
Vol.:(0123456789)1 3

Neurosci. Bull. October, 2023, 39(10):1577–1590 
https://doi.org/10.1007/s12264-023-01070-5

REVIEW

www.neurosci.cn
www.springer.com/12264

From Lung to Brain: Respiration Modulates Neural and Mental 
Activity

Josh Goheen1,2 · John A. E. Anderson2 · 
Jianfeng Zhang3,4 · Georg Northoff1 

Received: 13 January 2023 / Accepted: 10 April 2023 / Published online: 7 June 2023 
© Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences 2023

Abstract  Respiration protocols have been developed to 
manipulate mental states, including their use for therapeu-
tic purposes. In this systematic review, we discuss evidence 
that respiration may play a fundamental role in coordinating 
neural activity, behavior, and emotion. The main findings 
are: (1) respiration affects the neural activity of a wide vari-
ety of regions in the brain; (2) respiration modulates differ-
ent frequency ranges in the brain’s dynamics; (3) different 
respiration protocols (spontaneous, hyperventilation, slow 
or resonance respiration) yield different neural and mental 
effects; and (4) the effects of respiration on the brain are 
related to concurrent modulation of biochemical (oxygen 
delivery, pH) and physiological (cerebral blood flow, heart 
rate variability) variables. We conclude that respiration may 
be an integral rhythm of the brain’s neural activity. This 
provides an intimate connection of respiration with neuro-
mental features like emotion. A respiratory-neuro-mental 
connection holds the promise for a brain-based therapeutic 
usage of respiration in mental disorders.

Keywords  Respiration · Cognition · Emotion · Heart rate 
variability · Carbon dioxide

Introduction

Respiration and Brain—Nuisance or Neural?

Respiration, being so closely coupled to heart activity and 
oxygen supply, is key in maintaining metabolic activity in all 
organs including the brain. Given the increased efficiency of 
aerobic over anaerobic conditions in cellular energy dynam-
ics, one might predict that the brain should be optimized to 
maximize its direct coupling with systems that supply its 
metabolism [1, 2]. The brain’s metabolic-energetic coupling 
to respiration is at odds with how neuroscientists methodo-
logically treat respiration. Respiration-related neural activity 
is typically considered noise, and entire fields are dedicated 
to stripping it from brain data, particularly in fMRI (e.g., 
with global signal regression, independent components 
analysis, and RETROICOR [3–5].

While many researchers do not consider respiration 
beyond stripping it from their datasets, it is possible that ele-
ments of the respiration-coupled neural signal are useful, and 
can inform us about higher cognitive processing, emotion, 
and behavior. To test this hypothesis, we have conducted an 
extensive systematic review of combined brain and respira-
tion studies in both functional magnetic resonance imaging 
(fMRI) and electroencephalography (EEG). In this analysis, 
we investigate the topographic and dynamic effects of res-
piration on the brain’s neural activity. Moreover, to test the 
strength of the link between neural and respiratory activity, 
we investigated the impact of different respiration protocols 
on biochemical, physiological, neural, and mental activity. 
Our findings should help uncover whether respiration plays 
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an integral role in the brain’s physiology beyond its typical 
framing as a nuisance variable.

From the Rhythms of Respiration to Brain Rhythms

fMRI studies have shown that respiration frequency and 
volume are strongly correlated with the blood oxygen level 
dependent (BOLD) signal [6–10]. In fact, respiration alone 
has been shown to account for as much as 27% of the vari-
ance in the BOLD signal [11]. For this reason, the physi-
ological signals are commonly regressed out of data as noise 
(for a review see [12]). Emerging evidence, however, sug-
gests that fluctuations in the power of spatially distributed 
slower neuronal oscillations in the frequency range of res-
piration (0.01 to 0.3 Hz; [13]) drive the activity of faster 
frequencies and even mental features like consciousness and 
self [14–19].

