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Abstract
The emergence and spread of antibiotic-resistant pathogenic bacteria have necessitated finding new control alternatives. 
Under these circumstances, lytic bacteriophages offer a viable and promising option. This review focuses on Vibrio-infecting 
bacteriophages and the characteristics that make them suitable for application in the food and aquaculture industries. Bacteria, 
particularly Vibrio spp., can produce biofilms under stress conditions. Therefore, this review summarizes several anti-biofilm 
mechanisms that phages have, such as stimulating the host bacteria to produce biofilm-degrading enzymes, utilizing tail 
depolymerases, and penetrating matured biofilms through water channels. Additionally, the advantages of bacteriophages 
over antibiotics, such as a lower probability of developing resistance and the ability to infect dormant cells, are discussed. 
Finally, this review presents future research prospects related to further utilization of phages in diverse fields.
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Introduction

Vibrio spp. are Gram-negative, rod-shaped bacteria found in 
brackish water environments, with their abundance increas-
ing as temperatures rise (Oliver et al., 2018). Vibrio chol-
erae serogroups O1 and O139 cause acute diarrheal disease 
cholera (CDC, 2022). Among non-cholera vibrios, Vibrio 
vulnificus and Vibrio parahaemolyticus are highly patho-
genic to humans, with the former having a higher mortality 
rate (Kim, 2020; Wang et al., 2015). People get infected 
by these pathogens through consumption of contaminated 
water/seafood or open wound exposure. By expressing 
multiple virulence factors, such as the MARTX toxin and 
phospholipase (Kim et al., 2017; Cho et al., 2022), these 
non-cholera vibrios often cause severe outcomes includ-
ing necrotizing fasciitis and septic death. In addition to 

human-infecting vibrios, there are other species of Vibrio 
(Vibrio harveyi, Vibrio anguillarum and Vibrio ordalii) that 
can infect marine life, causing a big loss in the aquaculture 
industry (Plaza et al., 2018).

Based on the Continuous Plankton Recorder survey con-
ducted in the North Atlantic Ocean from 1958 to 2011, it has 
been reported that the incidence of Vibrio spp. is rising due 
to the increase in sea surface temperature worldwide (Vez-
zulli et al., 2016). Especially in Korea, the rate of change 
of sea surface temperature has been reported to be higher 
than the global average, suggesting that the incidence of 
Vibrio-related diseases is increasing (Korea Meteorological 
Administration, 2020). In this country, about 10% of the 
food-borne outbreaks from 2007 to 2012 were attributed 
to V. parahaemolyticus, while the average incidence of V. 
vulnificus infection from 2003 to 2016 was 0.12 cases per 
100,000 people but with a case fatality rate as high as 48.9% 
(Kim et al., 2022; Moon et al., 2014).

Due to the misuse of antibiotics in veterinary medicine, 
the development of antibiotic-resistant Vibrio spp. is an 
alarming problem. A study conducted in the United States 
in 2006 revealed that V. vulnificus and V. parahaemolyticus 
are resistant to eight or more antibiotics commonly used to 
treat Vibrio infections, as well as ampicillin and chloram-
phenicol (Elmahdi et al., 2016). Meanwhile, Vibrio spp. is a 
major biofilm forming strain. Nevertheless, antibiotics have 
shown little effect in controlling biofilm. Bacteria in biofilm 
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can transfer resistance genes more easily than those present 
as plankton cells, increasing the risk of spreading antibiotic 
resistance. Therefore, new alternatives to target antibiotic-
resistant bacteria and/or biofilm need to be developed and 
deployed (Abe et al., 2020).

A promising solution to this problem is the use of bacte-
riophages. Bacteriophages are viruses that can only infect 
and replicate inside their host bacteria. Among these, Vibrio-
infecting phages are viruses that are ubiquitous in seawater 
and can only infect bacteria from the Vibrionaceae family, 
being important for the control of the population of Vibrio 
spp. and maintaining the health of the marine ecosystems. 
These phages have DNA or RNA as their genetic material, 
are mostly tailed or filamentous and the grand majority fol-
low a lytic infecting cycle. Lytic Vibrio-infecting phages are 
attracting attention as a potential treatment for vibriosis. In 
addition, they have been proposed as control agents to miti-
gate antibiotic-resistant and biofilm-forming bacteria, which 
are currently considered to be significant threats to the food 
industry (Bischoff et al., 2021).

