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Abstract
Summary: Bacterial Healthcare-Associated Infections (HAIs) are a major threat worldwide, which can be counteracted by establishing effective
infection control measures, guided by constant surveillance and timely epidemiological investigations. Genomics is crucial in modern epidemiology but
lacks standard methods and user-friendly software, accessible to users without a strong bioinformatics proficiency. To overcome these issues we
developed P-DOR, a novel tool for rapid bacterial outbreak characterization. P-DOR accepts genome assemblies as input, it automatically selects a
background of publicly available genomes using k-mer distances and adds it to the analysis dataset before inferring a Single-Nucleotide Polymorphism
(SNP)-based phylogeny. Epidemiological clusters are identified considering the phylogenetic tree topology and SNP distances. By analyzing the SNP-
distance distribution, the user can gauge the correct threshold. Patient metadata can be inputted as well, to provide a spatio-temporal representation
of the outbreak. The entire pipeline is fast and scalable and can be also run on low-end computers.

Availability and implementation: P-DOR is implemented in Python3 and R and can be installed using conda environments. It is available from
GitHub https://github.com/SteMIDIfactory/P-DOR under the GPL-3.0 license.

1 Introduction

Bacterial infections are a constant threat to public health
worldwide. When dealing with Healthcare-Associated
Infections (HAIs) and outbreaks, timely epidemiological in-
vestigation is pivotal to establish effective infection control
measures (Harris et al. 2013, Jiang et al. 2015, Raven et al.
2017, Balloux et al. 2018). Despite their wide use, conven-
tional molecular typing techniques, such as Pulsed Field Gel
Electrophoresis (PFGE) and Multi-Locus Sequence Typing
(MLST), have a lower discriminatory capability in compari-
son to the modern Whole Genome Sequencing (WGS)-based
typing, while maintaining similar costs and timescales.

Over the past few years, WGS-based typing has been in-
creasingly adopted, first for research purposes and then as a
routinary screening tool for infectious disease epidemiology in
hospitals and public health settings. This approach leverages
in silico techniques for isolates typing, antimicrobial profile

determination, and outbreak reconstruction (Harris et al.
2013, Jiang et al. 2015, Onori et al. 2015, Raven et al. 2017,
Balloux et al. 2018, Ferrari et al. 2019, Sherry et al. 2019).
Several computational methods to analyze such datasets have
been developed, which include database design (Zhou et al.
2020, Lam et al. 2021), epidemiological models via Bayesian
inference (Jombart et al. 2014, De Maio et al. 2016,
Campbell et al. 2018), network analysis (Worby et al. 2014,
2017), and phylogeny (Didelot et al. 2021).

Relationships among strains are mainly inferred using
Single-Nucleotide Polymorphisms (SNPs) or k-mers. When
reconstructing outbreaks, strains isolated from different sour-
ces (e.g. patients, fomites) and having SNP-distances below
specific thresholds can be considered part of the same trans-
mission cluster. The network of these genetically correlated
strains can be used to reconstruct the pathogen transmission
route. Although threshold-based methods are largely applied
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in genomic epidemiology (Dallman et al. 2015, Octavia et al.
2015, Hatherell et al. 2016, David et al. 2019), they lack stan-
dardization (Duval et al. 2023). Indeed, threshold values can
vary across bacterial species/clones because of their different
genomic architectures (e.g. mutation rate, recombination).
Also the duration of the epidemic event analyzed can influ-
ence the genetic variability in the bacterial population: a SNP-
distance threshold set to disentangle a short outbreak can be
inappropriate for a long-term genomic surveillance study
(Duval et al. 2023). Furthermore, SNP distances can be af-
fected (even by tenths or hundreds) by the SNP calling ap-
proach (e.g. mapping reads or aligning assembled contigs)
and by the reference genome and software used. Finally, the
sole use of genomic data without the inclusion of other infor-
mation like clinical metadata (e.g. sample date/type, hospitali-
zation ward) limits the comprehension of epidemic events
(Jombart et al. 2014, De Maio et al. 2016, Stimson et al.
2019, Didelot et al. 2021, Duval et al. 2023).

