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Abstract: Sclerotinia sclerotiorum, a fungal pathogen, causes world-wide crop losses and additional
disease management strategies are needed. Modeling the climate niche of this fungus may offer
a tool for the selection of biological control organisms and cultural methods of control. Maxent, a
modeling technique, was used to characterize the climate niche for the fungus. The technique requires
disease occurrence data, bioclimatic data layers, and geospatial analysis. A cross-correlation was
performed with ArcGIS 10.8.1, to reduce nineteen bioclimatic variables (WorldClim) to nine variables.
The model results were evaluated by AUC (area under the curve). A final model was created with
the random seed procedure of Maxent and gave an average AUC of 0.935 with an AUC difference of
—0.008. The most critical variables included annual precipitation (importance: 14.1%) with a range of
450 mm to 2500 mm and the mean temperature of the coldest quarter (importance: 55.6%) with a
range of —16 °C to 24 °C, which contributed the most to the final model. A habitat suitability map
was generated in ArcGIS 10.8.1 from the final Maxent model. The final model was validated by
comparing results with another occurrence dataset. A Z-Score statistical test confirmed no significant
differences between the two datasets for all suitability areas.
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1. Introduction

Sclerotinia sclerotiorum (Lib.) de Bary, an ascomycetous fungal plant pathogen, is
found worldwide on over 500 plant species such as sunflower, soybean, oilseed crops,
peanut, onion, and tulips within dicot and monocot plant groups [1-4]. This fungal
disease was previously reported to cause over USD 200 million in annual losses in the
USA [2,4], and soybean production reports (2010 to 2014) indicate 2.8 million metric tons
of yield loss with a loss value of USD 1.2 billion [2,5-7]. Disease reports indicate that
S. sclerotiorum is found in most parts of the world, including Canada, the USA, Central
America, South America, Africa, Europe, Asia, and Oceania, and the disease it causes is
commonly known as Sclerotinia stem rot or white mold disease depending on the infected
host plant species [3,8-10]. S. sclerotiorum produces long-term survival structures called
sclerotia, which develop in diseased plant tissue and then fall to the ground and enter
the soil [11-13]. The sclerotia germinate, giving rise to apothecia and ascospores. The
ascospores germinate and infect plant hosts initiating the disease symptoms. This disease
develops under cool, moist conditions and is widespread [3,12]. In the Mediterranean
area, little or no disease occurs in the summer [12]. The disease is difficult to manage and
focusing on the fungal responses to environmental conditions worldwide may give another
tool to compare chemical and biological treatments. Using a preventative and ongoing
disease management approach by identifying potential geographic habitats and specific
environmental conditions via a modeling technique now and under climate change in the
future would allow for early application and monitoring of disease management tools
in specific locations. One particular modeling approach, species distribution modeling
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using maximum entropy modeling (Maxent [14-16]), may offer prevention and ongoing
monitoring tools for disease management based on collection of disease occurrence records.

Using maximum entropy modeling (Maxent), the prediction of species’ geographic
distributions has been successfully carried out with occurrence data from museums and
herbariums [17]. Maxent has been used to define species’” geographic distributions by
determining the environmental requirements within the limits of those environmental
variables [15]. Maxent is categorized as a machine learning method, builds multiple
models iteratively, and works with presence-only species data and presence-absence species
data [14,16]. This technique has been used in several fungal studies to predict potential
geographic distribution for conservation management of medically important fungi such
as Aureoboletus projectellus, Ganoderma lucidum, and Sanghuang (Phellinus baumii, P. igniarius,
P. vaninii species) [18-20]. In addition, studies conducted with Austropuccina psidii examined
fungal and susceptible/resistant myrtle hosts under climate change conditions as a strategy
for plant host conservation and disease management [21]. Maximum entropy modeling
can also be applied to plant disease management and habitat suitability with the fungal
pathogen, S. sclerotiorum, using presence-only data from herbarium and culture collections.
This study will use Maxent modeling to predict geographic distributions based on climate
variables, determine the climate niche of the fungus, and assess worldwide geographic
areas suitable for the growth of the fungal pathogen, S. sclerotiorum. Once determined, the
climate niche of S. sclerotiorum can be compared with the climate niches of current and
potential biological control organisms [22].