This review focuses on the use of Vibrio-infecting phages 
as a potential alternative control agent for pathogens causing 
human infections and losses in aquaculture. Specifically, the 
current research status of Vibrio-infecting phages and their 
ability to control biofilms will be covered. In addition, the 
prospects and future opportunities for the use of bacterio-
phages as biocontrol agents are explored.

Bacteriophages

Phage life cycle

To infect the host bacteria, phages recognize bacterial sur-
face receptors via the receptor binding proteins (RBPs), 
which are usually located in the phage tail. After this tight 
adsorption, the phages inject their genome into the host cell. 
The subsequent infection strategy is determined by whether 
the phage follows a lytic (virulent) or lysogenic (temper-
ate) life cycle (Salmond and Fineran, 2015). If the phage 
is a virulent phage, it hijacks the bacterial gene expression 
machinery to support phage proliferation and assembly of 
new virions (Madigan et al., 2020). Consequently, the pro-
duction of phage enzymes, such as holins and endolysins, 
lyses the bacterial cell wall, allowing the release of new 
phage progeny and restarting the cycle (Liu et al., 2022b).

Temperate phages, on the other hand, do not replicate 
inside or kill the host bacteria. Rather, once inside the bacte-
ria, the phage genome is synchronized within the host chro-
mosome as a prophage. Under normal circumstances, the 
phage genome is kept silent; however, under certain stress 
conditions, such as exposure to antibiotics, the prophage 
undergoes an induction cycle that leads to excision of the 

phage genome and initiation of a lytic cycle (Salmond and 
Fineran, 2015).

Phages as biocontrol agents

Phages can be used to control pathogenic and multidrug 
resistant bacteria in a variety of applications, including the 
food industry. In the food industry, bacteriophages have 
several advantages over traditional chemical and physical 
disinfectants. These include effective elimination of target 
host bacteria, relatively low cost of discovery/production, 
and minimal impact over the sensory and quality characteris-
tics of the applied food (Moye et al., 2018; O'Sullivan et al., 
2019; Sillankorva et al., 2012). In general, in this industry, 
bacteriophages have been employed to prevent, control, 
sanitize and preserve food, by applying it on pre-harvested, 
post-harvested products, food contact surfaces and ready-to-
eat foods. With this, a significant reduction of Salmonella, 
Campylobacter, Escherichia coli, Listeria monocytogenes 
has been achieved (Endersen and Coffey, 2020).

Among the food industries, the aquaculture industry is 
gradually increasing in size and is considered to play an 
important role as a future food supplier. However, commer-
cial aquaculture has a high incidence of bacterial diseases, 
especially vibriosis, due to overfeeding, use of high tem-
peratures, lack of water renewal, and improper removal of 
injured or dead fish (Almeida et al., 2009). For these prob-
lems, phages are likely to be a key solution. In fact, Guenther 
et al. (2009) demonstrated that when phages were applied to 
food, there was a greater reduction in food-borne pathogens 
in the aquatic matrix than in the solid matrix. In addition, 
Culot et al. (2019) demonstrated that when phages were 
applied to water, the phages could easily and efficiently enter 
the body of fish through the gills, facilitating the spread of 
phages. A number of examples have verified the likelihood 
of phages to control pathogenic bacteria in aquaculture 
(Higuera et al., 2013; Karunasagar et al., 2007; Nakai and 
Park, 2002; Nakai et al., 1999; Park and Nakai, 2003; Park 
et al., 2000; Silva et al., 2014, 2016; Vinod et al., 2006), 
proving the efficacy of phages in the aquatic environment. 
Furthermore, due to their ubiquitous nature, the isolation 
of bacteriophages is more cost-effective than the develop-
ment of vaccines or antibiotics (Culot et al., 2019). These 
characteristics make bacteriophages, especially lytic phages, 
suitable for use as biocontrol agents in aquaculture.

Currently, there are several phage-related products 
that have been classified as Generally Recognized as Safe 
(GRAS) and are commercially available. These products can 
be used in food products to reduce contamination by some of 
the major pathogenic and antibiotic resistant bacteria, such 
as E. coli (Ecolicide PX™) (Vikram et al., 2021), Listeria 
(ListShield™) (Lang, 2006), and Salmonella (PhageGuard 
S™) (Parveen et al., 2017; Ye et al., 2022). Currently, there 
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are no commercially available phage products for the treat-
ment of pathogenic Vibrio spp. However, there are multiple 
ongoing efforts to characterize and evaluate the efficacy of 
novel bacteriophages that can infect Vibrio spp. in food and 
aquaculture products (Table 1), resulting in several Vibrio-
infecting products that are under development (Hodgson, 
2013; Letchumanan et al., 2016; Richards, 2014).

