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Abstract: After the Fukushima nuclear accident, the development of new accident-tolerant fuel
cladding materials has become a research hotspot around the world. Due to its outstanding corrosion
resistance, radiation resistance, and creep properties at elevated temperatures, the oxide dispersion
strengthened (ODS) FeCrAl alloy, as one of the most promising candidate materials for accident-
tolerant fuel cladding, has been extensively studied during the past decade. Recent research on
chemical composition design as well as its effects on the microstructure and mechanical properties
has been reviewed in this paper. In particular, the reasonable/optimized content of Cr is explained
from the aspects of oxidation resistance, radiation resistance, and thermal stability. The essential
role of the Al element in oxidation resistance, high-temperature stability, and workability was
reviewed in detail. The roles of oxide-forming elements, i.e., Y (Y2O3), Ti, and Zr, and the solid
solution strengthening element, i.e., W, were discussed. Additionally, their reasonable contents
were summarized. Typical types of oxide, i.e., Y–Ti–O, Y–Al–O, and Y–Zr–O, and their formation
mechanisms were also discussed in this paper. All aspects mentioned above provide an important
reference for understanding the effects of composition design parameters on the properties of nuclear-
level ODS FeCrAl alloy.

Keywords: ODS FeCrAl; accident-tolerant fuel cladding; oxidation resistance; irradiation; thermal
stability; microstructure; mechanical properties

1. Introduction

Since the beginning of the new century, with the continuous growth of global power de-
mand and the dual challenges of energy shortage and environmental protection, countries
all over the world have paid more attention to nuclear energy compared with fossil energy.
As the most promising alternative to fossil energy, nuclear energy is considered a clean
energy source with low carbon emissions and high efficiency. Nuclear power generation
has a history of more than 60 years. However, due to the deep negative impact of nuclear
accidents on human beings and the environment, the safety of nuclear energy has become
the focus of attention around the world. For example, in the 1990s, after the accidents at the
Three Mile Island and Chernobyl nuclear power plants, the United States, Europe, Japan,
and other countries researched and tackled key issues actively for the development of the
derived third generation reactors to prevent and mitigate serious accidents. Compared
to the second-generation nuclear power units where the Fukushima nuclear accident in
Japan (11 March 2011) occurred, the safety and economy of the current mainstream third-
generation nuclear power units have been significantly improved. One of the measures is
to adopt a material combination different from the existing zircaloy-clad-UO2 fuel system
but possessing the same operating performance (burnup, power grade, abundance) as it,
which aims to improve accident tolerance by transitioning from a zirconium-based fuel
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cladding to an excellent oxidation-resistant cladding material in the light water reactor
(LWR). Although the course of the accident in LWR is controlled by the reaction of the
entire (cladding-fuel) system during the accident, the accident-tolerant cladding material
can significantly influence the rate of the process and consequences of the accident, which
is very important to minimize the burden on the safety systems and maximize the response
time. In this case, the safety margin of the nuclear power system can be improved [1].
In addition, the development of the accident-tolerant cladding is also a key issue for the
high burnup operation of IV generation nuclear power system, such as the Supercritical
Pressurized Water Reactor (SPWR) and the Lead Bismuth-Budding Fast Reactor (LFR). In
particular, after the severe accident at Fukushima Nuclear Power Plant, nuclear reactor
designers realized the importance of improving safety margins in severe accidents, and the
U.S. Department of Energy started a research project on accident-tolerant fuels (fuels and
fuel claddings) [2–9].

It is well understood from this extensive field of research that optimal oxidation
resistance is usually achieved by forming Cr2O3, Al2O3, or SiO2 layers above 600 ◦C in air
on the surface of structural materials or coatings containing Cr, Al, and Si elements [10].
Therefore, coated zirconium-based cladding, ferritic alumina-forming alloy cladding, and
silicon carbide fiber-reinforced silicon carbide matrix composite cladding are considered
to be the main candidates for cladding materials for accident-tolerant fuel claddings [11].
According to the research results of dry air exposed for longer than 1000 h, Cr2O3 can
provide protection up to 1000 ◦C, Al2O3 up to 1400 ◦C, and SiO2 up to 1700 ◦C (the
exact upper limit temperature depends on multiple factors, such as component thickness,
exposure conditions, and expected life). However, under severe accident conditions, the
environment inside the reactor core may consist of steam or a mixture of steam and
hydrogen. In the elevated temperature environment with steam, the Cr2O3 and SiO2
oxide scales can form volatile hydroxides, which can reduce their service limit at high
temperatures by several hundred degrees compared with the temperature limit in dry
air [12]. The oxidation resistance of SiC-based materials and stainless steel supplemented
with high chromium and/or aluminum was tested at temperatures ranging from 800 ◦C
to 1200 ◦C in a high-pressure steam environment. The results showed that the FeCrAl
alloys exhibited very low reaction kinetics up to 1200 ◦C; however, the Fe–Cr alloys with
15–20 wt.% Cr were corroded at a relatively high rate [13]. Thus, from the viewpoint
of corrosion resistance at ultra-high temperatures (T > 1000 ◦C), FeCrAl-based alloys
are considered to be the most desirable candidates as accident-tolerant fuel cladding in
light-water nuclear reactors.

The fuel cladding is the shell to seal the nuclear fuel, serving as the most important
safety barrier for nuclear power plants. Its main function is to prevent the escape of
fission products, prevent the fuel from being corroded by coolant, and effectively export
thermal energy. Due to the extreme service conditions of nuclear reactors, the fuel cladding
is confronted with extremely high burn-up temperatures, strong radiation doses, and
compatibility issues with the coolant. The fuel cladding material needs to have excellent
comprehensive performance to overcome challenges such as:

(1) High thermal conductivity, low coefficient of thermal expansion;
(2) Small neutron absorption cross-section, low induced radioactivity, short radioactive

half-life, and good radiation resistance;
(3) Good compatibility between the fuel and the coolant (strong corrosion resistance);
(4) High strength, good plasticity, and toughness at elevated temperatures.

Therefore, the design of chemical composition is one of the key measures for alloys to
meet the service requirements of nuclear reactors.

Oxide dispersion strengthened (ODS) alloys have a strong pinning effect on the
movement of dislocations and grain boundaries due to the ultra-high density dispersed
nanosized oxides [14–16], which can significantly improve the high-temperature strength
of the material [17]. High-density nanosized oxides can also promote the recombination
of point defects caused by irradiation, including the recombination of vacancies and self-



Materials 2023, 16, 6280 3 of 35

interstitial atoms, reducing radiation damage [18]. Due to their excellent radiation resistance
and excellent high-temperature strength, ODS alloys are considered candidate materials
for fast reactor fuel cladding and the first wall/cladding of a fusion reactor.

The ODS FeCrAl alloy combines the prime mechanical properties at elevated tempera-
tures [19,20] and the radiation resistance [21–25] of the ODS Fe–Cr alloy with the optimized
corrosion resistance of the FeCrAl alloy. Thus, it is considered a very promising candidate
for solving the issue of accident-tolerance structural materials applied in nuclear energy
systems, especially for the II and III generations of Lightwater Reactors (LWRs), the IV
generation of Supercritical Pressurized Water Reactors (SCPWs), and Lead-Cooled Fast
Reactors (LFR, using liquid lead alloy as coolant) [26,27].

This paper reviews the historical evolution of the ODS FeCrAl alloy with respect
to composition design. The roles of matrix elements (Cr/Al), oxide–forming elements
(Y2O3/Ti/Zr), and solid solution strengthening element (W) in the ODS FeCrAl alloy
were discussed. The effects of Cr on corrosion resistance, irradiation resistance, thermal
stability, microstructure, and mechanical properties were summarized. The critical roles
of Al in corrosion resistance at different conditions were reviewed in more detail. The
effect of Al on the strength and workability of the ODS FeCrAl alloy were discussed in an
independent section. Moreover, the upper limits of their contents were also explained on
the basis of the several constraints above. The typical types of oxide, i.e., Y–Ti–O phase,
Y–Al–O phase, and Y–Zr–O phase, and their formation mechanisms in alloy systems were
introduced in detail in this paper. All aspects mentioned above are of reference significance
for understanding the development of the ODS FeCrAl alloy for the tolerance of accidents
in nuclear applications from the perspective of composition design. Figure 1 displays
the frame diagram of this review, which briefly outlines the considerations of chemical
composition design.
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2. Effect of Chemical Elements on the Properties and Microstructure of ODS FeCrAl

Alloying composition or content design depends on multiple constraints in nuclear
applications, such as radiation resistance, corrosion resistance, high-temperature strength
requirements, processing feasibility, etc. Thus, taking measures of balancing and adjustment
in the aspect of chemical composition design has always been an important part of the
research and development of nuclear-level ODS FeCrAl. The effects of chemical elements
such as Cr, Al, Y2O3, Ti, Zr, and W are discussed in the following content. Particularly,
considering that the cladding material operates in the actual environment of SCW and
LBE fission reactors with radiation and corrosive medium for the long term, it should
be emphasized that Cr and Al content are determined mainly according to the results of
corrosion and radiation tests [28].