Like fMRI, EEG can be used to assess the respiration-
induced modulation of slower neural signals (0.01 to 0.3 Hz 
[20, 21]. Because of its greater temporal resolution, EEG 
can be used to investigate the respiration-induced modula-
tion of faster frequencies like theta [22], alpha [23], and 
gamma [24]. These studies suggest that respiration provides 
a slow (0.01 to 0.3 Hz) intrinsic rhythm which may be cou-
pled with analogous slower neural rhythms in the same fre-
quency range. Thus, respiration may act as a slow-moving 
envelope carrying and influencing faster frequencies, which 
then manifest as a dynamic mixture of respiratory-influenced 
neural activity.

Respiration and Physiology/Biochemistry

Mammalian respiration is innately connected with other 
physiology and biochemistry. For example, respiratory sinus 
arrhythmia (RSA) is a phase relationship between respira-
tion and heart rate. In humans, upon inhalation, the time 
between heartbeats (measured as R-R intervals or RRIs) 
tends to decrease in length, which is indicative of heart-
beat acceleration. Conversely, upon exhalation, RRIs tend to 
increase in length, in other words, the heartbeat decelerates 
[25]. Furthermore, prolonged periods of hyperventilation 
(>30 s) tend to increase mean heart rate (HR), lower heart 
rate variability (HRV), reduce the blood gas partial pressure 
of carbon dioxide (pCO2), and decrease cerebral blood flow 
[26–33]. Conversely, slow respiration tends to lower mean 
heart rate, increase HRV, raise pCO2, and increase cerebral 
blood flow [13, 34–37].

How do these physiological and biochemical factors influ-
ence the impact of respiration on the brain’s neural activ-
ity? Given that the physiological and biochemical variables 
reviewed above express similar spatiotemporal influences 
on the brain’s neural activity, one might expect that these 
more fundamental biochemical processes might modulate 

and mediate respiration. This would provide a first insight 
into the physiological mechanisms for the coupling of the 
brain’s neural activity to respiration.

Respiration and Mental Activity

Neuropsychiatric conditions such as anxiety and panic dis-
order are often accompanied by irregularities in respiration 
patterns (for reviews see [26, 38–40]). In fact, hyperventila-
tion is a trait that researchers argue is self-perpetuating and 
responsible for worsening neuropsychiatric disorders such 
as anxiety. The hyperventilation theory [41] states that panic 
patients often present with chronic hyperventilation. By this 
account, panic attacks are brought on by cognitive misinter-
pretations of bodily symptoms such as accelerated heart rate, 
decreased heart rate variability, dizziness, and tingling in the 
extremities that often accompany hyperventilation.

In contrast to the hyperventilation theory account [42], 
hyperventilation can be described as a subconscious pre-
ventive measure the body uses to maintain the pCO2 in the 
blood below the threshold values of peripheral and central 
chemoreceptors. Klein proposed that over time, chemorecep-
tors become hypersensitive due to the sustained levels of low 
pCO2 brought on by chronic hyperventilation. The authors 
proposed a positive feedback loop, where hypersensitive 
chemoreceptors promote hyperventilation to avoid triggering 
the body’s asphyxiation alarm which, in turn, leads to more 
panic and anxiety. Slow respiration has also been reported to 
mitigate problematic mental activity and the accompanying 
biochemistry/physiology brought on by chronic hyperventi-
lation [43]. In fact, multi-session slow respiration protocols 
have been shown to increase overall positive affect [44–48].

An analysis by Klimesch and colleagues [49] reported 
on the potential architecture linking brain and body oscil-
lations. The author argues that large reductions in energy 
demand drive neural systems to express phase and amplitude 
coupling with physiological rhythms such as respiration at 
distinct frequencies. Klimesch claims that, as a result, the 
respiration signal tends to have a set of “preferred” frequen-
cies centered around 0.08, 0.16, and 0.32 Hz. Klimesch 
hypothesizes that each frequency carries with it distinct 
neural and mental correlates. This appears to be directly in 
line with our hypothesis as we suggest that there are distinct 
neural and mental features that are coupled to breathing at or 
close to these frequencies, such as in the case of slow (~0.1 
Hz), spontaneous (~0.2 Hz), and fast breathing (~0.5 Hz).