2. Materials and Methods
2.1. Species Occurrence Data

The Mycological Portal to fungal herbarium and culture collections (http:/ /mycoportal.
org/portal/index.php, accessed on 25 August 2021) provided geographic distribution data
for S. sclerotiorum, for Maxent bioclimatic modeling studies (Table S1, Mycological Portal,
67 records, 17 countries). A world validation dataset was generated separately from the
Global Biodiversity Information Facility (GBIF.org (11 May 2021) GBIF Occurrence Down-
load https://doi.org/10.15468/dl.5euyph) and the scientific literature [23] without the
occurrence data points used in the initial Maxent model analysis (Table 52, GBIF, 85 records,
13 countries). A spreadsheet file for S. sclerotinia was created in Microsoft Office Excel
365 containing columns of distribution data with the fungal species name, latitude, lon-
gitude, and locality names and then exported to a CSV text file. The text file was added
as a layer to ArcGIS Desktop ver. 10.8.1 geographic information system software (ESRI,
Redlands, CA, USA) containing world map layer from GADM ver. 3.4 April 2018 (https:
//gadm.org/, accessed on 10 December 2021). For example, location coordinates were
adjusted if the data specified a land area but appeared as an ocean location instead.
The clustering of occurrence points leading to spatial bias was removed through spa-
tial thinning using the Wallace module in R [24]. The initial dataset (Table S1) containing
67 occurrences was reduced to 45 by removing those points within 100 km of each other
(Table S3) (Figure 1).
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Figure 1. Spatially Thinned Occurrence Data of the Plant Pathogen, Sclerotinia sclerotiorum, used in
Maxent Analysis. Red dots represent the worldwide occurrence locations of the plant pathogen.

2.2. Taxonomy and Life Cycle of Sclerotinia sclerotiorum

S. sclerotiorum taxonomy follows the classification of kingdom Fungi, phylum As-
comycota, class Leotiomycetes, order Helotiales, family Sclerotiniaceae, genus Sclerotinia,
and species sclerotiorum [25]. During the life cycle of the fungus, S. sclerotiorum produces
survival sclerotia structures which can either germinate myceliogenically in the presence
of nutrients or germinate carpogenically after environmental conditioning [2,4,26]. Plant
infection can occur by myceliogenic germination from sclerotia in soil or by ascospores
released from apothecia developed from the carpogenic germination of sclerotia [2,26].
Apothecia release ascospores which are carried by wind currents and land on nearby
susceptible plant hosts [4]. Ascospores require water to germinate and nutrients to infect
healthy plant tissue [12,27]. Sclerotia are known to survive for up to 8 years in soil [11,13].

2.3. Climate Data and Environmental Variables

The average of nineteen bioclimatic environmental variables for the years 1970-2000,
version 2.1, and at the 2.5 min level were downloaded from the World Climate Organization
(https:/ /www.worldclim.org/data/worldclim21.html, accessed on 10 April 2020) and are
listed in Table 1.

Table 1. Percentage contribution and permutation importance of bioclimatic variables used in
maximum entropy analysis (Maxent) for S. sclerotiorum random seed model 7.

Percentage Permutation

.. . . . .
Bioclimatic Variable Unit Contribution Importance

BIO1 = Annual Mean
OC - -
Temperature
BIO2 = Mean Diurnal
Range (Mean of monthly °C
(max temp — min temp))
BIO3 = Isothermality
(BIO2/BIO7?) (* 100) -
BIO4 = Temperature
Seasonality (standard CofV 0.5 6.4
deviation * 100)

8.5 11.9
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Table 1. Cont.

Biodli . ) . . Percentage Permutation
ioclimatic Variable Unit Contribution Importance
BIO5 = Max Temperature °
of Warmest Month ¢ 26 29
BIO6 = Min Temperature o
of Coldest Month ¢ 0.4 0.0
BIO7 = Temperature oC
Annual Range (BIO5-BIO6) - -
BIO8 = Mean Temperature oC
of Wettest Quarter - -
BIO9 = Mean Temperature °oC
of Driest Quarter — —
BIO10 = Mean Temperature oC
of Warmest Quarter - —
BIO11 = Mean
Temperature of Coldest °C 31.1 55.6
Quarter
BIO12 = Annual mm 14.2 14.1
Precipitation
BIO13 = Precipitation of mm
Wettest Month - -
BIO14 = Precipitation of
Driest MI:)nth mm 115 16
BIO15 = Precipitation
Seasonality (Coefficient of CofV 7.0 0.3
Variation)
BIO16 = Precipitation of
Wettest Quarter mm - -
BIO17 = Precipitation of mm
Driest Quarter - -
BIO18 = Precipitation of mm
Warmest Quarter - -
BIO19 = Precipitation of mm 4.2 71

Coldest Quarter

* The highlighted variables were selected with the ArcGIS Desktop ver. 10.8.1 band collection statistics using
cross-correlation for modeling with Maxent 3.4.1 software. The percentage contribution and permutation impor-
tance of bioclimatic variables was generated by the jackknife analysis in Maxent software from the final random
seed model 7 for S. sclerotiorum.