2.1. The Influence of Cr

For Al-free ODS Fe–Cr alloys, increasing the content of Cr can improve their corrosion
resistance, according to the experimental results. Pint et al. [29] compared the corrosion
resistance of four ODS 13–14 at.% Cr iron base alloys in air and 10 vol.% water vapors
for 10,000 h at 700–1100 ◦C. The results showed that the reaction rates of all ODS alloys
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are lower than those of stainless steel (type 347 stainless steel (18 wt.% Cr), type 310
stainless steel (25 wt.% Cr), and NF709 (Fe–20Cr–25Ni–Nb) at 700–800 ◦C. However, the
limit temperature of alloys with a low Cr content in air is 900 ◦C. However, studies on
ODS alloys containing 21 wt.% Cr (high content) showed that they have good oxidation
resistance up to 1100 ◦C due to the formation of a coherent and Cr-rich oxide film [30].
Studies that refer to increasing Cr content as improving the corrosion resistance of alloys in
the SCPW (783 K, 25 MPa) environment were also reported [31,32]. For example, Kimura
et al. [31] concluded that in SCPW, an increase in Cr concentration to 16 wt.% significantly
increases the corrosion resistance of ODS ferritic steels. Cho et al. [32] demonstrated that
the higher the Cr concentration, the fewer Fe–Cr-rich corrosion products there are and
the better the corrosion resistance of ODS steel when exposed to high–Cr ODS alloys
in SCPW. However, the service temperature in the nuclear reactor ranges from 300 to
650 ◦C, and cladding material with a Cr element of 14–22 wt.% undergoes aging hardening
during long thermal aging, which is called “475 ◦C embrittlement” [33–36]. Lee et al. [37]
studied the effect of thermal aging (for 1000 h at 430–475 ◦C) on the microstructure and
mechanical properties of ODS alloys with a high Cr content ranging from 14 to 22 wt.%
by TEM, microhardness, and small punching (SP) tests. The SP-ductile to brittle transition
temperature (SP-DBTT) and microhardness of ODS steel after aging increased significantly
with changes in Cr content, aging time, and temperature due to the formation of the Cr–α′

rich phase.
In terms of irradiation stability, Field et al. [38] and Briggs et al. [39] reported that high

Cr alloys could produce irradiation-induced harmful and embittered Cr–α′ rich phases at
300–350 ◦C. Therefore, commercial high-Cr ODS alloys, such as PM2000 and MA956, are
not classified as nuclear-grade alloys due to aging and irradiation-induced embrittlement,
although they were manifested to have satisfactory corrosion resistance. However, under
moderate temperature irradiation, the reduction of Cr content hinders the formation of
an embittered Cr–α′ rich phase, which can avoid damage to mechanical properties due
to α′–α in the corresponding service environment [38,39]. Fortunately, the change in
Cr content has no significant effect on the mechanical properties [40,41]. For example,
Li et al. [40] compared three kinds of ODS alloys containing different Cr contents, i.e.,
Fe–12Cr–0.5Ti–1.0W (Alloy A), Fe–16Cr–0.5Ti–1.0W (Alloy B), and Fe–18Cr–0.5Ti–1.0W
(Alloy C) alloys (all in wt.%). Regarding the important mechanical properties, such as
tensile strength, hardness, and impact toughness, it was found that there was no linear
proportional relationship between Cr content and mechanical properties on the ODS Fe–Cr
alloys, as shown in Figure 2. Noh et al. [41] also concluded that Cr was the most important
element in determining the matrix phase and that there was no significant influence on the
tensile properties of ODS steel at 700 ◦C. Therefore, it is feasible to adjust the content of
Cr to not only maintain the bcc matrix phase but also to avoid the emergence of a harmful
brittle phase without damaging the mechanical properties.
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As summarized above, too high a Cr content has led to many unfriendly trends in the
performance of the ODS alloy, as shown in Figure 3. Therefore, reduction of Cr content
is an essential measure based on the considerations of high-temperature irradiation in
nuclear reactor applications [42–44], and an Al element is added to the ODS Fe–Cr alloy to
compensate for the lack of corrosion resistance of the alloy.
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Figure 3. Schematic diagram of the trend of properties changing with Cr content.

2.2. The Influence of Al

In order to balance the weakening of corrosion resistance caused by the reduction of Cr
content and considering that Al2O3 scales can withstand high temperatures up to 1400 ◦C to
protect the underlying matrix effectively, an appropriate amount of Al addition was added
to ODS Fe–Cr alloys to produce an Al–rich oxide film (Al2O3) with better performance than
Cr–rich oxide film in the case of an accident. In addition, the Cr element can assist in the
formation of the Al2O3 scale, that is, the third element effect. For example, Niu et al. [45]
systematically studied the oxidation behavior of Fe–x Cr–3 at.% Al alloy (x = 2, 3, 5, and
10 at.%) at 1000 ◦C. It was found that the presence of a third element, Cr, promoted the
formation of an Al2O3 oxide layer [46] in alloys with low Al concentrations. Meanwhile,
the synergy effect between Cr and Al is also reflected with respect to the suppression of
475 ◦C embrittlement by Al addition. In terms of previous experimental observations,
Kobayashi and Takasugi [47] discovered that the suppression of 475 ◦C embrittlement due
to Al addition could be attributed to the inhibition of the nucleation of α′ phase. Regarding
the simulation calculation, Li et al. [48] studied the effect of Al addition on the formation
energy of the α–α′ interfaces in Fe–Cr alloy systems by utilizing the first-principles theory
and suggested that Al reduced the stability and affected the formation energies of the α′

phase, resulting in suppression of phase separation in Fe–Cr alloy systems by adding Al.
Theoretically, the Fe–Cr–Al ternary diagram [49] can be used as a guiding basis to prevent
the generation of α′ phase with respect to chemical composition design. We can clearly
understand from Figure 4 that in the Fe–Cr–Al alloy system, when the content of Cr is
fixed, increasing the content of Al can effectively inhibit the generation of α′ phase.
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Figure 4. Fe–Cr–Al ternary diagram: black spots and triangles represent the compositions of the
ODS steels investigated in the presented work and the commercial steels, respectively. The Al2O3

formation zone at 1100 ◦C is bounded by a broken line. The zones of Fe3Al and Cr-enriched α phases
at 475 ◦C are bounded by a dotted line and a solid line, respectively [49].

Recently, some scholars have also verified the effect of the Al element on inhibition of
α′ phase [50,51]. For example, Yang et al. [51] characterized α′ phase evolution by the atom
probe, which evolved an entire process of nucleation, growth, and coarsening of α′ phase
during aging at 475 ◦C. The results showed that in the case of 15 wt.% Cr, the size of α′

phase in the model alloy containing 4.5 wt.% Al grows gradually with the aging time up to
10,000 h, while α′ phase in the model alloy containing 6 wt.% Al is effectively suppressed,
as shown in Figure 5. These experimental observations are in good agreement with the
theoretical prediction displayed in Figure 4.
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with Cr iso–concentration surfaces at 30 at.%, and proximity histograms of the α′ phases generated
by Cr iso–concentration surfaces of the Fe–15Cr–6Al alloy aged at 475 ◦C for (e) 5000 h, (f) 8000 h,
and (g) 10,000 h [51].

The combined addition of Cr and Al is the key to the corrosion resistance design of
alloys, and the Cr and Al content are determined by the corrosion test results in SCW
and LBE. This section focuses on the evaluations for the corrosion resistance of the ODS
FeCrAl alloy at ultra-high temperatures under simulated accident conditions (Section 2.2.1),
normal operating temperatures (Section 2.2.2), and in lead–bismuth eutectic alloy (LBE)
(Section 2.2.3) to emphasize the critical role of Al in corrosion resistance. In addition, the
influence of Al content on strength, workability, and aging brittleness was summarized
(Section 2.2.4). It should be noted that as for research on the corrosion or oxidation resistance
of the ODS FeCrAl alloy, some researchers have considered the synergistic effect between
Cr and Al elements, while some other studies only evaluated the influence of Al content on
corrosion resistance.

2.2.1. Ultra-High Temperature Corrosion (T > 1000 ◦C)

As for the high-temperature corrosion studies of the ODS FeCrAl alloy, scientists are
most especially concerned about the corrosion behavior of the alloys under simulated
accident conditions, i.e., loss-of-coolant accidents (LOCA). To prove the important role of
the Al element, this section reviews the corrosion behavior of the ODS FeCrAl alloy at
ultra-high temperatures up to 1621 ◦C [52,53]. Liu et al. [54] carried out oxidation tests
on six ODS ferritic alloys and SUS430 at 1050 ◦C for 200 h in air. The results showed that
the oxidation resistance of the 14Cr ODS FeCrAl alloy containing Al elements was better
than that of SUS430 (16.8Cr). With an increase in Al concentration, the oxidation resistance
of the 16Cr ODS alloy was significantly improved from 0 to 2 and 4 wt.%, and the mass
gain decreased from 8.6 to 7.6 and 4 g/m2. The thickness of the Al2O3 oxide layers of the
16Cr–4Al ODS alloy can only be 3.5 µm. While ODS alloys containing 11 wt.% Cr and
2 wt.% Al cannot form a dense alumina layer. The concentrations of Al and Cr should
be greater than 2 and 14 wt.%, respectively, to form a dense Al2O3 layer and enhance
adherence between the Al2O3 layer and the matrix. The author [55] studied systematically
the effect of Al content on the oxidation behavior of Y2Ti2O7 dispersed Fe–14Cr ferritic steel
in air at 1100 ◦C for 200 h. It was concluded that in 14CrODS steel containing 14 wt.% Cr, a
solid and continuous Al2O3 film is formed, and the content of Al is not less than 4.5 wt.%.
Furthermore, previous studies also showed that a reduced Cr content and enhanced Al
content provide the basis for the formation of a stable and protective Al oxide layer [56,57].
In a Fe–Cr–Al alloy with 1015 wt% Cr, an Al content as low as 3 wt.% is sufficient to form an
Al oxide layer. The Oak Ridge National Laboratory (ORNL) in the United States developed
the first generation 12Cr ODS FeCrAl alloy (low Cr), and the evaluating experiment started
with oxidation performance in simulated accident status at 1200 ◦C for 4 h in 1 bar dry
air or steam. All evaluated components, including 12Cr–5Al, formed a protective film
in steam at 1200 ◦C, while the ODS Fe–14Cr alloy did not form a protective oxide film
under the same experimental conditions, and metal consumption was 50% after 8 h in
this environment [58,59]. Subsequently, in order to improve the ductility of the alloy, the
second-generation Fe–(10–12)–Cr–6Al ODS alloys with a low O content and 0.15–0.5 wt.%
Zr were derived from the first-generation low Cr12–15Cr ODS FeCrAl alloy in ORNL. The
experimental results of the isothermal oxidation test up to 1400 ◦C in air or steam showed
that this series of alloys have excellent corrosion resistance above 1200 ◦C under simulated
accident conditions, as shown in Figure 6 [60].