In the meantime, several studies have been conducted to 
confirm the safety of phage treatment. According to a review 
from 2008 to 2021 made by Yang et al. (2022b), the admin-
istration of phages (which have various bacteria as hosts, 
including V. parahaemolyticus) to animals and humans did 
not manifest any major adverse events. In 52 studies investi-
gating various routes of administration, adverse effects were 
reported in only 7% of the patients treated with phages, and 
these adverse effects were generally mild and resolvable 
(Uyttebroek et al., 2022). Based on these reports, the use of 
phages is considered safe; however, there is still a need to 
develop an appropriate standard for phage administration.

Biofilm and phages

Vibrio biofilms

Bacteria have developed several mechanisms to withstand 
external stress. One of these mechanisms is the formation of 
biofilms. Biofilms are a collection of bacterial communities 
embedded in a self-produced extracellular polymeric sub-
stance (EPS) composed of polysaccharides, proteins, lipids, 
and extracellular DNA that can adhere to surfaces. Cells 
within a biofilm are protected from various external stresses 
(e.g., dehydration, starvation, and predation), are tolerant 
to antimicrobial agents, and can readily adapt to different 
environments (Azeredo et al., 2021).

In the case of Vibrio spp., different loci (vps, wcr, syp and 
cps) control the production of different exopolysaccharides, 
and thus the production of the exopolysaccharide differs 
depending on the genes within a particular locus present in 
the bacteria (Yildiz and Visick, 2009). Notably, the expres-
sions of these Vibrio exopolysaccharide genes are controlled 
by quorum sensing, a bacterial communication system. 
Therefore, species specific quorum sensing system deter-
mine biofilm formation in Vibrio spp. (Yildiz and Visick, 
2009). The flagellum and pili also play an important role in 
Vibrio biofilm formation. Research has shown that when the 
bacterium loses the flagellar genes flaA, flrC, flgD or flgE, 
the attachment ability is significantly reduced and only a 
weak 3-dimensional biofilm is formed. A similar situation 
was also observed when the mutations occurred in the main 
pili (MSHA, ChiRP and PilD) (Yildiz and Visick, 2009).

Although there are not as many studies as with other 
bacterial strains, Vibrio infecting phages have been used 
to disrupt the biofilm structure. Yang et al. (2022b) used 
phage FE11 to control the biofilm produced by V. para-
haemolyticus. The results showed that the ability to disrupt 
the biofilm was directly related to the concentration of the 
phage, with the highest concentration used being the one 
that reduced the bacterial load the most. Matamp and Bhat 
(2020) achieved an 84% reduction of V. parahaemolyticus 
biofilm after 24 h of phage ϕVP-1 treatment. Furthermore, 
Tan et al. (2015) applied phage ΦH20 to V. anguillarum bio-
film, which resulted in a reduction of the total biofilm area 
from 41,000 μm2 per  mm2 filter to 5000 μm2 per  mm2 filter 
after 6 h of incubation. These are promising results sug-
gesting that phages have multiple mechanisms to overcome 
biofilm production by Vibrio spp.

Role of phages in control of biofilms

To overcome the EPS barrier, lytic phages have devel-
oped several attack strategies (Fig. 1). The first mechanism 
involves stimulating the host bacteria to produce EPS-
degrading enzymes after lytic infection. Once the EPS-
degrading enzymes break down the pieces of the biofilm, 
phages and phage progeny can easily penetrate deep and 
maintain the infection cycle (Amankwah et al., 2021). For 
example, Bacillus subtilis produces the hydrolase γ-PGA, 
which is encoded by the pghP gene of phage ΦNIT. This 
enzyme breaks down the capsular polysaccharide (poly-γ-
glutamate) into tri-, tetra-, and penta-γ-glutamate, facilitat-
ing phage movement even through thick biofilms (Geredew 
et al., 2019; Kimura and Itoh, 2003).