Data from nineteen variables listed in Table 1 were downloaded from the WorldClim
website, extracted as Geotiff files, imported into ArcGIS Desktop ver. 10.8.1 (https:/ /www.
esri.com/, accessed on 12 December 2018), and converted to ASCII format (asc) using the
conversion tool in the ArcToolbox 10.8.1. A cross-correlation between bioclimatic variables
was conducted with the band collection statistics tool in the ArcToolbox and bioclimatic
variables containing related data were removed before conducting the Maxent analysis
(Table S4). Nineteen variables were reduced to nine variables (Table 1). Before selecting
the bioclimatic variables, all variables were included in a Maxent baseline model run to
determine the initial contribution percentage of each variable. If a correlation between two
variables was greater than 0.8, the most relevant variable based on contribution to the model
is retained and the other variable is removed from consideration. The remaining variables
were included if the percentage of contribution was greater than 1.0 (Table 54) [28,29].
The selected nine variables highlighted in Table 1 were then included in the final random
seed Maxent model run to identify the top two bioclimatic variables for the climate niche
evaluation (Figure 2).


https://www.esri.com/
https://www.esri.com/

J. Fungi 2023, 9, 892

50f15

Figure 2. Final Maxent Model 7 of plant pathogen, Sclerotinia sclerotiorum. White symbols are training
locations and purple symbols are test locations. Red indicates a high probability of suitable conditions
for occurrence, green indicates typical conditions for occurrence, and lighter shades of blue indicate
low predicted probability of suitable conditions on the color legend in the upper left of the figure.

2.4. Maxent Model Considerations

Maxent ver. 3.4.1 modeling software [15,16] was downloaded from the web at
https:/ /biodiversityinformatics.amnh.org/open_source/maxent/ (accessed on 12 Decem-
ber 2018) and installed under the Windows 10 operating system. The software requires
the import of data occurrence files containing geographic coordinates and bioclimatic vari-
ables before conducting the modeling analysis [14-16]. The file format included three data
columns (the scientific name, the digital longitude, and the latitude coordinates) and was
saved as a CSV text file. Once the occurrence files were created, the files were imported into
the Maxent software. The bioclimatic variables converted previously in ArcGIS Desktop
ver. 10.8.1 from GeoTiff format to ASCII (asc) format were also imported into Maxent.
Model parameters included presence data, random 25% training data, () regularization
of 1, the maximum number of background points of 10,000, auto features, and logistic
output with and without the jackknife process. The default for background points was
selected based on matching the geographic extent and inclusion of diverse habitat areas
for the presence-only Maxent model [30,31]. The use of a small spatially thinned sam-
ple size with large geographic extent is well handled by Maxent [32]. Maxent software
also outputs graphic models, graphs, and spreadsheet tables of occurrence predictions
(Figure S1). The impact of bioclimatic variables on fungal occurrences can be further evalu-
ated by examining the data from the jackknife process. The jackknife process reports on
the % of contribution and permutation importance each bioclimatic variable has on the
model (Figure S2). Prediction measurements for models are based on the area under the
receiver operating characteristic curve (AUC) on a graph. An AUC value of 0 indicates that
0% of occurrences were predicted correctly and an AUC value of 1 indicates that 100% of
the predictions were correct. To select the best Maxent model for S. sclerotiorum, the same
fungal occurrence data and 9 bioclimatic variables were again run using the random seed
and the same selected parameters as before, thereby generating 10 random models. The
best model for S. sclerotiorum was then selected based on the AUC difference value with
the minimum difference from the AUC training—AUC test results [33]. The AUC measure
was used instead of an alternative such as TSS (True Skill Statistic, sensitivity+specificity-
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1) [34] which is based on specificity (proportion of absences correctly predicted). In a
presence-only Maxent model, the background points are not equivalent to absences [31].

Additional parameters for optimizing the Maxent model include the regularization
multiplier () and the feature combination which may affect the predictive performance of
Maxent modeling. Optimizing these parameters may reduce the overfitting of the output
and lead to better results when applying the model’s use to novel environments [30]. The
(B) multiplier tends to affect the focus of the output. For example, a smaller (3) will fit
the occurrence data more closely, leading to overfitting. The larger (3) will produce a
prediction that can be used in a wider area. In this case, to select the best fit, (3) = 1 was
used to apply to the entire world landscape. The other parameter to consider is the feature
combination derived from the climate bio-variables. These features are linear (L), quadratic
(Q), product (P), threshold (T), and hinge (H). The number of datapoint occurrences dictates
the feature combinations to use in the model. For example, linear features are always used
in the model, quadratic features are used when the number of occurrences is more than 10,
hinge features are used with more than 15, and threshold and product features are used
when the occurrences are more than 80 [30]. The feature type used in this study was HLQ
(hinge, linear, quadratic).