Qiao et al. [61] calculated the corresponding Gibbs free energy of different oxide
layers at 1200 ◦C by Fact Sage. The priority order of each element that forms oxides in
the Fe–Cr–Al alloy can be predicted as Al2O3 > Cr2O3 > FeCr2O4 > Fe2O3 > FeO > Fe3O4,
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thus Al will take precedence over Cr and Fe oxidation, which is consistent with previous
experimental results.
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Figure 6. BSE-SEM micrographs of the oxide scale formed (a) after 4 h at 1200 ◦C in steam, alloy
106ZY 40 h; (b) after 4 h at 1200 ◦C in steam, alloy 125YZ; (c) after 4 h at 1400 ◦C in air, alloy 106ZY
40 h; (d) after 4 h at 1400 ◦C in steam, alloy 125YF. The scale bars for (c,d) are ten times larger than
the scale bars for (a,b). The white arrow highlights an area where the scale is locally protective [60].

Regarding oxidation resistance studies under simulated accident conditions, the re-
search team of Hokkaido University in Japan evaluated systematically the oxidation behav-
ior of a series of the ODS 15Cr–7Al alloys in air and steam at 1200–1500 ◦C, simulating the
LWR severe accident together with analyses using the thermochemical multiphase com-
puter software FactSage (https://www.factsage.com/, 11 September 2023). Additionally,
they found that the alumina scale formed on the ODS FeCrAl alloy with an appropriate
composition can maintain good adhesions up to 1400 ◦C, which indicated that the ODS
FeCrAl alloy is capable of accident-tolerant fuel (ATF) clad material [52]. Further, Sakamoto,
Miura, Ukai, et al. [53] conducted reaction tests between ODS FeCrAl and UO2 in an in-
ert gas atmosphere at 1723 K for 25 h. The Al2O3 scale with a thickness of 3.6 µm was
formed, and no detectable inter-diffusion across the oxide scale was found, as shown in
Figure 7. More research [62] showed that the growth rate of the Al2O3 reaction layer of
the FeCrAlZr-ODS with UO2 was evaluated to be 10−8–10−7 m2 s−1, while the rate of the
reaction layer between zircaloy and UO2 was extremely large at the same temperature
(10−2–10−1 m2 s−1), indicating good compatibility.
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Table 1 summarizes the recent experimental data on the ODS FeCrAl alloys (SUS430
as a comparison) after long-term and short-term oxidation tests at ultra-high temperatures
(T > 1000 ◦C). Data show that ODS FeCrAl alloys with optimized composition (3.5 µm of
oxide layer thickness) exhibit better oxidation resistance than SUS430 without Al (20 µm of
oxide layer thickness) after a long-term oxidation test of 200 h at high temperatures below
1200 ◦C [54,55]. Furthermore, after exposure to a short–term oxidation test at 1200 ◦C,
the ODS FeCrAl alloy can produce protective and stable α-Al2O3 with a thickness of
approximately 2 µm, which is negligible for the fuel cladding tube with a thickness of
500 µm [58–60]. In the reaction experiment [52,53], where the temperature is close to the
melting point (mp), Al2O3 formed on the ODS FeCrAlZr alloy can still keep the alloy
isolated from the UO2 pellet, which greatly reduces the reaction rate between the fuel
cladding and fuel pellet. As a result, the damage to the fuel cladding tube’s mechanical
properties caused by oxidation can be reduced to the lowest level due to the protection
provided by Al2O3.

Table 1. Non-irradiation oxidation experiment data at ultra-high temperature (T > 1000 ◦C) simulated
accident conditions.

C 1 (wt.%)
Experimental Condition

CP 5 OLT 6 (µm) Refs.
T 2 (◦C) T 3 (h) At 4

SUS430
(Commercial Fe–Cr alloy) 1050 200 air Fe, Cr, and Mn

phases 20 [54]

S1(Fe–16Cr–4Al–0.1Ti–0.35Y2O3) 1050 200 air α-Al2O3 3.5 [54]

Fe–14Cr–4.5Al–0.35Ti–2W–0.6Y2Ti2O7 1100 200 air α-Al2O3 4 [55]

125YZ 1200 4
air

α-Al2O3
2.41 ± 0.2

[58,59]
steam 2.34 ± 0.1

106ZY-40 h 1200 4
air

α-Al2O3
slightly thinner

than 125YZ
[60]

steam

15Cr–7Al–0.5Ti–0.5Y2O3–xZr–yEx.O
x = 0~0.6

y = 0.09~0.22

1200 ~25

air steam α-Al2O3

--

[52]
1300 ~25 --

1400 ~25 ~7 *

1500 ~0.5 totally oxidized

FeCrAlZr–ODS
1450 25 UO2 inert gas α-Al2O3 3.6

[53]
1621 -- steam U-O-Al-Fe-Cr totally oxidized

1 Composition, 2 Temperature, 3 Time, 4 Atmosphere, 5 Corrosion products, 6 Oxide layer thickness, * Estimated
according to pictures in the literature.

2.2.2. Low Temperature Corrosion in a Light Water Nuclear Reactor (T < 1000 ◦C)

The normal operating temperature in II and III Generation light water nuclear reactors
ranges from 290 to 320 ◦C, while in the IV generation of supercritical pressurized water
reactor (SCW), the operating temperature increases from 290 to 600 ◦C. Therefore, the
corrosion behavior of the ODS FeCrAl alloy in the lower temperature range of 200–700 ◦C
over the long term has also been widely studied. Isselin et al. [63] compared the corrosion
behavior of 16Cr–4Al ODS and 16 Cr ODS steel in a SCW environment (pure water, 25 MPa,
8 ppm) at 550 ◦C and found that the addition of 4 wt.% Al can effectively improve corrosion
resistance. A dense protective layer of Al2O3 is formed on the surface of 16Cr–4Al ODS,
while (Cr, Fe)2O3 is formed on the surface of 16 Cr ODS steel. Lee et al. [64] studied
systematically the corrosion behavior of ODS steel doped with various alloy elements, such
as Cr, Al, W, Ce, Hf, and Zr, in SCW (25 MPa and 8 ppm dissolved oxygen) at different
temperatures of 400, 500, and 600 ◦C. The research revealed that the addition and content
of different chemical elements lead to different corrosion products resulting from different
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corrosion mechanisms, as shown in Figure 8, and Al addition led to a dense protective
layer of Al2O3 among complex corrosion products. It was also found that the thickness
of the oxide layer is also closely related to the exposure temperature and time, which is
due to the different diffusion coefficients of the O atoms at different temperatures. The
resistance to corrosion at low temperatures also depends on the content of the Al element.
For example, exposed to SCW at 600 ◦C for one year, the oxide thickness of SOC-1 (with a
higher Al of 3.5 wt.%) was only 5 µm. It showed that 4 wt.% Al addition can effectively
improve the corrosion resistance of 16Cr–ODS, and the appropriate composition ratio of Cr
and Al is in the range of (14–16) Cr and (3.5–4.5) Al for SCW application. Briefly, in SCW,
it can be seen that Al addition and content strongly control the corrosion rate, corrosion
products, and corrosion mechanism of the alloy.
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Figure 8. SEM images showing the cross-sectional morphologies of (a) SOC-1 (Fe–16.11Cr–3.44Al–
0.09Ti–0.34Y2O3), (b) SOC-5 (Fe–15.95Cr–0.09Ti–0.34Y2O3), (c) SOC-9 (Fe–15.42Cr–1.85W–3.8Al–
0.10Ti–0.36Y2O3), and (d) type 430 SS (Fe–16Cr) and FE-EPMA analyses showing the corresponding
composition distributions after exposure at 500 ◦C [64].