Another mechanism that phages can use to degrade the 
biofilm is to encode tail depolymerases that can digest 
the polysaccharides, lipids, and proteins that make up the 
EPS. Matamp and Bhat (2020) discovered that the Vibrio-
infecting phage ϕVP-1 can produce a tail tube protein that 
functions as a polysaccharide-hydrolyzing enzyme that aids 
in biofilm destruction. A study by Latka and Drulis-Kawa 
(2020) showed that the K. pneumoniae infecting phage KP34 
produces the depolymerase KP34p57 (homologous to a pec-
tin lyase), an enzyme with antibiofilm capacity, achieving a 
60% reduction in biofilm mass after 72 h of treatment with 
 109 PFU/ml. In addition, the bacteriophage JA1 that infects 
V. cholerae O139 produces a lyase capable of depolymeriz-
ing the capsular polysaccharide by β-elimination of a 4-sub-
stituted uronic acid residue (Linnerborg et al., 2001).

Although some phages do not encode EPS-degrading 
enzymes, they can diffuse through the water-accessible chan-
nels in biofilm and reach the bacterial cells. Water is the 
most abundant component in biofilms, making up to 97% of 
the volume in some cases. This property helps to transport 
nutrients throughout the matrix. Phages can diffuse through 



1722 A. Cevallos-Urena et al.

1 3

Table 1  List of recently reported Vibrio spp.-infecting bacteriophages (From 2020 to 2023)

Phage Family Genome size (kb) Host Efficacy test Reference

VVP001 Siphoviridae 76.42 V. vulnificus Abalones (Kim et al., 2021)
vB_VpaP_DE10 Autographiviridae 42.87 V. parahaemolyticus (Ye et al., 2022)
VPT02 Siphoviridae 120.55 V. parahaemolyticus RTE raw fish flesh slices (You et al., 2021)
VPG01 Siphoviridae 120.02 V. parahaemolyticus Cutting board and seafood 

item
(Lee et al., 2023)

KIT04 Demerecviridae 114.93 V. parahaemolyticus (Tu et al., 2023)
vB_VpP_DE17 Podoviridae 43.397 V. parahaemolyticus (Yang et al., 2022a)
F23s1 Siphoviridae 76.648 V. parahaemolyticus (Xia et al., 2022)
Vp33 Podoviridae V. parahaemolyticus (Tan et al., 2021a)
Vp22 Podoviridae V. parahaemolyticus (Tan et al., 2021a)
Vp21 Podoviridae V. parahaemolyticus (Tan et al., 2021a)
Vp02 Podoviridae V. parahaemolyticus (Tan et al., 2021a)
Vp08 Siphoviridae V. parahaemolyticus (Tan et al., 2021a)
Vp11 Siphoviridae V. parahaemolyticus (Tan et al., 2021a)
vB_VpaS_PG07 Siphoviridae 112.106 V. parahaemolyticus (Ding et al., 2020)
phiTY18 Myoviridae 191.5 V. parahaemolyticus (Liu et al., 2022a)
vB_VpP_WS1 Microviridae 5.564 V. parahaemolyticus (Xu et al., 2022)
V5 Inoviridae 6.658 V. parahaemolyticus Shrimp (Dubey et al., 2021; Tyagi 

et al., 2022)
vB_VpS_BA3 Siphoviridae 58.648 V. parahaemolyticus (Yang et al., 2020)
vB_VpS_CA8 Siphoviridae 58.48 V. parahaemolyticus (Yang et al., 2020)
vB_VpaP_FE11 Podoviridae 43.397 V. parahaemolyticus (Yang et al., 2022b)
27Ua.3 Siphoviridae 76.890 V. parahaemolyticus (Stoos et al., 2022)
29Fa.3 Siphoviridae 79.348 V. parahaemolyticus (Stoos et al., 2022)
31Fb.4 Siphoviridae 77.620 V. parahaemolyticus (Stoos et al., 2022)
33Fb.4 Siphoviridae 77.632 V. parahaemolyticus (Stoos et al., 2022)
vB_VpaM_PG19 Microviridae 5.572 V. parahaemolyticus (Guo et al., 2022)
vB_VpaP_CHI Queuovirinae 57.805 V. parahaemolyticus (Orozco-Ochoa et al., 2023)
vB_VpaP_ALK Queuovirinae 57.805 V. parahaemolyticus (Orozco-Ochoa et al., 2023)
vB_VpaP_M3 Autographiviridae 43.446 V. parahaemolyticus (Orozco-Ochoa et al., 2023)
vB_VpaP_C2 Autographiviridae 43.494 V. parahaemolyticus (Orozco-Ochoa et al., 2023)
vB_VpaP_M9 Autographiviridae 43.268 V. parahaemolyticus (Orozco-Ochoa et al., 2023)
vB_VpaP_M83 Autographiviridae 43.901 V. parahaemolyticus (Orozco-Ochoa et al., 2023)
vB_VpaP_MGD2 Autographiviridae 45.105 V. parahaemolyticus (Cao et al., 2021)
ϕVP-1 Myoviridae 150.764 V. parahaemolyticus (Matamp and Bhat, 2020)
vB_VpaP_AL-1 Autographiviridae 42.854 V. parahaemolyticus (González-Gómez et al., 