2.5. Variable Selection and Climate Niche

Selection of bioclimatic variables for the final model random seed model climate niche
is based on the percentage of contribution and permutation importance (Table 1) using the
jackknife analysis procedure in the Maxent software. Philipps [35] describes the percentage
of contribution as a way to keep track of which environmental variables contribute to the
fitting of the model. Each step of the Maxent algorithm increases the gain of the model by
modifying the coefficient for a single feature and the program assigns the increase in the
gain to the environmental variable that the feature depends on. This value depends on the
particular Maxent codes used to obtain the optimal solution and a different algorithm could
obtain the same solution via a different path resulting in a different percent contribution.
Also, if any correlated environmental variables are used, the value of the percent contri-
bution would change. Percent contribution should be viewed with caution. Therefore,
the second selection feature, permutation importance, depends only on the final Maxent
model, not the path used to obtain it. The contribution for each variable is determined by
randomly permuting the values of the variable among the training points (both presence
and background) and measuring the resulting decrease in training AUC. A large decrease
indicates that the model depends heavily on that variable. Values are normalized to give
percentages. The jackknife analysis selected the environmental variable with the highest
gain used in isolation as BIO11 (mean temperature of the coldest quarter). Also, BIO11
appears to have the most useful information by itself. The environmental variable that
decreases the test gain the most when it is omitted is BIO12 (annual precipitation) which
therefore appears to have the most information that is not present in the other variables
(Figure S2).

The climate niche for S. sclerotiorum, the fungal plant pathogen, was determined by se-
lecting the bioclimatic variables (BIO11, BIO12) for the final random seed
model 7 (Table 2) as described above and then extracting the values from the Maxent
model as an asc file using the ArcToolbox to generate xy coordinates [20]. The BIO11 (mean
temperature of coldest quarter) contributed 31.1% and 55.6% importance to the model.
BIO12 (annual precipitation) contributed 14.2% and 14.1% importance to the model. BIO12
(annual precipitation) was selected over BIO19 (precipitation of coldest quarter) based
on the performance in the jackknife analysis as BIO12 decreases the test gain the most
when omitted and appears have the most information that is not present in other variables
(Figure S2). The Maxent model for the climate niche (Figure 3) was further analyzed
by a scatterplot using Sigmaplot ver. 12.5 (https://systatsoftware.com/, accessed on 12
December 2018).
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Table 2. Maxent analysis with nine bioclimatic variables using the Maxent random seed procedure *.

. . . . AUC
Species Training # Test # AUC Training AUC Test Difference AUC Average
Fungal pathogen
S. sclerotiorum

Non-Random Model 34 11 0.936 0.903 0.033 0.920
Random Model 0 40 5 0.934 0.917 0.017 0.926
Random Model 1 40 5 0.937 0.875 0.062 0.906
Random Model 2 40 5 0.935 0.879 0.056 0.907
Random Model 3 40 5 0.930 0.970 —0.04 0.950
Random Model 4 40 5 0.929 0.955 —0.02 0.942
Random Model 5 41 4 0.929 0.941 —0.012 0.935
Random Model 6 41 4 0.937 0.861 0.076 0.900
Random Model 7 41 4 0.931 0.939 —0.008 0.935
Random Model 8 41 4 0.941 0.831 0.110 0.886
Random Model 9 41 4 0.936 0.842 0.094 0.889

* AUC = is a measure of model prediction accuracy based on the area underneath a curve. A model with AUC =0
demonstrates 0% correct prediction whereas a model with AUC = 1 would have 100% correct prediction. The
number of occurrences (#) used in the Training and Test groups.

3000
E 2500 - .
E
S 2000 -
5 . ¢
s 1500 - . ° *
] *.
= % & 3o
& 1000 - LI L A
g LY o e °
c ¢ o %
@ 0 .= *= ¢ ‘e o
0 T T T T
-20 10 0 10 20 30

Mean Temperature of Coldest Quarter (°C)

Figure 3. Climate niche of the plant pathogen, S. sclerotiorum, based on annual precipitation vs. mean
temperature of the coldest quarter. Black dots represent annual precipitation and mean tempera-
ture of coldest quarter from Worldclim weather data (https:/ /www.worldclim.org, accessed on 12
December 2018).