Ren et al. [65] systematically investigated the effect of corrosion time (200, 400, 600,
800, and 1000 h) on the corrosion behavior of the 16Cr–3Al ODS alloy in SCW at 600 ◦C.
It is concluded that with the extension of corrosion time, the thickness of the oxide layer
and weight gain agree with the parabolic law in the case of the types of corrosion products
without changing. On the basis of these results, the corrosion mechanism under this
experimental condition was discussed in detail, as schematically shown in Figure 9. Simply
put, the lower standard Gibbs free energy [66] of Al2O3 compared with Cr2O3 and Fe2O3,
the difference in concentration of the elements in the alloy, the chemical gradient, and the
difference in the ion diffusion coefficient make it form a double-layer oxide structure with
Al2O3 as the inner oxide layer and (Cr, Fe)2O3 as the outer oxide layer. Finally, due to the
densification of Al2O3 and the low diffusion coefficient [67] of Fe and Cr in Al2O3, the
outward diffusion of Cr3+ and Fe3+ was obviously limited, and the growth of the outer
oxide layer slowed. Under the circumstances, the process of oxidation became stable as a
result of the protection of the compact internal Al2O3 layer, resulting in the prevention of
corrosion damage.
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Figure 9. Schematic representation of the microstructural evolution of the oxide layer at an early
stage in SCW and after exposure for 200 h, 600 h, and 1000 h, respectively [65].

In ORNL of the United States, Terrani et al. [68,69] conducted the corrosion test for
several low Cr FeCrAl alloys in water with three different chemical composition environ-
ments (found in the main cooling cycle conditions of PWR and BWR) for up to one year
in a temperature range of 290–330 ◦C. The maximum thickness loss of LWR corrosion for
one year without irradiation is 2 µm, which can be ignored for cladding with 300–500 µm
thickness in actual application. Recently, a corrosion resistance test for a second generation
of several FeCrAl alloys was conducted in simulated BWR-HWC and BWR-NWC under
normal operating conditions [69]. The thickness of the oxide layer on Fe–10Cr–6Al in-
creased most slowly after exposure to the corrosive environment of BWR-HWC (as shown
in Figure 10) and exhibited satisfactory corrosion resistance in the corrosive environment
of BWR-NWC.
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Table 2 summarizes the data from the non-irradiation oxidation experiment in SCW at
normal operating temperature (T < 1000 ◦C). According to previous research, the corrosion
products of ODS FeCrAl alloys are different, which may be due to differences in compo-
nents, preparation conditions, corrosion time and temperature, and types of corrosion
medium, but their corrosion resistance exhibits a significant advantage when compared
with commercial 430 SS according to the thickness of the oxide layer. Additionally, with an
increase in Al content, the oxidation resistance was significantly improved.

Table 2. Non-irradiation oxidation experiment data in SCW at operating temperature (T < 1000 ◦C).

Composition
(wt.%)

Experimental Condition
Corrosion
Products

Thickness
(µm) Ref.Temperature

(◦C)
Time

(h) Environment

430 SS
(Commercial Fe–Cr alloy) 500 1000 SCW

Outermost: Fe2O3
Outer: Fe3O4

Inner: (Fe,Cr)3O4

≥15 [64]

16Cr–4Al 550 250 SCW
Outer: hematite,

magnetite
Inner: Al2O3

0.1 [63]

16Cr–3Al
(Fe–15.98Cr–2.64Al–0.42Zr–0.29Y2O3) 600

200

SCW
Outer: Hexagonal

(Cr, Fe)2O3
Inner: Al2O3

0.25

[65]

400 --

600 0.35

800 --

1000 0.4

SOC–1
(Fe–16.11Cr–3.44Al–0.09Ti–0.34Y2O3)

400
8760
(1Y) SCW

Outermost: Fe2O3
Outer: Al2O3,

Inner: (Fe,Cr)3O4

--

[64]500 --

600 5

2.2.3. Compatibility with Liquid Metal Medium

Al plays a critical role in the corrosion resistance of candidate alloys in liquid metal.
There exists a contradictory fact that Ni/Fe/Cr elements are very important in austenitic
stainless/ferrite steel, but lead–bismuth eutectics (LBE) have high solubility for the above
three elements. So, Ni superalloy and Fe–based austenitic stainless steel are difficult to
utilize as structural materials for the LBE cooling system, especially above 773 K. Above
873 K, the solubility/corrosion of Fe and Cr in LBE increase remarkably. In order to keep
the material from dissolving in LBE, the Al2O3 layers that form on the surface of the Al-
containing steel are considered to inhibit the dissolution. Figure 11 shows ODS samples
under certain LBE conditions (10−6 wt.% O2 in solution for 104 h at 923 K). The 19Cr–ODS
steel without Al dissolves significantly in LBE. However, the ODS samples with 4 wt.%
Al retain almost completely their shape, indicating high corrosion resistance. It should be
noted that with the same Al content, the change in Cr content (13–19 wt.%) does not have a
remarkable impact on the corrosion resistance of the alloys in LBE [28].

Hosemann et al. [70] compared the corrosion resistance of five different ODS experi-
mental and commercial alloys, including Fe–Cr ferritic/martensitic steels (12YWT, 14YWT,
and MA957) and FeCrAl alloys (PM2000 and MA956), under the conditions of liquid lead–
bismuth eutectic at 535 ◦C for 200 h and 600 h. The results showed that PM2000 with an Al
content greater than 5.5 wt.% exhibits good corrosion/oxidation resistance, which is closely
related to grain size. Takaya et al. [71] systematically studied the corrosion resistance
of ODS steel with an Al content of 0–3.5 wt.% and a Cr content of 13.7–17.3 wt.% and a
12Cr steel. The results showed that when the Al content is 3.5 wt.% and the Cr content
is 13.7–17.3 wt.%, a protective Al oxide layer can be formed on the surface of ODS steel,
while increasing the Cr concentration alone cannot improve the corrosion resistance. These
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research conclusions show that Al plays a decisive role in the corrosion resistance of the
alloy in the lead–bismuth eutectic environment.
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for 1 × 104 h at 923 K [28].

Regarding Pb-Li compatibility in the fusion reactor, Unocic et al. [72] exposed model
FeCrAlY alloys with 10–20 wt.% Cr and 3–5 wt.% Al for 1000 h at 700 ◦C. The results
showed that the effect of Cr content on mass change was not obvious; however, mass
losses happened to alloys with <5 wt.% Al in these experiments, indicating that Al plays a
more important role than Cr in the Pb–Li coolant. The corrosion experiment for the first
generation of low Cr ODS FeCrAl (based on Fe–12Cr–5Al) developed by the Oak Ridge
National Laboratory [58,59,73] has been completed at 700 ◦C. It showed that the Pb–Li
compatibility of the ODS FeCrAl alloys is better than that of the wrought FeCrAl and ODS
Fe–Cr alloys (Figure 12). A thin (~1 µm) LiAlO2 reaction product was detected in all cases
(Figure 13), indicating that the corrosion resistance of low Cr ODS FeCrAl meets the service
requirements of the liquid lead–bismuth eutectic reactor.
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The historical evolution of the development of the ODS FeCrAl alloy summarized
above shows that the low Cr and high Al ODS FeCrAl alloy with a certain ratio has excellent
application prospects in the light water-cooling medium (fission reactor) or metal cooling
medium (fission/fusion reactor) from the perspective of corrosion resistance.

2.2.4. Effect of Al on Strength and Workability

The addition of Al has a significant effect on the dispersed oxides and mechanical
properties of ODS steel [74]. For example, Kasada et al. [75] studied the microstructure and
tensile properties of oxidation dispersion strengthened (ODS) ferritic steels K1 (F–19Cr–
0.3W–0.3Ti–0.3Y2O3) and K4 (Fe–19Cr–4Al–2W–0.3Ti–0.3Y2O3) before and after deforma-
tion. The nano-oxides in K1 were cubic chlore Y2Ti2O7, and the nano-oxides in K4 were
mainly perovskite YAlO3 with a larger size than Y2Ti2O7, which indicated that the addition
of Al changed the type and average size of the ODS particles and resulted in a much higher
strength of K1 (Al-free) than that of K4 (Al-containing). In similar studies, Gong et al. [76]
prepared two ODS ferritic alloys with compositions (wt.%) of Fe–14Cr–4.5Al–1W–0.35Y2O3
(14Cr–Al ODS) and Fe–14Cr–0.5Ti–1W–0.35Y2O3 (14Cr–Ti ODS) by mechanical alloying
and hot isostatic pressing. Tensile tests showed that 14Cr–Ti ODS steel has higher strength
but weaker ductility, while 14Cr–Al ODS alloy has lower strength but better ductility. In
addition, 14Cr–Al ODS alloy shows a higher impact energy than that of 14Cr–Ti ODS alloy.
A similar behavior in mechanical properties was reported in references [28,77,78]. The
solution to the problem of reduction in mechanical properties is to add the Zr element to
the ODS FeCrAl alloys, which will be detailed in Section 3.4.