2022)
vB_VpaS_AL-2 Siphoviridae 58.457 V. parahaemolyticus (González-Gómez et al., 

2022)
vB_VpS_PG28 Siphoviridae 82.712 V. parahaemolyticus (Tian et al., 2022)
KIT05 Podoviridae 50.628 V. parahaemolyticus (Anh et al., 2022)
vB_VpaP_GHSM17 Autographiviridae 43 V. parahaemolyticus (Liang et al., 2022)
vB_VcaS_HC Siphoviridae 81.566 V. campbellii (Li et al., 2021a)
OPA17 Siphoviridae 75.897 V. campbellii (Srisangthong et al., 2023)
ΦImVa-1 Schitoviridae 77.479 V. alginolyticus (Tajuddin et al., 2022)
Φ-5 Myoviridae 238.053 V. alginolyticus Oyster larvae (Le et al., 2020)
Φ-6 Myoviridae V. alginolyticus Oyster larvae (Le et al., 2020)
Φ-7 Myoviridae V. alginolyticus Oyster larvae (Le et al., 2020)
BUCT549 Siphoviridae 80.294 V. alginolyticus (Li et al., 2021b)
vB_ValP_VA-RY-3 Podoviridae 40.271 V. alginolyticus (Ren et al., 2022)
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these water channels and initially infect the bacteria at the 
edges, penetrating the inner layers of the biofilm by increas-
ing the population through active replication (Azeredo et al., 
2021). The results of Vilas Boas et al. (2016) confirmed 
this observation, as their study showed that during the ini-
tial stages of phage infections (specifically using the phage 
phiIBB-PAA2 with P. aeruginosa and vB_AbaP_CEB1 with 
Acinetobacter), the infected cells were primarily located in 
the outer layer of the biofilm. However, as the infection pro-
gressed, cells located at the deepest depths of the biofilm 
became susceptible to phage infection.

Phages vs. antibiotics to control biofilm in the food 
industry

One of the main problems with antibiotic treatment is that 
antibiotics target not only the problematic bacteria, but also 
the bacteria that make up the normal microbiota, leading 
to microbiota imbalances. Moreover, due to the slow diffu-
sion of antibiotics within a biofilm, bacteria have a chance 
to develop resistance mechanisms against the antibiotics, 
making biofilms difficult to eradicate with such chemicals. 
In contrast, lytic phages are highly specific and lyse only 

the target bacteria, likely preserving the normal bacterial 
flora in the local environment. Although bacteria can also 
develop resistance mechanisms against phages, phages are 
living creatures that are constantly evolving and developing 
new mechanisms to overcome bacterial resistance (Samson 
et al., 2013). Phages also produce endolysins, enzymes that 
lyse the peptidoglycan layer, to which bacteria are less likely 
to develop resistance mechanisms since these enzymes target 
a highly essential and thus conserved area of the bacterial 
cell wall (Schmelcher et al., 2012). However, the high speci-
ficity of phages to target host bacteria can be a drawback 
for biofilm treatment, as the biofilm-forming bacteria need 
to be identified in order to select the appropriate phages. 
Biofilms are usually composed of different species in nature. 
Tan et al. (2021b) discovered that V. parahaemolyticus and 
Shewanella putrefaciens interact with each other in a syner-
gistic manner to produce a mixed biofilm, increasing the cell 
viability, EPS content and biomass of the biofilms compared 
to the corresponding mono-species biofilms. Therefore, to 
efficiently target the biofilm microbiome, a mixture of differ-
ent phages should be considered (Sulakvelidze et al., 2001).

