
can make them less accessible to users with limited budgets. Additionally, the cost of filled
filaments can vary widely depending on the supplier and material, making it important
to shop around to find the best prices. While filled filaments may offer unique benefits
that traditional filaments cannot match, the higher cost may be a limiting factor for some
users [147,148].

Furthermore, another potential disadvantage of filled 3D printing filaments is the
increased wear on printer components. Filled filaments can be more abrasive than tradi-
tional filaments due to the added particles or fibers, which can cause increased wear on the
printer nozzle and other components. Over time, this increased wear can result in the need
for more frequent repairs or component replacement, which can add to the overall cost of
using filled filaments. To minimize wear on the printer components, it may be necessary
to use a hardened or wear-resistant nozzle and to regularly inspect and clean the printer
components. Additionally, it may be helpful to use filled filaments sparingly or to limit
their use to specific applications to avoid excessive wear and tear on the printer [149,150].

An alternative to using a single filled filament material combining the matrix and the
infused materials is multi-material Fused Deposition Modeling (FDM) processes. These
processes empower the creation of intricate, multi-component objects that incorporate di-
verse material properties in a single print. The versatility of multi-material printing allows
for the fusion of materials with distinct characteristics, such as flexible and rigid, conductive
and non-conductive, or translucent and opaque, all within the same object. This capabil-
ity is especially valuable for producing complex geometries and fully assembled parts
without the need for extensive post-processing assembly, a boon for industries requiring
lightweight, integrated designs, such as aerospace and automotive. However, it demands
the careful consideration of material compatibility, extruder systems, support structures,
and post-processing, alongside acknowledging the inherent challenges in this advanced
printing technique.

The future of Fused Deposition Modeling (FDM) and Fused Filament Fabrication
(FFF) printing holds promising directions that are poised to further revolutionize the
industry. Firstly, a broader range of printable materials with enhanced properties, including
improved strength, flexibility, and conductivity is anticipated. This includes an expansion of
filled filament materials, such as carbon fiber, metals, and wood, offering even more diverse
material choices and applications in industries like healthcare, aerospace, and electronics.
Moreover, advancements in multi-material printing and support structures will continue to
facilitate the creation of complex, fully assembled objects with ease. As automation and
robotics intersect with 3D printing, we may see more autonomous 3D printers capable
of managing multiple materials and tasks simultaneously. Additionally, sustainable and
eco-friendly materials and recycling solutions will likely play a significant role in reducing
the environmental impact of 3D printing processes. Finally, increased accessibility to
FDM/FFF technology through cost-effective, desktop printers will empower individuals
and small businesses to explore new creative and industrial possibilities, democratizing
the manufacturing landscape.

5. Conclusions

This study explored the use of advanced composite materials in FDM/FFF 3D printing
manufacturing processes, with a particular focus on filled filaments. In order to improve
the mechanical, thermal, and functional properties of the printed parts, it was necessary to
investigate the potential benefits and challenges associated with incorporating additives
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into the filaments. Through a comprehensive evaluation of the literature, it became clear
that filled filaments offer promising opportunities for improving the performance of 3D-
printed objects. The addition of fillers such as carbon fibers, glass fibers, nanoparticles,
or other reinforcing agents can considerably improve the mechanical strength, stiffness,
and impact resistance of 3D-printed components. Moreover, fillers can also enhance the
thermal conductivity, flame retardancy, and electrical properties of the materials, thereby
expanding their application scope.

However, it is important to acknowledge that the incorporation of fillers into filaments
presents certain challenges. The selection of appropriate filler materials, their dispersion
within the polymer matrix, and the optimization of printing parameters require careful
consideration. The choice of filler content, size, shape, and distribution significantly
influences the final properties of the printed parts. Additionally, compatibility issues
between the fillers and the base polymer, as well as potential processing difficulties, must
be addressed to ensure successful printing and optimal performance.

Despite these challenges, filled filaments have demonstrated their potential to revolu-
tionize various industries, including aerospace, automotive, electronics, and biomedical
sectors. The ability to tailor the properties of 3D-printed parts through the judicious selec-
tion and incorporation of fillers offers new avenues for customization, lightweighting, and
functional integration. The advancements in material science and additive manufacturing
technologies are continuously expanding the possibilities and driving the adoption of filled
filaments in industrial applications.

Further research and development efforts are needed to overcome the current lim-
itations and fully exploit the potential of advanced composite materials in FDM/FFF
3D printing processes. Future studies should focus on enhancing the understanding of
filler–polymer interactions, optimizing processing parameters, and exploring novel filler
materials. Additionally, the development of reliable models and simulation tools to predict
the mechanical and functional properties of printed parts would be valuable for design
and optimization purposes.

In conclusion, filled filaments hold great promise for advancing the capabilities of
FDM/FFF 3D printing technology. By leveraging the unique properties of composite mate-
rials, it is possible to achieve enhanced performance, increased functionality, and expanded
application possibilities. With continued research and development, filled filaments are
poised to play a significant role in shaping the future of additive manufacturing, paving
the way for innovative and sustainable solutions in various industries.
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