Most of the software available for WGS-based epidemio-
logical investigation is not user-friendly (De Maio et al. 2016,
Campbell et al. 2018, Zhou et al. 2020, Didelot et al. 2021),
not free (e.g. SeqSphereþ Ridom GmbH software), and/or
does not encompass all the analyses required for a compre-
hensive study (De Maio et al. 2016, Zhou et al. 2020, Didelot
et al. 2021). Most of the methods require the user to have a
computational background, as they are composed of multiple
command-line tasks that must be serially performed in succes-
sion, and often require format changes. This prevents most
clinicians from performing genomic investigations in first per-
son and limits their understanding of the results.
Consequently, it also hampers them from making epidemio-
logical conclusions in light of both clinical information and of
their past experience on the field, which in turn would enable
them to provide valuable feedback to developers. On the
other hand, online tools are available, which are accessible to
a wider usership, but lack the tunability that is required for
most epidemiological investigations (e.g. Trifinopoulos et al.
2016) and are restricted to single tasks (e.g. phylogeny).

To answer the need for a comprehensive, tunable, and user-
friendly tool, we developed P-DOR, a bioinformatic pipeline
for rapid WGS-based bacterial outbreak detection and char-
acterization. P-DOR integrates genomics and clinical meta-
data and uses a curated global genomic database to
contextualize the strains of interest within the appropriate
evolutionary frame. P-DOR is available at https://github.com/
SteMIDIfactory/P-DOR.

2 P-DOR workflow

The inputs for the core P-DOR analysis are: (i) a folder con-
taining the query genome assemblies; (ii) a reference genome
for SNP extraction; (iii) a sketch database file in the Mash for-
mat (Ondov et al. 2016); and (iv) a table containing the pa-
tient metadata (i.e. hospitalization ward, date of admission
and discharge). This last input is not mandatory, but when
provided, it will be integrated in the analysis to add further
clues on the epidemic event. The query genomes of the study
must be in FASTA format and can be complete or draft
assemblies.

Sketch files contain the genomic information of the strains
from a Source Dataset (SD) chosen by the user. A sketch file is
a vastly reduced representation of the genomes, which is pro-
duced via the MinHash algorithm to allow fast distance

estimation using low memory and storage requirements.
Regularly updated sketches for each of the ESKAPE members
(Enterococcus faecium, Staphylococcus aureus, Klebsiella
pneumoniae, Acinetobacter baumannii, Pseudomonas aerugi-
nosa, and Enterobacter spp.) are available in the P-DOR re-
pository. Personalized SD sketches can alternatively be
generated by the user using the “makepdordb.py” script. This
script can automatically download the high-quality genomes
of a species from the BV-BRC collection (Davis et al. 2020) or
build a custom SD sketch starting from any set of genomes.
The sketch files are used to compute the k-mer distances be-
tween each query genome and the SD genomes. Then, for
each query genome the n most similar SD genomes are se-
lected and joined in a Background Dataset (BD). Lastly, the
query genomes are joined with the BD to obtain the Analysis
Dataset (AD). Optionally, the entire AD can be scanned for
the presence of antimicrobial resistance and virulence genes
using AMRFinderPlus (Feldgarden et al. 2021).

After that, each genome of the resulting AD is aligned to
the reference genome using Nucmer, the alignment obtained
is polished using “Delta-Filter” and SNPs are called using
“show-snps”, all the commands being part of the Mummer4
package (Marçais et al. 2018). Lastly, the SNPs of all AD
genomes are combined into a coreSNPs alignment using a
Python script (Ferrari et al. 2019). Then, the coreSNPs align-
ment is used to infer a Maximum Likelihood (ML) phylogeny
(correcting for the SNP ascertainment bias) via the IQ-TREE
(Nguyen et al. 2015) software, which includes a prior step for
the selection of the substitution model.

To infer relationships among the strains, epidemiological
clusters are inferred on the basis of coreSNPs distances using
a threshold value. The user can manually set the SNP thresh-
old parameter according to previous studies in the literature,
or by visualizing the SNP pairwise distances distribution plot
provided among the outputs of P-DOR (Fig. 1A). The user
should analyze the results, possibly tweak the threshold pa-
rameter and run P-DOR again.

3 Output

The main outputs of P-DOR are: (i) a SNP-based phylogenetic
tree; (ii) a heatmap reporting the phylogenetic tree and pres-
ence/absence of resistance and virulence factors; (iii) a heat-
map showing the coreSNP distance matrix; (iv) the histogram
of the distribution of the SNP distances; and (v) a graph visu-
alization of the epidemiological clusters, in which each pair of
strains (nodes) is connected if the coreSNP distance between
them is below the threshold. The epidemiological clusters are
also highlighted on the phylogenetic tree. In addition, if
patients metadata are provided, P-DOR creates a spatio-
temporal representation of the outbreak and outputs a
patients timeline plot where strains are placed based on the
date of isolation and are connected on the basis of epidemic
clusters.