2.6. Model Evaluation and Selection

Ten S. sclerotiorum models were generated from the random selection feature of Maxent
with 9 climate biovariables. These biovariables included BIO3 (isothermality), BIO4 (tem-
perature seasonality), BIO5 (maximum temperature of warmest month), BIO6 (minimum
temperature of coldest month), BIO11 (mean temperature of coldest quarter), BIO12 (annual
precipitation), BIO14 (precipitation of driest month), BIO15 (precipitation seasonality), and
BIO19 (precipitation of coldest quarter). The final model selection was based on the least
difference between the AUC (area under the curve) training and AUC test values. The
AUC values from the test dataset are considered more representative of the actual model
than the training dataset. The AUC difference method was selected to minimize the risk of
overfitting the model based only on the training dataset [33]. In addition, the Maxent mod-
eling software evaluates the accuracy of the predictions by comparing the fractional value
versus the cumulative threshold. For example, the omissions of training and test samples
are compared to the predicted omission rate when using a particular model. The Maxent
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software also generates a sensitivity (1-omission rate) versus specificity (1-specificity or
fractional predicted area) graph of training and test data for an individual model and then
compares the results to the expected random prediction of AUC = 0.5 (Figure S1). The
importance of the bioclimatic variables on the model is also considered using the jackknife
analysis available in the Maxent software. The jackknife analysis evaluates the training gain,
test gain, and AUC values without a bioclimatic variable, with one bioclimatic variable,
and with all bioclimatic variables (Figure S2).

2.7. Fungal Species Habitat Suitability

The S. sclerotiorum model generated from the random seed model predictions (asc
files) was added as a raster data layer overlaid onto a world map layer from GADM
(https://gadm.org/, accessed on 10 December 2021) in ArcGIS Desktop ver. 10.8.1. The
coordinate system of the map was defined as WGS 1984. The map was then reprojected to
WGS 1984 Equal Earth Greenwich prior to the habitat suitability study. The reclassify tool
in the spatial analyst extension of the ArcGIS Desktop toolbox was used to classify the areas
into equal intervals, update the range of values in the attribute table, and label the types of
habitat suitability areas [36]. The ranges of habitat suitability included low suitability areas
(0-0.2), moderate suitability areas (>0.2-0.4), high suitability areas (>0.4-0.6), and very
high suitability areas (>0.6-1.0). An additional worldwide dataset was created from the
Global Biodiversity Information Facility (Copenhagen, Denmark, https://www.gbif.org/,
accessed on 10 December 2021) without locations from the spatially thinned Sclerotinia
Maxent analysis in EXCEL to test the consistency and validity of the model. The dataset was
added as a layer to the habitat suitability map. Habitat suitability areas were determined
for each data point. Occurrence numbers for each suitability area were selected as an
attribute search in ArcGIS desktop 10.8.1 for both the Maxent model dataset and the
validation dataset (Table 3). A statistical comparison of differences between the Maxent
model dataset and the validation dataset was carried out with SigmaPlot 12.5 software
(https:/ /systatsoftware.com/, accessed on 10 December 2021) using the comparison of the
proportions of two populations (primary Maxent model and valid occurrence datasets)
using the Z-Score at the p = 0.05 level to determine if the populations are equal or different
for the four suitability areas.

Table 3. Habitat suitability area preference as determined by the S. sclerotiorum Maxent model.

Number of Occurrences

itabili
CS ultabl. lty* Maxent Model Validation Z-Score ** p Value **
ategories
Dataset Dataset
Low Suitability 3 12 —0.624 0.533
Moderate
Suitability 9 14 —0.342 0.732
High Suitability 13 34 —0.369 0.712
Very High
Suitability 20 25 0.731 0.465

* Original dataset of 45 total occurrences used for Maxent model. The validation dataset contained 85 occurrences
to test for consistency of the Sclerotinia model. Suitability areas are classified as low suitability (0-0.2), moderate
suitability (>0.2-0.4), high suitability (>0.4-0.6), and very high suitability (>0.6-1.0) as described in Section 2.7.
** Both datasets were determined not to be significantly different from each other by the Z-Score for two population
proportion distributions with the p-value at the 0.05 level.