Except for a reduction in tensile strength due to the addition of Al, the higher Al
content increases the difficulty of welding and manufacturing [79–81] and increases the
brittleness of the alloy simultaneously [82,83]. Moreover, investigation [84] revealed that
ordered Fe3Al intermetallic phase precipitating during aging increases the strength and
decreases the ductility of aged ODS FeCrAl ferritic alloys when the amount of Al exceeds
10 wt.%. Thus, the upper limit of Al that can be safely added to ODS FeCrAl ferritic alloys
for accident-tolerant fuel cladding is on the order of 7~8 wt.%. Thus, it can be concluded
that these experimental data provide the basis for the maximum amount of Al addition in
the processing or service of the alloy. In addition, it should be noted that when ODS FeCrAl
alloys are exposed to oxygen and air at 1000–1300 ◦C, Al depletion will occur in the matrix.
Therefore, the change in the Al concentration in the matrix can determine the service
life of these alloys; that is, when the aluminum content is less than a critical value, the
oxidation resistance of the alloys is limited. The protective layer of alumina can no longer
heal, so the matrix oxide products are rapidly formed, which results in rapid consumption
of materials. This phenomenon is called “separation oxidation”, which corresponds to
the end of material life. When scale peeling occurs, especially in the thermal cycle, this
phenomenon will accelerate [85]. This phenomenon of “separation oxidation” should be
avoided during thermal mechanical processing because it may make the material unable to
meet the corrosion resistance requirements and fail in normal service or accident situations.



Materials 2023, 16, 6280 15 of 35

3. Influence of Elements on Microstructure and Properties

Different chemical element additions produce different effects on the microstructures
and mechanical properties of the alloy. The types and size distribution of complex oxide
particles, i.e., Y–Ti–O, Y–Al–O, and Y–Zr–O phases, in ODS FeCrAl alloys are significantly
influenced by different oxide-forming elements due to different free energy and element
content. The influence trends of elements such as Y2O3, Ti, Al, and Zr on microstructure
and performance, as well as their internal formation mechanisms, will be introduced in
this section. In addition, two special precipitates, namely co-precipitation and core–shell
structure, are summarized in detail in this section, and the formation mechanisms of specific
precipitates are briefly reviewed.

3.1. Y2O3

Dispersed Y2O3 was first utilized in ODS alloys due to its thermodynamically more
stable free energy of formation than the sulfides, nitrides, and carbides phases [86,87].
Additionally, Y2O3 also acts as a strong obstacle for mobile dislocations and serves as a sink
for radiation defects at the oxide-matrix interfaces to improve high-temperature mechanical
strength and ductility by controlling the structure of grain boundaries [86,88–90]. The
advantage of ODS alloys is that the dispersed oxide is uniformly dispersed and shows
limited solubility or good coarsening resistance, which gives the alloy a higher strength at
an elevated temperature. The ability of the dispersed phases to produce and retain coarse-
grained alloy structures leads to increased creep resistance at elevated temperatures [91] and
improves the mechanical strength of the alloy, such as hardness [92], tensile property [93],
and impact properties [94], but also improves the oxidation resistance through the reactive
element effect (REE) [95–97] For example, Cueff et al. [96] studied the oxidation behavior
of FeCrAl alloys in air at 1173 K. The alloys differ in whether yttrium is implanted. The
kinetic results showed that in the early stage of oxidation, only yttrium implantation can
significantly reduce the growth rate of the oxide layer. For a longer oxidation time, the
active elements significantly affect the oxidation rate and the composition of the oxide film,
regardless of the way they are introduced into the alloy. Yttrium suppressed the formation
of transition alumina, promoted the growth of α-Al2O3, and resulted in a protective oxide
layer earlier. UI-Hamid [97] studied the cyclic oxidation behavior of two ODS FeCrAl
alloys, MA956, containing 0.17 and 0.7 Y2O3 by mass percentage. The alloy was exposed
to air at 1200 ◦C for 100 h on a 24 h cycle. Both alloys form a highly adherent continuous
α-Al2O3 layer, whose morphology indicates inward scale growth. At the same time, Y2O3
produces micropores in a 0.7 wt.% alloy, thus forming a relatively high thickness and high
oxidation rate, which indicates that Y2O3 should be kept below an appropriate content in
terms of oxidation resistance. However, to adapt to the development of ODS FeCrAl alloys
in nuclear reactors, the Y2O3 usually added is decomposed in the mechanical alloying
process and then reacts with other oxide-forming elements, such as Ti, Zr, etc., in the
subsequent thermal curing process (HIP, HE, SPS, etc.), to form finer oxides in the matrix
rather than coarser Y2O3 particles. Details will be discussed in the following sections.

3.2. Ti

Regarding the ODS Fe–Cr alloy without Al, Ukai et al. [98,99] recognized the most
effective and important role of Ti in the refinement of dispersed particles by systemati-
cally analyzing the effect of the addition of elements, such as Ti, Nb, V, and Zr, on the
Al-free 12Cr ODS ferrite alloys, as shown in Figure 14. The main function of the Ti ele-
ment is to generate finer Y–Ti–O particles through the reaction of TiO2 and Y2O3, which
results in a decrease in oxide size and an increase in number density [100]. Detailed re-
search showed that Y2Ti2O7 oxide (~2 nm) is much smaller than Y2O3 (>10 nm) [101–103].
Additionally, the main crystal structures of dispersed particles are Y2Ti2O7 and Y2TiO5
(2–30 nm) [104–109]. By adding Ti to Al-free 12Cr–ODS alloys, tensile and creep properties,
as shown in Figures 15 and 16 [101,110], were significantly improved compared to Al-free
12Cr–ODS without Ti due to the reduced size of oxide particles. However, in this case, the
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effect of Zr on the reduction of oxide size is weaker than that of Ti, which is accompanied
by a small increase in creep rupture strength [101]. As a result, Zr has not been popularized
in Al-free Fe–Cr ODS alloys.

In science, then, Al-free Fe–Cr ODS alloys containing Ti have been extensively studied,
the results of which showed that Y–Ti–O phases exist universally. For example, Sakasegawa
et al. [111] found a non-stoichiometric pyrochlore Y2Ti2O7 with a cubic lattice in the MA957
by high-resolution TEM (HRTEM). The Y2Ti2O7 oxides coherent with the matrix were also
detected in Fe–14Cr–1W–0.3Ti–0.3Y2O3 [112]. The findings above are consistent with most
of the complex oxides detected by Yamashita et al. [102] in a Fe–12Cr–1.9W–0.3Ti–0.24Y2O3
alloy and Kishimoto et al. [113] in Fe–16Cr–0.1Ti–0.35Y2O3. In addition, there are also
phases like Y2TiO5 with the structure of an orthorhombic lattice or a thogonal lattice [102].
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tional ferritic/martensitic steel. The arrows indicate that the test is still in progress or that it was
discontinued prior to rupture [110].

The formation of complex oxides is based on the large density of vacancies formed
in the alloyed powder during mechanical alloying. Zhang et al. [114] investigated the
variation in the density of vacancies during mechanical alloying (MA) and proposed a
model for the evolution of vacancies. Results of the simulation showed that, to some
extent, the density of vacancies increases with longer collision times, lower milling tem-
peratures, and higher collision frequencies. The results of positron annihilation life-time
studies [115–117] proved that four to six vacancies were contained in the existence of
vacancy clusters in the mechanically alloyed (MA) and extruded ODS ferritic alloys. A
vacancy mechanism underlying the unusually high O solubility and nucleation of stable
O-enriched nanoclusters in defect-containing Fe was widely accepted from the results
of first-principles studies [118,119]. Oxygen, as an interstitial, shows an excellently high
affinity with vacancies; the interaction between O and Y in Fe had to be mediated by
vacancies; without vacancies, the interaction between O and Y in Fe was found to be repul-
sive. Thus, the O-vacancy mechanism enables the nucleation of O-enriched nanoclusters
that attract solutes with high O affinities (Ti and Y) and strengthen Fe-based alloys [118].
By composition-sensitive APT and size-sensitive SANS experiments, Zhang et al. [120]
reported the existence of a large number of vacancies in NCs as a constitutive element and
concluded that the nucleation of nanoclusters starts from the O-enriched solute clustering
with vacancy mediation. Regarding the forming priority of O–Y–Ti clusters compared
with O–Y clusters, Vallinayagam et al. [121] investigated six different structural models for
atomic clusters in bcc Fe by density functional theory (DFT) calculations, which showed
that the driving force for the growth of O–Y clusters should be greater than that of O–Y–Ti
clusters. This could be correlated with the experimental observation that the presence of Ti
leads to a reduction in the size of the oxide clusters in nanostructured ferritic alloys and
a higher dispersion. A model framework for the thermodynamics and kinetics of Y–Ti
oxide nucleation, growth, and coarsening was developed by Barnard et al. [122]. Based
upon the available thermodynamic and kinetic data as well as key density functional
theory calculations, the model shows that the nucleation and growth of nano-oxide are
highly driven and that pipe diffusion is the dominant mode of their coarsening, consistent
with the previous conclusion from experimental high-temperature data. This analysis also
provides insights into the effect of O and Ti on nano-oxide sizes and the optimization of
the alloy microstructure. In similar work, Boulnat et al. [123] modeled the precipitation
behavior of nanosized binary Y2O3 and complex Y2Ti2O7 oxides in ODS ferritic alloys by a
nucleation, growth, and coarsening thermodynamic approach. The precipitation state was
characterized at the nanoscale by transmission electron microscopy (TEM), small-angle
neutron scattering (SANS), and atom-probe tomography (APT). Both simulation and exper-
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imental analysis showed the precipitation mechanisms of two steps: the first step is rapid
nucleation of nanoclusters during the heating stage; the second step is limited growth and
coarsening of Y2O3 and Y2Ti2O7 during the soaking time and further annealing at elevated
temperature (1100 ◦C).