The synchronization between respiration and slow neu-
ral activity is likely key to understanding the brain-phys-
iology relationship. Higher degrees of coupling between 
respiration and brain activity likely manifest as the inverse 
of symptoms of panic disorder (e.g., relaxation, greater 
attention, and more measured thoughts). Slow rhythms 
thus provide a link and shared feature of respiration, 
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neural, and mental activity serving as their “common cur-
rency” [18, 19]. We, therefore, include in our review stud-
ies using different respiration protocols including slow and 
fast ones in order to show their impact on both neural and 
mental activity. By establishing a “common currency”, 
between respiration, brain, and mind, we hope to provide 
a novel theoretical framework that serves to inspire future 
research in this area and provide a springboard for possi-
ble therapeutic interventions in neuropsychiatric disorders 
such as anxiety.

Overview of Steps

We included studies that reported the pCO2 (via capnog-
raphy), fMRI, EEG, electrocardiogram (ECG), and sub-
jective questionnaires to piece together the neuronal and 
mental effects of respiration including their mediation of 
physiological and biochemical variables. We hypothesized 
that: (1) respiration affects neural activity in terms of 
topography and dynamics throughout widespread regions 
and all frequencies; (2) given the fact that the spontaneous 
frequency ranges between physiology (heart, pCO2) and 
respiration overlap, we also expect their to be overlap in 
the topography and dynamics of neural signals influenced 
by these processes; and (3) given the existing evidence 
of respiratory mechanisms that affect pCO2 and HRV, we 
predict that hyperventilation provokes panic or anxiety, 
and conversely, we predict that slow respiration promotes 
emotional well-being and relaxation (Fig. 1).

Materials and Methods

Article Search

We followed the recommendations of the PRISMA (Pre-
ferred Reporting Items for Systematic Reviews and Meta-
Analyses) statement [50]; its design and flow are shown in 
Fig. 2). This review focused on the evaluation of research 
articles obtained from a survey conducted by the primary 
author in August 2021. The search included terms such as 
"respiration", "end-tidal carbon dioxide, "heart rate", and 
"heart rate variability" in combination with "electrocardio-
gram", "electroencephalogram", and "functional magnetic 
resonance imaging". To ensure that this study captured 
recent literature, the results were restricted to studies pub-
lished between 2000 and 2021.

Articles were evaluated for inclusion if they included 
human subjects, were full-text original research articles, 
and evaluated respiration’s inherent relationships with heart 
activity, neuronal activity, CO2 levels, or mental activity. 
Articles were excluded if they focused on animals, children 
(<18 years of age), sleep, or were case studies. Articles 
were also excluded if they investigated a meditation practice 
where slow respiration or hyperventilation was not a primary 
measured outcome. Twenty-nine articles met these exclusion 
criteria and were not included in the review.

Our initial search captured relatively few studies focus-
ing on the mental implications of the respiration protocols, 
particularly hyperventilation. As a result, a secondary search 
was conducted using the online collaborative database 
OMNI (https://​ocul.​on.​ca/​omni/). Identification, review, and 
article inclusion were conducted by the first author in Janu-
ary 2022. This search intended to investigate the respiratory 
pathology of anxiety/panic disorders in hopes of linking it to 
the information compiled in this review. Search algorithms 
comprised the terms "anxiety" and "panic disorder" used in 
combination with "hyperventilation". To ensure this search 
captured the recent literature, studies were limited to the 
years between 2000 and 2021. This search yielded 8 full-text 
research articles.