3. Results
3.1. Sclerotinia Model Prediction

Random model 7 (Figure 2) was selected for further analysis of accuracy, sensitivity,
and specificity as shown (Figure S1). Training and test samples were compared to predicted
omission and results favored the slope of predicted omission (Figure S1). Sensitivity vs.
specificity of training (AUC = 0.931) and test data (AUC = 0.939) were also examined
and were significantly higher than the random prediction of AUC = 0.5 (Figure S1). A
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comparison of the environmental variables” impact on the model was measured by the
Maxent jackknife analysis (Figure S2). Bioclimatic variable BIO11 had the highest gain and
most impact on the training and test datasets. Bioclimatic variable BIO6 had the second
highest impact on the training dataset, while bioclimatic variable BIO12 had the second
highest impact on the test dataset. Bioclimatic variable BIO12 was considered important as
it contained the most information that was not present in other variables for the training
dataset. Similar results occurred with the test dataset (Figure S2). Comparison of AUC
ratings under jackknife analysis were not as clear-cut, possibly due to combining training
and test datasets. Based on contribution and importance, bioclimatic variables BIO11 and
BIO12 were considered a good fit for the model and also contained the most information
that was missing from the other climate variables.

The AUC or area under the curve (Table 2) is used as a measure of the accuracy of
each Maxent model. The initial model results based on 45 occurrences with 34 in the
training dataset and 11 in the test dataset generated an average AUC of 0.920. This is
considered a very reliable model prediction. The final Maxent model was generated by
the random seed feature of Maxent by randomly producing 10 potential models using the
initial model bioclimatic variables and parameters. In Table 2, the final random model 7 for
S. sclerotiorum was selected based on the AUC difference of —0.008. Figure 2 represents the
Maxent analysis illustrating the training and test data points of the final Maxent model 7 of
S. sclerotiorum.

3.2. Climate Responses and Climate Niches

Based on the Maxent random seed models (Table 1), the two highest contributing vari-
ables included BIO11 (mean temperature of the coldest quarter) at
percentage = 31.1% and permutation importance = 55.6%) and BIO12 (the annual pre-
cipitation) at percentage = 14.2% and permutation importance = 14.1% for the S. sclerotinia
random seed model. The climate niche for S. sclerotiorum was further defined by extracting
the bioclimatic data from each of the two highest contributing variables, thereby gener-
ating xy coordinates for the scatter plot. Based on the scatterplot, the climate niche for S.
sclerotiorum was defined by annual precipitation vs. the mean temperature of the coldest
quarter (Figure 3). Results for S. sclerotiorum using the mean temperature of the coldest
quarter (BIO11) were in the range of —16 °C to 24 °C with annual precipitation (BIO12)
from 450 mm to 2500 mm (Figure 3).

3.3. Geographic Habitat Suitability and Model Validation

S. sclerotiorum habitat suitability areas are defined as low suitability areas (0-0.2),
moderate suitability areas (>0.2-0.4), high suitability areas (>0.4-0.6), and very high suit-
ability areas (>0.6-1.0) (Figure 4). S. sclerotiorum occurrences (Table 3) were overlaid onto
the final Maxent suitability model in ArcGIS desktop 10.8.1 to evaluate the number of
occurrences in each suitability area. The habitat suitability regions in the Maxent model
dataset included 3 occurrences in the low suitability area, 5 occurrences in the moderate
area, 16 occurrences in the high area, and 20 occurrences in the very high area. Of the total
number of 45 occurrences, the majority of occurrences (93.3%) were classified in moder-
ate to very high suitability areas. The validation dataset contained 85 occurrences with
12 in the low suitability area, 14 in the moderate suitability area, 34 in the high suitability
area, and 25 in the very high suitability area. The majority of the occurrences (85.9%) in
the validation dataset covered the moderate to very high suitability areas (Figure 5). A
comparison of the two datasets by suitability categories was analyzed by a Z-Score test
of two population proportions at the 0.05 probability level. The Z-Score test indicated no
significant differences between the primary (Maxent model dataset) and the validation
dataset at p = 0.05 for all four suitability areas. Under this statistical test, the two datasets
are similar, suggesting that the distribution, habitat suitability areas, and the Maxent model
are representative of the climatic niche for S. sclerotiorum world distribution.
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Figure 4. S. sclerotiorum habitat suitability map reclassified from Final Maxent Model 7. Blue
color represents low suitability areas (0-0.2), turquoise color represents moderate habitat suitability
(>0.2-0.4), tan color represents high habitat suitability (>0.4-0.6), and red color indicates very high
habitat suitability (>0.6-1.0). The map shows the results of the Maxent model, but other environmental
factors could alter the presence of S. sclerotiorum.
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Figure 5. Comparison of the number of occurrences between the primary (Maxent model dataset)
and the validation model dataset based on suitability region areas. Suitability areas include 1 = low
suitability, 2 = moderate suitability, 3 = high suitability, and 4 = very high suitability.