4 Performance test

To test P-DOR, we simulated the genomic sequences of 11
K.pneumoniae isolates, involved in a complex epidemic event,
with 2 distinct bacterial strains (both belonging to Sequence
Type 258) circulating in a hospital in the same period. In de-
tail, we obtained six simulated sequences starting from ge-
nome NJST258_1 and 5 sequences from genome NJST258_2
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Figure 1. The P-DOR outputs of the test analysis. (A) Phylogenetic tree of the Analysis Dataset (AD). The first column shows epidemiological clusters of

strains with SNP distances below the threshold set by the user. In addition, a heatmap representing the detection of resistance and virulence

determinants is shown next to the tree for a better representation of the epidemic event. (B) Distribution of SNP distances calculated between all

permutations of genome pairs in the AD. (C) Timeline depicting the movements of the patients during the hospitalization. Points indicate outbreak

genomes and are shaped according to the isolation source of the corresponding strain. Samples are linked if their genetic distance in terms of SNPs is

below the threshold.
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using the software simuG (Yue and Liti 2019). The genomes
were simulated in a hierarchical way: i.e. each generated ge-
nome differs one to five SNPs from the parent. The simulated
dataset was used as query to P-DOR. The SD was obtained
from BV-BRC on 16 April 2023 using the script make-
pdordb.py. The BD was built selecting the 20 closest SD
genomes for each query genome, as described above. After an-
alyzing the distribution of SNP distances, the threshold was
set at 21 SNPs (Fig. 1A). Finally, the complete genome of
strain HS11286 (NZ_CP029384.2) was used as a reference
for SNP calling. The phylogeny obtained correctly determined
the presence of two outbreaking strains (Fig. 1B). P-DOR di-
vided the simulated genomes into two monophyletic clusters
labeled C1 (green) and C4 (orange). Both clusters also include
a background genome (BV-BRC codes 1420013.3 and
1420012.3), which correspond to isolates NJST258_2 and
NJST258_1, i.e. the genomes used as starting points for the
generation of the simulated sequences. These results demon-
strate the capability of the P-DOR pipeline to select a back-
ground suitable for epidemiological investigations and to
identify outbreak clusters. They also show that P-DOR can
identify the putative source of each epidemic cluster, when it
is available in the SD. Supplementary Fig. S1 shows the SNP
distances among all genomes in analysis and further confirms
the results observed in the phylogeny (Fig. 1B). Furthermore,
the timeline (Fig. 1C) can be used to hypothesize the chain of
transmission based on the dates of isolation and the epidemio-
logic classification of the isolates.

The analysis was performed on a total of 50 genomes using
a maximum of 313 Mb of RAM. The entire process required
1 h and 37 min, using four threads at 2.3 Ghz, 29 min when
using 20 threads; these numbers drop respectively to 2.9 and
2.1 min when excluding the time-consuming AMRFinderPlus
step (default setting).

We separately tested the performance and accuracy of our
SNP-calling approach, which is based on the Mummer4 pack-
age (Marçais et al. 2018). We called point mutations using
our method, Parsnp (Treangen et al. 2014), and Snippy
(github.com/tseemann/snippy); we then inferred the phylog-
eny of the simulated dataset using all three alignments (IQ-
TREE; Nguyen et al. 2015). Using two threads, the P-DOR
built-in method yielded 8318 SNPs in 1.7 min, Parsnp yielded
10202 SNPs in 3.1 min, while Snippy took 31.2 min to output
9266 SNPs. We calculated the pairwise cophenetic correlation
value among the three phylogenetic trees using the R library
dendextend (Galili 2015). Phylogenies were highly concor-
dant (Parsnp versus P-DOR: 0.996; Snippy versus P-DOR:
0.996; Snippy versus Parsnp: 0.999) and the monophyly of
outbreak genomes was maintained among the three
approaches.

To test the pipeline performance on a large-scale dataset,
the P-DOR analysis on the simulated dataset was repeated us-
ing 1000 nearest genomes for each genome in the input folder.
The AD was composed of 1388 total genomes and the analy-
sis took 7 h and 50 min to complete, using a peak of 4.49 Gb
of RAM on 20 threads (avoiding the AMRFinderPlus step;
background genome download time excluded). These results
show that P-DOR is a fast tool, which can be used in clinical
contexts even when high informatic skills or resources are not
available. Future efforts will be focused on developing a web-
based interface, to further improve the ease of use and remov-
ing the need for computational resources.

Supplementary data

Supplementary data are available at Bioinformatics online.
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