For a suitable amount of addition, research showed that excessive Ti leads to coarsen-
ing of oxide particles in the alloy, as shown in Figure 6 of Ref. [124], or produces potential
embrittlement due to large TiO2 particles [125], which will damage the mechanical proper-
ties. The ternary Y–Ti–O composition diagram [126] well explains the influence of the Ti
content on the type of Y–Ti–O phase. As shown in Figure 17b, with increasing Ti content,
the type of Y–Ti–O phase changes from Y2TiO5, Y2Ti2O7, to TiO2. Thus, in this alloy system,
there should be a reasonable optimal value below 0.5 wt.%.
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Figure 17. Visualization of (a) individual cluster compositions for all 1871 nanoprecipitates analyzed
in the APT control volumes in this work and (b) the ternary Y-Ti-O composition diagram as a function
of cluster size [126].

3.3. Al

In Zr-free ODS FeCrAl, when adding an Al content (≥5 wt.%) to the ODS alloy contain-
ing the Ti element (~0.3 wt.%), the strengthening effect reflected by the Y–Ti–O particles was
significantly reduced [75] due to the formation of a larger Y–Al–O (5–100 nm) phase in the
ODS FeCrAl alloy containing Ti, and the number density of the Y–Ti–O phase could be ne-
glected according to the statistical results [28,74,87,127]. Microstructure observation showed
that larger Y–Al–O phases are the dominant strengthening phases, such as YalO3 (Yttrium
Aluminum Perovskite, YAP) [106,128], Y3Al5O12 (Yttrium–Aluminum–Garnet, YAG) [129],
and Y4Al2O9 (Yttrium–Aluminum–Monoclinic, YAM) [130]. Specifically, Dubiel et al. [131]
confirmed that the majority of Y-Al oxides in MA956 were tetragonal Y3Al5O12 (Yttrium
Aluminum Tetragonal, YAT). In PM2000 (Fe–20Cr–5.5Al–0.5Ti–0.5Y2O3), four Y–Al–O
types of nano-oxides could be found in the matrix, which were identified as monoclinic
YAM, YAT, YAG [132], and YAP [133]. These microstructural examinations above lead to
the conclusion that Y–Ti oxides were not present, but instead Y–Al oxides with larger sizes
were formed when ODS F/M steels contain both aluminum and titanium, which led to the
reduction of the tensile and creep properties of ODS alloys [28,74].

In view of the formation mechanism of this phenomenon, Chinnappan [134] first used
density functional theory-based calculated formation and reaction enthalpies to examine
the relative stability of a large number of likely oxide phases of typical ODS steels based
on the Fe–Cr–Al–Ti–Y–O system. As shown in Figure 18, Y2O3, Y4Al2O9, YalO3, Y2Ti2O7,
and Y2TiO5 oxides with relatively more negative formation enthalpies are more stable,
corroborating their observation in the microstructure of ODS steels, which indicates that
they are favored over other likely oxides, such as those based on Y–Fe–O, Y–Cr–O, and
Fe–Cr–O. In addition, it can also be seen from the convex–hull diagram (Figure 18) that
Y–Al–O and Y–Ti–O do have a certain competitive relationship with respect to formation,
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which may be the reason why the strengthening effect of Ti is not significant in ODS FeCrAl
alloy when the amount of Al addition (≥5 wt.% ) is much greater than that of Ti (~0.3 wt.%).
However, Kamikawa et al. [135] found in the creep test for ODS FeCrAl alloy with and
without Ti that the creep resistance of the ODS FeCrAl alloy with Ti was much higher than
that of the model alloy without Ti, which showed that Ti plays a positive role in improving
the comprehensive mechanical properties.
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Figure 18. DFT-computed formation enthalpies of likely oxides of ODS steel plotted as a function of
oxygen fraction. Oxides with relatively more negative formation enthalpies, found at the bottom of
the figure, such as Y2O3, Y2TiO5, Y4Al2O9, Y2Ti2O9, and YAlO3, are actually the set of phases often
observed in the microstructure of typical ODS steels [134].

3.4. Zr

According to the problems encountered in the development of the nuclear-level ODS
FeCrAl alloys mentioned above, Kimura et al. [28] prepared a series of ODS FeCrAl ferritic
steels with Zr addition by considering the lower oxide formation energy [136,137] and the
diffusion rate of Zr in the bcc Fe matrix [129] to eliminate the negative effect on mechanical
properties due to the Al addition. Fine Y–Zr–O oxides (<15 nm) formed in the bcc Fe
matrix possess a coherence or semi–coherence relationship with the bcc matrix and endow
ODS FeCrAl alloys with better corrosion resistance, mechanical properties, and radiation
tolerance [138]. For instance, the corrosion resistance of the Zr–added ODS FeCrAl alloys in
the coolant of supercritical water [64] and lead–bismuth eutectic [139,140] was proved to be
superior compared to the Zr–free alloys due to the lower Gibbs free energy of Zr for oxide
formation compared to Al, resulting in a higher Al concentration available for oxide layer
formation on the surface. In the test of irradiation resistance at 773 K up to 10 dpa, the oxide
particles were relatively stable, and the growth rate of the radiation-induced dislocation
loops at the interface between the Y–Zr–O oxides and the matrix was low in Zr-added
alloys during the electron irradiation [141]. As for the mechanical properties, the long-
term creep strength of the ODS Zr–containing steel at 973 K [28] was improved markedly
compared with ODS Zr–free steel, and the ultimate tensile strength (UTS) [36] was found
to reach up to approximately 1400 Mpa at room temperature. Furthermore, the fracture
toughness and microhardness of the ODS FeCrAl steels were also improved by adding
Zr due to the increased volume fraction of fine equiaxed ferritic grains and the number
density of nano-oxide particles, as well as the decreased average size of nano-oxides [142].
Dedicated research has been conducted on the effects of Zr content on microstructure and
mechanical properties in the ODS FeCrAl alloy system (Fe–12Cr–5Al–2W–0.3Y2O3–xZr
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(x = 0, 0.3, 0.6, and 1.0 wt%)) [143], which shows that the number density and size of oxides
significantly depend on Zr content due to the formation of Y–Zr–O oxides, as shown in
Figure 19. This tendency is similar to the effects of Ti on ODS Fe–Cr alloys mentioned in
Section 3.2. Thus, it is clear that the content optimization of oxide-forming elements can
be partially determined by their influence on the microstructures. Of course, design for
alloy composition should also be considered in the context of nuclear applications. For
example, systematic experiments on resistance to radiation, oxidation, creep, and impact
should be carried out for proposed model alloys to comprehensively evaluate and choose
the optimized alloy.
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Figure 19. TEM images of oxides in 0Zr (Fe–12Cr–5Al–2W–0.3Y2O3–0Zr) (a) 0.3Zr (Fe–12Cr–5Al–2W–
0.3Y2O3–0.3Zr) (b) 0.6Zr (Fe–12Cr–5Al–2W–0.3Y2O3–0.6Zr) (c), 1Zr (Fe–12Cr–5Al–2W–0.3Y2O3–1Zr)
(d) the corresponding histograms of oxide particle size distribution of 0Zr (e), 0.3Zr (f), 0.6Zr (g), and
1Zr (h) [143].