4. Discussion

Pearman et al. [37] describe the species niche as the requirements of a species to main-
tain a positive population growth rate. Earlier work by Hutchinson [38—40] defined two
types of species niches such as a fundamental niche and a realized niche. The fundamental
niche focuses on the requirements of a species necessary for positive population growth
rates but disregards biotic interactions. The realized niche is the part of the fundamen-
tal niche with a positive growth rate, given the constraining effects of competition from
biological interactions. Species” growth rates can also be affected by environmental and
climate interactions. Pearman et al. defines the environmental niche as all environmental
conditions that meet the physiological requirements of a species necessary for positive
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population growth rates [37]. The climatic niche refers to an aspect of the environmental
niche that is defined by limits in climate variation. Outside of this niche, a population
cannot maintain a positive rate of growth during extreme winter or summer temperatures,
excess precipitation, and drought. This study is focused on identifying a climate niche
for the plant pathogen, S. sclerotiorum, using maximum entropy modeling. The results
of this study have established a baseline climate niche for S. sclerotiorum. This climate
niche ranges in mean temperature for the coldest quarter from —16 °C to 24 °C and annual
precipitation from 45 mm to 2500 mm. The climate niche model predicts the geographic
areas of suitability (moderate to very high) for S. sclerotiorum to include most of the USA,
parts of Canada, Brazil, Uruguay, Argentina, Chile, the majority of European countries,
parts of India, China, all of Japan, parts of Australia, and all of New Zealand.

Previous laboratory temperature and moisture studies limited testing conditions when
examining results for sclerotial germination, so direct comparisons to this study are not
appropriate, although comparison between laboratory and field studies has shown a close
relationship [26]. However, laboratory studies with limited conditions do confirm sclerotia
germination with temperatures of 10 °C and 15 °C. For example, Huang and Kozub’s
study [41] confirm that the carpogenic germination of sclerotia of S. sclerotiorum is regulated
by temperature and not by the geographic origin of the isolate. Fungal isolates from various
geographic areas in the world were grown on potato dextrose agar in the laboratory at
10 °C and 25 °C. The sclerotia were harvested and placed on moist sand at 20 °C under
light for 3 weeks to induce apothecia. Isolates from cool climates such as Hokkaido, Japan;
North Dakota, USA; Alberta, Saskatchewan; and Manitoba, Canada, produced at 10 °C
easily germinated but cultures from warm climates such as Taiwan, California, Florida, and
Hawaii failed to germinate. Warm climate isolates required an additional four weeks of
10 °C conditioning under moist conditions to promote germination. In addition, the plant
host origin had no bearing on the germination response as isolates were derived from a
range of plant hosts. Hao et al. [42] further defined temperature and moisture conditions
for the carpogenic germination of S. sclerotiorum based on conditioning sclerotia in the soil
as 15 °C and —0.03 or —0.07 MPa. Mycelial gemination rarely occurred under experimental
conditions. Soil type did not affect myceliogenic or carpogenic germination of sclerotia.
Apothecia production factors of light, temperature, and moisture were further defined
by Sun and Yang [43]. At low light intensity (80 to 90 mol m~2 s~!), optimal tempera-
tures ranged from 12 °C to 18 °C irrespective of soil moisture. With high light intensity
(120-130 mol m~2 s~ 1), the optimal temperature was 20 °C with high soil moisture. Apothe-
cial initials were slow to develop and appeared thin under the low light intensity. Light
intensity and soil types were not included in this study. Further studies using maximum
entropy modeling would be needed to refine the climate niche to include apothecia pro-
duction and ascospore release, differences between cultures from temperate and warm
climates, and niche changes under climate stress.