Organization of the Review

As articles were reviewed, they were placed in the follow-
ing categories: (1) Topography (spatial relationships), (2) 
Neuronal Dynamics (temporal relationships), (3) Respiration 
protocols and physiological or neuronal interactions, and 
(4) Respiration protocols and mental interactions. Further 
details on references of individual studies as well as which 
studies were included in categories 1–4 can be found in 
Supplementary Tables 2–5. Topographical results included 
fMRI studies investigating regions associated with respi-
ration, heart activity, and pCO2 fluctuations. ECG, EEG, 

Fig. 1   The theoretical framework of the coupling from respiration to 
mental features through biochemical (blood pH, Bohr effect), physi-
ological (heart rate variability/HRV, cerebral blood flow/CBF), and 
neuronal (topography, dynamic) variables.

https://ocul.on.ca/omni/
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and fMRI studies that investigated global and regional fre-
quencies associated with respiration, heart activity, and CO2 
fluctuations contributed to the Neuronal Dynamics category. 
Studies that investigated the effects of respiration protocols 
fell into two categories. The first included studies that inves-
tigated the physiological and neuronal interactions of respi-
ration protocols. The second included studies that investi-
gated the impact of respiration protocols on the mental level, 
that is, on mood and cognition.

The search yielded 75 unique relevant studies. Some 
studies reported multiple measures (e.g., EEG, fMRI, ECG, 
pCO2, and questionnaires) and were included in multiple cat-
egories. Each section yielded studies [9, 26, 27, 34], respec-
tively. Collectively, these studies attempted to investigate 
the significant physiological, neuronal, and mental variance 
correlated to fluctuations in respiration, heart activity, and 
pCO2.

Results

Topography

Regions Modulated by Respiration

For this review, we compiled 16 studies that collectively 
attempted to describe the topographical relationships of 
respiration in the brain under spontaneous conditions. 
Regions most associated with respiration included frontal 
[medial and lateral prefrontal cortex (PFC), orbitofrontal 
PFC, superior frontal gyrus)], temporal [superior temporal 
gyrus (STG), parietal (somatosensory cortex (SSC), and pri-
mary motor cortex (PMC)], occipital [occipital cortex (OC) 
and supramarginal gyrus SMG)], midline [anterior (ACC), 
medial (MCC), and posterior cingulate cortex (PCC)/precu-
neus, and cuneus)], insular [anterior (aINS), medial (mINS), 

Fig. 2   PRISMA scheme. 
Representation of the reviewal 
process for studies included in 
the survey.
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and posterior (pINS)], and cerebellar regions. Subcortical 
regions (thalamus, caudate, and putamen) also appear to be 
influenced by respiration. More details on the number of 
studies and references pertaining to each region are listed in 
Fig. 3A and Supplementary Table 6, respectively.

Regions Modulated by Heart Activity

For this review, we compiled 19 studies that collectively 
described the topographical relationships of heart activity 
under spontaneous conditions. Heart activity is most asso-
ciated with activity in frontal (OFPFC, MPFC, LPFC, and 
MFG), temporal (STG, MTG, and fusiform gyrus), pari-
etal (PMC, SSC, SPL, pOP, and SMA) occipital (OC and 

angular gyrus), midline (ACC, MCC, PCC, precuneus), 
insular (aINS, mINS, pINS), and cerebellar regions. Sub-
cortical (thalamus, putamen, amygdala) and brainstem 
(pons) regions have also been shown to be influenced by 
heart activity. More details on the number of studies and 
references pertaining to each region can be found in Fig. 3B 
and Supplementary Table 8, respectively.

Regions Modulated by CO2

For this review, we compiled 10 studies that collectively 
attempted to describe the topographical relationships of 
pCO2 under spontaneous conditions. Regions that are 
most associated with fluctuations in pCO2 include frontal 

Fig. 3   A–C  Regions that have been shown to covary in activity with 
factors of respiration (A), factors of heart activity (B), and levels of 
CO2  (C).  D  Summary of regions that have been shown to covary 
with all three respiration, heart activity, and CO2. Abbreviations:  
PCC, posterior cingulate cortex; MCC, middle cingulate cortex; 
ACC, anterior cingulate cortex; STG, superior temporal gyrus; SSC, 
somatosensory cortex; SMG, supramarginal gyrus; SMA, supple-
mentary motor area; DLPFC, dorsolateral prefrontal cortex; VLPFC, 