Regarding the types of oxides in Zr-containing ODS FeCrAl alloys [28], the species of Y–Zr–
O phases reported include Y4Zr3O12 [138], Y2Zr2O7, or Y6ZrO11 [141]. Y0.28Zr0.72O1.862 [144].
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Specifically, Dou et al. [138] found that almost all the small nanoparticles with diameter
smaller than 10 nm in SOC–14 (Fe–15Cr–2W–0.1Ti–4Al–0.63Zr–0.35Y2O3) hot extruded at
1150 ◦C were consistent with trigonal δ-phase Y4Zr3O12 oxides and coherent with the bcc
steel matrix. They also [145] detected trigonal δ-phase Y4Zr3O12 (9 nm) and cubic Y2Zr2O7
(7.5 nm) coexisting in UOC–10 (Fe–15Cr–2W–0.5Ti–7Al–0.4Zr–0.5Y2O3) hot extruded at
1150 ◦C. Yu et al. [141] identified oxides as Y2Zr2O7 structures with a size of approximately
7 nm formed in Fe–16Cr–4Al–0.6Zr–0.35Y2O3 hot extruded at 1150 ◦C. Gao et al. [144]
identified oxide particles with a size range of 4–70 nm as Y0.28Zr0.72O1.862 precipitated
in Fe–16Cr–4Al–2W–0.5Ti–0.4Y2O3–1Zr fabricated by a sol–gel method combined with
mechanical alloying and spark plasma sintering (SPS) techniques at 1200 ◦C. On the basis
of the above data, a systematic study of the influence of Zr content on the microstructure
and mechanical properties of ODS FeCrAl was conducted by Ren et al. [146] and Wang
et al. [143]. The detected Zr-oxides are trigonal δ-phase Y4Zr3O12, and excess Zr results
in coarsening of the oxide particles, indicating that the Zr content affects the trend of the
oxide size distribution. This conclusion is similar to the influence of Ti contents on the size
distribution of oxides. The comparison of the mean size of the oxides in alloys containing
different Zr contents in previous studies is shown in Figure 20. From the perspective of
minimizing the average size of oxides, it can be concluded that the content of Zr should be
appropriate in the range of 0.4–0.6 wt.%. However, it should be noted that small changes in
many factors, such as process and alloy composition, may affect the types of oxide in the
alloy, according to the detection results in previous studies.
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As for the formation mechanism and priority of oxides, comparison between the
binding energies of oxide-forming elements, such as Ti, Al, and Zr, by first-principles
calculation explained the change in oxide types in ODS FeCrAl in previous studies. During
MA, repeated and severe plastic deformation results in high stored energy and a high
density of defects, such as vacancies and dislocations, in powders [147], which provide
a great number of favorable nucleation sites for the precipitation of nano-oxides. On the
basis of the first principles calculations, in all the stages of formation, Y–Zr–O vacancy
clusters (−4.16 eV) have higher binding energy than Y–Al–O vacancy clusters (−3.25 eV)
in the iron matrix of bcc, which implies that in a ferritic steel both containing Zr and Al, the
Y–Zr–O clusters are more stable and are favored to nucleate over the Y–Al–O clusters [136].
Therefore, for Zr-added ODS FeCrAl alloys, Y–Zr–O is the main strengthening phase, with
less Y–Al–O co-existing in the matrix [148,149]. Regarding ODS FeCrAl alloys added with
Ti and Zr, Dou et al. [148] found that Y–Zr–O, Y–Al–O, and Y–Ti–O oxides co-existed in
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the matrix in different proportions by HRTEM identification and statistics. As shown in
Figure 21, from the experimental results, we can see that the affinity of Zr, Al, Ti, and Y2O3
is Zr > Ti > Al. This experimental phenomenon is consistent with the calculation results of
Qian et al. [137] using the first principle. The simultaneous precipitation of Y–Zr–O, Y–Al–
O, and Y–Ti–O nano-oxides in ODS FeCrAl may bring some combined benefits to the ODS
FeCrAl alloy, but there are still many uncertainties, such as the possible complex interactions
between these nanoprecipitates and their potential impact on performance. In addition,
density functional theory-based calculations of formation and reaction enthalpies [134]
examined the relative stability of a large number of likely oxide phases of typical ODS
FeCrAl alloys based on the Fe–Cr–Al–Zr–Y–O system, with the Fe–Cr–Al–Zr–Ti–Y–O
system still to be performed.
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Noting the 2nd generation ODS FeCrAl alloy (Fe–10Cr–6.1Al–0.3Zr–0.3Y2O3) devel-
oped recently at the Oak Ridge National Laboratory [150–152], two different types of
precipitates form in the alloy system, which has a high number density (>1023 m−3) of
(Y, Al, and O)-rich nano-oxides (~2–4 nm diameter). As shown in Figure 22, the nanopre-
cipitate population is comprised of a dispersion of red precipitates highlighted using Y-,
YO-, and AlO-rich isoconcentration surfaces. In addition, coarser precipitates enriched
in Zr elements are highlighted in purple, but no Y–Zr–O phases are found in the matrix.
Massey et al. [151] carried out a thermodynamic assessment of Zr precipitation and found
that (C,N) solute impurities significantly affect the equilibrium phases within the alloy
system. As shown in Figure 23a, when C and N exist in the matrix, the primary phases
that are expected to form are Zr(C,N), AlN, Cr carbides, and complex (Y, Al, and O)-rich
oxides, such as YAP and YAG. However, when C and N are removed completely from the
alloy system (Figure 23b), the high affinity of both Zr and Al for O in solution leads to a
competition for the formation of Zr3Y4O12 and YAP (YAlO3) at the annealing/extrusion
temperature of 1000 ◦C. In other work by Massey et al. [126], this concept of impurity
sequestration was used to optimize the alloy composition and microstructure.
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Figure 22. APT control volumes for CrAZY (Fe–10Cr–6.1Al–0.3Zr + 0.3Y2O3) (a) powder ZY10C60
(Fe–10Cr–6.1Al–0.3Zr + 0.3Y2O3) annealed for 1 h at 1000 ◦C and (b) alloy 4H10C (Fe–10Cr–6.1Al–
0.3Zr + 0.3Y2O3) annealed for 1 h at 1000 ◦C followed by extrusion. Depicted are red 1.5 at.% (Y, Al,
and O) isoconcentration surfaces and purple 10 at.% Zr isoconcentration surfaces atop 0.1% of black
Fe matrix atoms [151].
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Figure 23. Thermodynamic calculation results for expected CrAZY alloy phases in the 4H10C alloy
(a) with and (b) without C and N impurity elements. Additionally, shown in (c) is the effect of
increasing C and N concentrations on the equilibrium phases at 1000 ◦C [151].

In addition, an interesting phenomenon has been found in previous studies of ODS
FeCrAl alloys, called co-nucleation or co-precipitation of oxides [129] or appendage ox-
ide [143,153] with multiple phases. Unocic et al. [129] found co-nucleation of different
oxide phases in their model alloys containing Al elements with different powders of ZrO2,
HfO2, and Y2O3, respectively, e.g., Y3Al5O12/Al2O3 in 125Y alloy, Zr(C,N)/Al2O3 and
Zr(C,N)/Y3Al5O12 in 125YZ alloy, HfO2/Al2O3, Y2Hf2O7/Al2O3 and complex Y3Al5O12/
Y2Hf2O7/Hf(C,N) or Al2O3/Y2Hf2O7/Hf(C,N) in 125YH alloy produced by high kinetic
energy ball milling and hot extrusion. Klimiankou et al. [154,155] found co-nucleation of
complex Y–Al–O/Al2O3, i.e., two or more smaller Y–Al–O fractions located on the signifi-
cantly larger α-Al2O3 fraction, and Y–Al–O/TiC, i.e., various Y–Al–O particles trapped on
the surface or even in the center of a large Ti(C,N) inclusion in PM2000. Zhou et al. [156]
found three phenomena in HRTEM: (1) one Y2O3 particle containing two YAM particles;
(2) an oxide particle containing YAG and Y2O3 simultaneously; and (3) the interaction
between YAG and YAM. Shi et al. [153] found coarse complex Al2O3/Y4Zr3O12 oxides,
which were defined as “appendage oxides”, distributing in the matrix of an as-deposited
sample prepared by laser-engineered net-shaped (LENS) technology. A co-precipitation
consisting of ZrC and Al2O3 with Y segregation to the surface of the alumina precipitate
was discovered in ZY10C60 annealed powder [151]. Nanoscale Y4Zr3O12/YAP/Al2O3
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appendage oxides [143] were recently found in the Fe–12Cr–5Al–2W–1Zr model alloy
prepared by SPS. Table 3 summarizes the types of co-precipitations in previous studies.
It should be noted that the formation mechanism of oxides with multiple phases in Al-
containing ODS alloys might be significantly influenced by various hot consolidation
processes, such as hot extrusion (HE) [129], hot isostatic pressing (HIP) [154,155], spark
plasma sintering (SPS) [143,155], as well as laser additive manufacturing technology [153],
due to different thermal histories. Each preparation process can form a thermal history
with its own characteristics; for example, in the process of SPS, the formation of a liquid
sintering neck may lead to the formation of α-Al2O3/YAP/Y4Zr3O12 complex oxides, as
shown schematically in Figure 24 [143]. However, most co-precipitations were formed un-
der solid-state conditions; thus, the preferential formation mechanism in thermodynamics
should be the main reason for this phenomenon. For example, in annealed powder [151],
co-precipitation of ZrC/Al2O3/Y strongly suggests that when interstitial elements, such as
C and N, are present in the alloy system, Zr will preferentially react with these elements
instead of competing with Al for the formation of (Zr, Y, and O)-rich oxides, which is
consistent with the results of the thermodynamic analysis, as shown in Figure 24.

The discovery of “core/shell structure” captured the evolution process of the pre-
cipitation phase in ODS alloys and clearly indicated that there is a possible competitive
relationship between some elements. In previous studies, for ODS Al-free Fe–Cr alloys
with Ti, the core/shell structures included (Y, Ti, and O)-rich core/Cr shell, i.e., Cr-rich
shell encircling the smallest (Y, Ti, and O)-rich nano-precipitates [157–160] and (Y, Zr, and
O)-rich oxide core surrounded by Ti-rich shell were found in Al-free ODS Fe–Cr alloy
containing both Ti and Zr at 1000 ◦C [161]. Two hypotheses for the phenomenon of the
“core/shell structure” were proposed: the first hypothesis is that the shell is a consequence
of segregation at the interface between the particle and matrix after the particle has formed.
The second theory is that the shell could be essential for the precipitation of the particle and
may play the role of an interfacial phase, lowering the surface energy of the particle and
thus promoting the particle to precipitate [162]. The results of the first principal calculation
reasonably explained the formation of Y, Ti, and O core/Cr shells in Al-free ODS Fe–Cr
alloys containing Ti. For instance, interactions among the Y, Ti, and O and vacancy were
compared by Murali et al. [163], Cr is showing negligible interaction with vacancy, O, and
O–V and interacts repulsively with Y and Ti, resulting in the “core/shell structure” for the
nanoclusters consisting of a (Y, Ti, and O)-rich core and a Cr shell. As for the intrinsic cause
of the formation of the (Y, Zr, and O)-rich core/Ti-rich shell structure [161], the binding
energies of Zr with Y, O, and V and their clusters in bcc Fe (Ti was replaced with Zr in the
defect cluster) were calculated by Murali et al. [163]. The research results indicated that
Zr interacts attractively with Y as compared with the repulsive interaction of Ti with Y. In
addition, when Zr takes the place of Ti, a higher binding energy of O, V, and their clusters
is displayed. Furthermore, the binding energies of Y–V–O–Zr were higher compared with
the Y–V–O–Ti clusters in all the different configurations studied, indicating the clusters
have higher thermal stability. In the minimum energy configuration of Y–V–O–Zr, the bond
lengths of Y–O and Zr–O were 2.30 Å and 2.05 Å, respectively; however, in the Y–V–O–Ti
defect cluster, the bond lengths of Y–O and Ti–O were 2.71 Å and 2.37 Å, respectively.
Thus, supposing that Y, V, O, Zr, and Ti are uniformly distributed in the mechanically
alloyed supersaturated powder, once the reaction conditions are appropriate, the stronger
attraction of Zr elements to Y, V, and O is likely to extrude Ti elements to form a Ti-rich
region around them, which leads to the generation of a core–shell structure.
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Table 3. Types of co-precipitations containing different phases.