Examination of past field studies has confirmed the climate niche results of this study.
Schwartz and Steadman [44] investigated the population dynamics of the fungus under
field conditions. Results indicated that when low numbers of sclerotia were present fol-
lowed by irrigation conditions, sclerotia gave rise to apothecia with repeated cycles of
high numbers of ascospores. Weiss et al. [45] conducted temperature/moisture studies
in a growth chamber and monitored temperature and moisture from irrigation in field
studies after inoculation. In growth chamber studies, disease developed between 10 °C and
25 °C with 100% humidity. The disease did not develop at 30 °C. Field trials conducted
in Western Nebraska compared two irrigation conditions (normal = 5.5 cm of water per
10 days and heavy irrigation = 5.5 cm of water every 5 days). Air temperatures ranged from
10 °C to 30 °C. Results of the field experiments indicated that only 3% of the plants were
diseased in the normal irrigation treatment compared to 40% of the plants in the heavy
irrigation treatment. Authors suggest that the duration of leaf moisture, not air tempera-
ture, limited the disease development. Vegetable field trials conducted by Moore [46] in
south Florida also came to similar conclusions. Many of the conditions described by these
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authors that impact disease severity are not covered in the present model. Sclerotinia disease
conditions for temperature and moisture were monitored for over 10 years (1944-1954) [46].
Mean temperatures, rainfall amounts, and days of rain were recorded at two different
location sites, Homestead and Pompano Beach, during the winter months of December,
January, and February. Disease severity was rated light or moderate to severe. Average
temperatures for Homestead were recorded from 19.1 °C to 21.8 °C (light disease) and
17.2 °C to 21.8 °C (moderate to severe disease) and average temperatures for Pompano
Beach were recorded as 19.3 °C-21.8 °C (moderate to severe disease). Temperatures
recorded at both locations were not considered a factor in the disease progression. Av-
erage rainfall and number of rain days for Homestead (light disease = average rainfall
20.8 mm-32 mm, 4.2 days—7.7 days; moderate to severe disease = average rainfall for
35.6 mm-45.4 mm, 5.1 days—6.5 days) as well as for Pompano Beach (light disease = average
rainfall 22.4 mm-58.4 mm, 3.0 days-5.8 days; moderate to severe disease = average rainfall
44.5 mm- 69.9 mm, 5.8 days—6.0 days) had the most impact on disease progress. The severity
of the disease was most affected by the amount of rain available during the winter months.
These specific conclusions will vary depending on the growing season in a particular
cropping location. Disease incited by S. sclerotiorum was most severe at the Homestead
location and the author attributed that result to the fact that this location had a marl soil
type that holds moisture whereas the Pompano Beach location had a sandy soil type with
better drainage.

In this study, climate responses of temperature and moisture were modeled from S.
sclerotiorum geographic occurrences and thereby predicted potential fungal coverage world-
wide. Based on this method, the results allowed for the development of a climate niche for
the fungus related to the precipitation of the driest month vs. the mean temperature of the
coldest quarter. The mean temperature ranged from —16 °C to 24 °C and annual precipita-
tion from 45 mm to 2500 mm. In summary, the fungus is quite tolerant of low temperatures
but not high temperatures and prefers moisture but tolerates dry conditions. These results
confirm studies discussed earlier in the symposium paper on S. sclerotiorum [27]. In the
future, further research studies for this project should include determining the climate
niche for sclerotia and apothecia, using samples identified to the species level by genomic
analysis, life stage analysis using transcriptomic and metabolomic datasets, sample size
effects, moisture with soil effects on climate, and estimating geographic extent. Additional
worldwide studies with fungal pathogens, saprophytes, and mycorrhizae [47-49] suggest
that climate is also a driving force for the prediction of the growth and distribution of
fungi. Vetrovsky et al. [49] completed a meta-analysis of fungal studies and determined
that fungal plant pathogens have a broader climate niche than other fungal groups. Also,
climate (temperature and precipitation) contributed a larger impact on plant pathogen
distribution than soil and vegetation [49].

Using maximum entropy and habitat suitability methods, it is possible to develop a
worldwide geographic bioclimatic model for S. sclerotiorum. Potential biological control
organism models could be screened for similarities to the pathogen model [22]. Matching
the pathogen and biological control organism based on the closest climate niche fit might
lead to a better selection protocol for disease control. In addition, examining the climate
niche under climate stresses will offer a better perspective of the climate impacts on the
pathogenicity of the pathogen [50,51] as well as the potential effectiveness of biological
control agents. Also, examining environmental conditions geographically has been effective
at predicting new locations suitable for invasive plant diseases [52] and potential areas
suitable for endangered species [53,54]. As with all modeling projects, there are some
caveats to be considered. For monitoring projects, the geographic extent is important
in order to cover multiple habitat and topography changes. Small-scale and large-scale
projects may miss changes in geography. A survey of the geography prior to starting the
project is worthwhile in order to determine the geographic extent of the model. Fungal
identification is important for samples that are used in the modeling project. Fungal
databases should not only include correct geographic coordinates but also precise species
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identification by morphology and molecular means [55]. Improved identification of samples
will ensure more uniformity of samples and indicate new genetic strains that may perform
differently in the environment. In addition, models need to be validated by compiling and
running a separate independent sample data set [56].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jof9090892/s1. Table S1: S. sclerotiorum occurrence dataset. Table
S2: S. sclerotiorum world validation occurrence dataset. Table S3: S. sclerotiorum spatially thinned
dataset for Maxent analysis. Table S4: S. sclerotiorum bioclimatic variables cross-correlation matrix
table. Figure S1: Maxent random model 7: prediction accuracy, sensitivity, and specificity. Figure S2.
Maxent jackknife analysis of environmental variables.
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