The effectiveness of antibiotics depends on the amount 
supplied. However, sometimes the required amount is 

Table 1  (continued)

Phage Family Genome size (kb) Host Efficacy test Reference

VPMCC5 Zobellviridae 48.938 V. harveyi (Kar et al., 2022)
vB_VhaM_pir03 Myoviridae 286.284 V. harveyi Brine shrimp (Misol et al., 2020)
V-YDF132 Siphoviridae 84.375 V. harveyi (Kang et al., 2022)
OY1 Autographiviridae 43.479 V. mimicus (Gao et al., 2022)
vB_VnaS-L3 Siphoviridae 39.99 V. natriegens (Li et al., 2022)

Fig. 1  Biofilm eradication by 
bacteriophages. (A) Phages 
stimulate the target bacteria 
to produce enzymes (lyases 
or hydrolases) that degrade 
the EPS matrix post phage 
infection. (B) Some phages 
have enzymes (depolymerases) 
on their tail spikes that help 
to degrade the biofilm. (C) 
Water accessible channels in 
the mature biofilm facilitate the 
movement of bacteriophages 
and increase the chance of 
infection



1724 A. Cevallos-Urena et al.

1 3

above the minimum toxic concentration for humans, and 
thus antibiotics cannot be supplied in sufficient quantities to 
eliminate the biofilm due to health risks. On the other hand, 
the toxicity of phage-treated food has not yet been clearly 
analyzed. However, Plaut and Stibitz (2019) stated that if 
the phages are administered following Good Manufactur-
ing Practices (GMP), the reported adverse effects are none 
or relatively small. Following this, the toxicity of medical 
phage-treatment in humans has demonstrated that phages are 
not toxic even when applied in concentrations as high as  1011 
PFU/mL to treat a P. aeruginosa infection (Suh et al., 2022).

Because biofilms are composed of EPS, which has hydro-
phobic or hydrophilic properties, the diffusion efficiency of 
antibiotics is reduced; thus, the delivery of the antibiotic to 
the bottom of the biofilm is not guaranteed (Azeredo et al., 
2021). Nevertheless, there are studies that have shown that 
phages use the water channels in biofilm to migrate, reach, 
and infect the innermost cells in a biofilm (Vilas Boas et al., 
2016). In addition, phages can self-replicate within the 
infected bacterial cell, multiplying in large numbers and 
spreading the infection to the surrounding cells (Azeredo 
et al., 2021).

When it comes to eliminating persister cells in bio-
films, antibiotics are not an option because they can only 
affect metabolically active cells. Phages also have a lim-
ited effect on this type of cells; however, the advantage of 
phages is that they can infect non-living bacterial cells, 
remain dormant inside them, and reactivate once the cells 
become metabolically active (Harper et al., 2014). As bac-
terial lysis proceeds, the process releases nutrients into the 
matrix that help restore normal growth in nearby dormant 
bacterial cells, allowing the phages to infect them. How-
ever, one limitation common to both antibiotic and phage 
treatment of biofilms is that their effectiveness decreases 
as the thickness, age, and diversity of the biofilm increases 
(Azeredo et al., 2021).

Future directions

The threat of vibriosis and Vibrio biofilms to the food indus-
try is a significant concern, especially under the growing 
antibiotic resistance problem. Bacteriophages have emerged 
as a promising alternative to antibiotics, as they possess a 
high degree of specificity for their host bacteria and thus, are 
less likely to harm beneficial bacteria. In addition, phages 
have demonstrated the ability to eradicate biofilm matrices, 
thereby eliminating pathogens in the process. While it is 
true that bacteria can develop resistant mechanisms to block 
phage infection, phages can evolve on their own and coun-
teract this resistance by developing adaptive systems, such 
as the anti-CRISPR system.

To expand the usage of bacteriophages, however, further 
investigation is needed to increase their efficiency and/or 
efficacy. Research related to the use of phage cocktails or the 
co-treatment of phages with other antibacterial molecules, 
such as essential oils (bergamot, lemongrass oil, etc.), free-
fatty acids (palmitic, stearic acid, etc.), and natural chelating 
agents (EDTA, nitrilotriacetic acid, etc.), should be explored 
to widen the range of target pathogens. These components 
have a synergistic effect, since they can permeabilize the 
cell membrane, and thus, increase the effectivity of bac-
teriophages. Phage engineering should also be utilized to 
increase host range and burst size while reducing the eclipse 
and latent periods, as these characteristics could improve 
phage efficiency. Furthermore, phage enzymes (endolysin 
and depolymerase) could be engineered to enhance their 
recognition and degradation ability to various substrates, 
thus increasing their capacity to eradicate diverse bacterial 
cell walls and multi-species biofilms. Finally, a regulatory 
framework to standardize the dosage of phages in food prod-
ucts should be developed.

Overall, the evidence suggests that bacteriophages have 
the potential to be an effective alternative for controlling 
pathogens and biofilms, particularly with respect to Vibrio 
spp. This presents a promising breakthrough for the chal-
lenges faced by the seafood industry.
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