Alloy (wt.%) Consolidation/Heat Treatment Co-Precipitations Refs.

125Y
(FeCrAl–Y2O3)

Mechanical milling
hot extrusion

heat treated at 950 ◦C for 1 h

Y3Al5O12/Al2O3

[129]

125YZ
(FeCrAl–Y2O3–HfO2)

Zr(C,N)/Al2O3,
Zr(C,N)/Y3Al5O12

125YH
(FeCrAl–Y2O3–ZrO2)

HfO2/Al2O3,
Y2Hf2O7/Al2O3,

Y3Al5O12/Y2Hf2O7/Hf(C,N),
Al2O3/Y2Hf2O7/Hf(C,N)

PM2000
(Fe–19Cr–5.5Al–0.5Ti–0.5Y2O3) -------- Y–Al–O/Al2O3

Y–Al–O/TiC [154,155]

Fe–9Cr–0.1C–2W–0.2V–0.07Ta–0.05Al–0.35Y2O3
Fe–9Cr–0.1C–2W–0.2V–0.07Ta–0.1Al–0.35Y2O3

Mechanical milling
SPS

annealed at 800 ◦C for 1 h

Y2O3/YAM
YAG/Y2O3
YAG/YAM

[156]

Fe–15Cr–2W–4.5Al–0.3Ti–0.3Zr–0.3Y–0.2Y2O3

Mechanical milling
laser-engineered net-shaped

(LENS) technology
Al2O3/Y4Zr3O12 [153]

CrAZY alloy
(Fe–10Cr–6.1Al–0.3Zr + 0.3Y2O3)

Mechanical milling
hot extrusion ZrC/Al2O3/Y [151]

Fe–12Cr–5Al–2W–xZr
(1Zr)

Mechanical milling
SPS Y4Zr3O12/YAP/Al2O3 [143]
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With respect to ODS FeCrAl alloys, the core/shell structures found include the Y–
Al–O core/Ti shell [164] and Zr(C,N) core/ZrC shell [151]. For instance, Oono et al. [164]
discovered that a large oxide particle in 15Cr–7Al annealed at 1623 K for 27 h had a core–
shell structure; the core contained Al, Y, and O, while the shell additionally contained Fe
and Cr. Ti was distributed on the surface of the shell (see Figure 25). Monoclinic Y4Al2O9
(YAM) or orthorhombic YAlO3 (YAP) were indexed in 15Cr–7Al [164]. Although we cannot
judge the possible cause of this phenomenon at will, it could be inferred from the existing
thermodynamic calculation results shown in Figure 18 that in the alloy system with Al and
Ti, there might be multiple Y–Ti–O phases produced during the preparation. If there exists
a kind of Y–Ti–O phase less stable than the Y–Al–O phase, such as YTiO3, which may lead
to the above phenomenon occasionally or frequently. The finding of Zr(C,N) core/ZrC shell
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(see Figure 26) indicates that under certain conditions, Zr(C,N) should be a relatively more
stable phase in thermodynamics compared with ZrC [151]. In addition, Massey et al. [151]
assumed a new type of model of Y–Al–O core/(Fe,Cr)-rich shell structure, as shown in
Figure 27. Although this phenomenon was not found in the experiment, it should exist in a
specific alloy system theoretically, and more work in characterization may be required to
prove its existence.
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Figure 26. An (a) APT control volume of ZY10C60 annealed powder with multiple types of precipi-
tates atop black Fe matrix atoms. Red 1.5 at.% (Y, Al, and O) isoconcentration surfaces highlight the
smallest precipitate population, while brown 20 at.% Cr isoconcentration surfaces and purple 10 at.%
Zr isoconcentration surfaces show larger precipitates in the volume. One-dimensional concentration
profiles through larger precipitates provide evidence for (b) ZrC, (c) Zr(C,N), and (d) (Fe,Cr) 23C6.
(For interpretation of the references to color in this figure legend, the reader is referred to the Web
version of this article) [151].
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3.5. W

According to the design requirements of reduced-activation ODS steels, alloying
elements with a slow decay rate, such as Mo and Nb in conventional steels, are substituted
by elements with a higher decay rate of radioactivity, such as W, V, and Ti. Another
reason for this approach is that the strengthening function of Mo and Nb in steels could be
compensated by W, V, and Ti [165,166]. Tungsten (W) as the ferrite forming element was first
introduced into 9 Cr low-activation steel for fusion reactors as a solution-strengthened alloy
element [167], which improved creep fracture time at 873 K (600 ◦C) of 9 Cr low-activation
steel. Similarly, compared with the MA957 alloy containing Mo, the creep properties of
the ODS ferritic alloy containing W, such as 12YWT, have been significantly improved
up to 850 ◦C [99,100,168,169]. To explore the effect of W on the microstructure, the model
alloys Fe–12.4Cr–0.25Y2O3 (12CrY) ODS and 12CrYW were developed by ORNL of the
United States. By comparing with 12CrY (cluster size 10–40 nm, 1020–1021 m−3) alloy, W in
12CrYW can increase the number density (3.9 × 1023 m−3) and reduce the size of clusters in
the absence of Ti [170]. Dou et al. [171] also suggested that although W has less effect on the
microstructure than oxide-forming elements such as O and Ti, it still plays a positive role in
reducing the size and increasing the density of oxides. Furthermore, W can also improve
the thermal stability and corrosion resistance of ODS alloys [172]. In terms of mechanical
properties, Japanese scholars [173] have tested the effect of W content (nominal content is
2.0 wt.%, 2.5 wt.%, 3.0 wt.%, and 3.5 wt.%) on 9Cr–xWVTa steels. The results showed that
when the W content was increased from 2.0 wt.% to 2.5 wt.%, the strength increased and
the total elongation of the alloy decreased slightly. When it was further increased to 3.5%,
it hardly changed. The laves phase due to excessive addition of the element W is the main
reason for the reduction of properties. Therefore, it is appropriate to control the content of
W within 2%.

In conclusion, through the summary and induction of the alloy elements, it is found
that each element not only plays the role and influence of itself in the alloy but also that
there is a complementary or competitive relationship between the elements. These factors
form the complexity of the nuclear ODS FeCrAl alloy system, and they can also provide a
basis for reasonable design of the ODS FeCrAl alloy.
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4. Conclusions

The research and development of ODS FeCrAl is a complex and systematic project.
This article reviews previous research findings and makes summarized statements on the
following aspects:

(1) The effects of Cr and Al content in the ODS FeCrAl alloy on the corrosion behavior,
radiation, thermal stability of the matrix, and processing feasibility were summarized,
and the range of reasonable design content of the two elements above was stated
in detail;

(2) The role of oxide-forming elements, i.e., Y (Y2O3), Ti, Al, Zr, and solid solution
strengthening elements, i.e., W, in ODS FeCrAl alloy and the design basis for their
reasonable content were concluded;

(3) The important effects of different alloy elements on the type and size distribution of
the oxide particles were introduced;

(4) The density functional theory-based calculation of formation and reaction enthalpies
to examine the relative stability of a large number of likely oxide phases of typical ODS
FeCrAl alloys based on the Fe–Cr–Al–Zr–Y–O system, with the Fe–Cr–Al–Zr–Ti–Y–O
system still to be performed;

(5) In the as-prepared ODS FeCrAl alloy, several populations of nano-oxides can pre-
cipitate simultaneously. However, in the process of preparing cladding tubes, due
to the generation of a large number of dislocations, these oxide-forming elements
may diffuse along the dislocation pipes due to the interaction between the oxides
and dislocations. During this process, oxides may undergo the phenomenon of
“dissolution–precipitation–re-dissolution–re-precipitation”. These types of oxides
may even undergo chemical reactions to generate non-equilibrium products. These
possible changes in the microstructure caused by the competition between the various
alloying elements, as well as their impacts on the service performance of the ODS
FeCrAl alloy, should be paid attention to in future research;

(6) Based on the review, several other aspects of the ODS FeCrAl alloy will be reviewed in
another paper, such as the effects of heat solidification parameters on the microstruc-
ture and mechanical properties; and a comparison of the high temperature stability
and irradiation stability of typical oxides, i.e., Y–Ti–O, Y–Al–O, and Y–Zr–O phases;
and a summary of the microstructure evolution of ODS FeCrAl alloy under plastic
deformation. These will contribute to a comprehensive understanding of the entire
alloy development process.
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