ventrolateral prefrontal cortex; OFPFC, orbitofrontal prefrontal cor-
tex; PMC, primary motor cortex; SFG, superior frontal gyrus; MFG, 
middle frontal gyrus; DMPFC, dorsomedial prefrontal cortex; SPL, 
superior parietal lobule; aINS, anterior insula; mINS, middle insula; 
pINS, posterior insula; Caud, caudate; Thal, thalamus; LPFC, lateral 
prefrontal cortex; Cereb, cerebellum; amyg, amygdala; hipp, hip-
pocampus; FG, fusiform gyrus; pOP, parietal operculum; AG, angu-
lar gyrus.
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(OFPFC, MPFC, LPFC), temporal (STG), parietal (PMC, 
SSC), occipital (SMG, OC), midline (ACC, MCC, PCC, 
precuneus), insular (aINS, mINS, pINS), and cerebellar 
regions. Activity within subcortical regions (thalamus, puta-
men, caudate) also appears to fluctuate in activity with pCO2 
levels. More details on the number of studies and references 
pertaining to each region can be found in Fig. 3C and Sup-
plementary Table 7, respectively.

Regions Associated with Physiological Overlap

For this review, we compiled 45 studies (34 unique studies 
and 11 studies reporting multiple measures) that collectively 
described the topographical relationships of all the physiol-
ogy described in this review under spontaneous conditions. 
Regions associated with overlap of the described physiology 
include frontal (OFPFC, MPFC, LPFC), temporal (STG), 
parietal (PMC, SSC), occipital (OC), midline (ACC, MCC, 
PCC, precuneus), insular (aINS, mINS, pINS), and cerebel-
lar regions. In addition, subcortical regions included the 
thalamus and the putamen. More details on the number of 
studies and references pertaining to each region can be found 
in Fig. 3D and Supplementary Table 9, respectively.

Dynamics

Frequencies Modulated by Respiration

We compiled 11 studies that collectively attempted to 
describe the dynamic relationship of respiration in the 

brain under spontaneous conditions. Respiration appears 
to be coupled to infraslow (IS, 0.01–0.1 Hz), slow cortical 
potential (SCP, 0.1–1 Hz), delta (1–4 Hz), theta (4–8 Hz), 
alpha (8–12 Hz), beta (12–30 Hz), and gamma (>30 Hz) 
frequencies. The extent of this coupling varied by region. In 
the frontal lobe, respiration was shown to be coupled to all 
frequencies. In the insular lobe, respiration was shown to be 
coupled to IS, SCP, alpha, and gamma frequencies. In the 
parietal and occipital lobes, respiration appears to be cou-
pled to IS, SCP, delta, theta, alpha, and beta frequencies. In 
the temporal lobe, respiration was shown to be coupled to IS, 
SCP, delta, theta, alpha, and gamma frequencies. In the ante-
rior cingulate cortex, respiration was shown to be coupled to 
IS, SCP, and alpha frequencies. In the middle and posterior 
cingulate cortices, respiration was shown to be coupled to 
IS and SCP frequencies. In the precuneus, respiration was 
shown to be coupled to IS and alpha frequencies. Respiration 
was also shown to modulate activity in subcortical regions. 
In the thalamus, respiration was shown to be coupled with 
IS and alpha frequencies. Finally, in the amygdala and hip-
pocampus, respiration was shown to be coupled to SCP and 
gamma frequencies. More details on the number of studies 
and references pertaining to each region can be found in 
Fig. 4A and Supplementary Table 10, respectively.

Frequencies Modulated by Heart Activity

In order to investigate the dynamic relationships of heart 
activity we compiled 11 studies that collectively attempted 
to describe the relationships between low-frequency heart 

Fig. 4   A–C Neural dynamics linked to respiration (A), cardiac activ-
ity (B) and CO2 (C). Structures shown in the left lateral view are 
bilateral. Abbreviations: FL, frontal lobe; PL, parietal lobe; INS, 
insula; TL, temporal lobe; OL, occipital lobe; ACC, anterior cingu-
late cortex; MCC, middle cingulate cortex; PCC, posterior cingulate 

cortex; Precun, precuneus; Thal, thalamus; Amyg, amygdala; hipp, 
hippocampus; Cereb, cerebellum; MPFC, medial prefrontal cortex; 
OC, occipital cortex; LFHRV, low frequency heart rate variability; 
HFHRV, high frequency heart rate variability; IS, infraslow; SCP, 
slow cortical potentials.
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rate variability (LFHRV, 0.04–0.15 Hz) and high-frequency 
heart rate variability (HFHRV, 0.15–0.4 Hz) under spontane-
ous conditions.

(1) LFHRV
LFHRV appears to be coupled to activity within the fron-

tal, parietal, and insular lobes. In addition, it appears to be 
coupled with activity within midline (MPFC, MCC), sub-
cortical (thalamus, amygdala), and brainstem (pons) regions. 
More details on the number of studies and references per-
taining to each region can be found in Fig. 4B and Supple-
mentary Table 11, respectively.

(2) HFHRV
HFHRV appears to be coupled to activity within the 

frontal, parietal, occipital, temporal, and insular lobes. In 
addition, it appears to be coupled to activity within the cer-
ebellum, midline (MPFC, ACC, MCC), subcortical (thala-
mus, amygdala), and brainstem (pons) regions. More details 
on the number of studies and references pertaining to each 
region can be found in Fig. 4B and Supplementary Table 11, 
respectively.

Frequencies Modulated by CO2

We compiled 6 studies that collectively attempted to describe 
the dynamic relationships of fluctuations in the pCO2 under 
spontaneous conditions. According to the studies included 
in this review, pCO2 appears to be coupled to IS, delta, 
alpha, beta, and gamma activity. These coupling patterns 
were consistent throughout the frontal, parietal, temporal, 
and occipital lobes. More details on the number of studies 
and references pertaining to each frequency/region can be 
found in Fig. 4C and Supplementary Table 12, respectively.

Respiration Protocols and Dynamic and Physiological 
Interactions

Slow Respiration—Resonance Respiration

We compiled 27 studies that collectively attempted to 
describe the physiological and dynamic changes induced 
by resonance respiration. Overall, it appears that reso-
nance respiration causes significant increases in LFHRV, 
slight increases in pCO2 levels, and an overall shift towards 
slower neuronal frequencies. According to these data, 
within the frontal lobe, there appears to be increased IS 
coherence, increased SCP power, higher levels of inter and 
intra-hemispheric theta coherence, increased theta power, 
increased alpha power, increased alpha/high beta ratio, and 
decreased beta power during resonance respiration com-
pared to spontaneous conditions. Within the temporal lobe, 
there appears to be increased IS coherence, increased SCP 
power, increased interhemispheric alpha asymmetry, and 
increased alpha/high beta ratio during resonance respiration 

compared to spontaneous conditions. In the occipital lobe, 
there appears to be increased SCP power, increased inter and 
intra-hemispheric theta coherence, increased theta power, 
increased alpha power, and decreased beta power during 
resonance respiration compared to spontaneous conditions. 
Within the parietal lobe, there appears to be increased IS 
coherence, increased SCP power, increased theta power, 
increased alpha/high beta ratio, increased alpha power, and 
decreased beta power during resonance respiration compared 
to spontaneous conditions. Within the cingulate cortex, there 
appears to be increased activation and increased alpha power 
during resonance respiration compared to spontaneous con-
ditions. Globally, there appears to be increased IS coherence, 
increased SCP power, increased delta power, increased alpha 
power, and increased left brain activation during resonance 
respiration. Visual representation of the physiological and 
neuronal changes induced by resonance respiration can be 
found in Fig. 5B. More details on the main findings of indi-
vidual references used to construct this figure can be found 
in Supplementary Table 5.

Fast Respiration—Hyperventilation

We compiled 5 studies that collectively attempted to describe 
the neuronal dynamic changes induced by hyperventilation. 
In contrast to resonance respiration, it appears that hyper-
ventilation elicits a decrease in HRV, decreased pCO2, and 
increases in higher frequencies. Within the frontal lobe, it 
appears that there is increased theta and beta power dur-
ing hyperventilation compared to spontaneous conditions. 
Within the occipital and parietal lobes, it appears that there 
is increased theta and alpha power during hyperventilation 
compared to spontaneous conditions. Globally, there appears 
to be an increase in theta power compared to spontaneous 
conditions.

In this study, we captured a relatively small number of 
papers pertaining to the physiological and dynamic changes 
induced by hyperventilation. As a consequence, these data 
should be used as an indication of what might occur, but 
more research is necessary to understand the full scope of 
the physiological and dynamic implications of hyperventi-
lation. A visual representation of the changes induced by 
hyperventilation can be found in Fig. 5C. More details on the 
main findings from individual references used to construct 
this figure can be found in Supplementary Table 5.

Respiration Protocols—Impact on mental activity

Our search captured 9 studies that collectively attempted to 
describe the effects that respiration protocols have on men-
tal activity. Four of these studies investigated the effects of 
resonance respiration protocols (~0.1 Hz) on perceived anxi-
ety/stress levels [44–46, 48]. A common theme among all 
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these studies was an overall decrease in symptoms of nega-
tive affect after their respective intervention periods. Two 
studies investigated the effects of hyperventilation protocols 
(~0.5 Hz) on mental activity [51, 52]. Overall, these stud-
ies reported increased levels of perceived anxiety and stress 
during fast respiration, however, participants scored lower 
on overall perceived anxiety/stress after several weeks of 
interventions.

Three studies only included spontaneous protocols 
[53–55]. One study investigated interoceptive awareness of 
respiration and found that decreasing its capacity was cor-
related with increased levels of activity within the anterior 
insula and increased levels of anxiety [53]. Another study 
described a positive association between HRV and heartbeat 
detection [54]. This study reported that decreases in heart-
beat detection were linked with increased levels of perceived 
stress and anxiety. The third study looked at patients in 
remission from major depressive disorder [55]. In this study, 
patients were found to have increased respiration rates and 
PCC/parahippocampal gyrus activity compared to healthy 
controls. In addition, this study found patients to experience 

increased respiration pause variability compared to healthy 
controls, and this was correlated to symptom severity. Fur-
ther information on the main findings of individual studies 
can be found in Supplementary Table 5.

Secondary Search for Articles on Respiration and Anxiety

Our secondary search yielded a total of 8 studies that investi-
gated the respiratory pathology of anxiety and panic disorder 
patients. Patients in these studies commonly presented with 
chronic hyperventilation [26, 27, 30, 32, 33, 39, 40, 56], 
hypocapnia (low pCO2; [26, 27, 39, 56]), and lower levels 
of HF HRV [30] compared to healthy controls. Researchers 
suggested that patients tend to experience more significant 
feelings of discomfort, negative affect, and dyspnea at lower 
pCO2 threshold values and with smaller increases in pCO2 
compared to healthy controls. As a result, patients tend to 
hyperventilate as a protective mechanism to keep pCO2 lev-
els below chemosensory threshold values. Chronic hypocap-
nia leads to hypersensitive peripheral and central chemo-
receptors, which tend to manifest as a self-perpetuating 

Fig. 5   Schematic representa-
tion of physiological, neuronal, 
and mental activity during (A) 
spontaneous respiration (B) 
resonance respiration, and (C) 
hyperventilation.
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mechanism for hyperventilation, panic, and anxiety [26, 39, 
40, 56]. Other theories represented in this literature [41] sug-
gest that the cognitive misinterpretation of hyperventilation 
and accompanying bodily symptoms themselves (rather than 
hypersensitive chemoreception) are responsible for the prop-
agation of anxiety and panic. This assumes that patients tend 
to disproportionately evaluate feelings of dyspnea, elevated 
heart rate, and low HRV as deadly. This may lead patients to 
experience increased levels of anxiety and panic [26, 39, 40, 
56]. Further information on the main findings of individual 
studies can be found in Supplementary Table 14.

Discussion

From Lung to Brain I—Respiration and Topography

We first found the involvement of widespread regions in the 
brain associated with respiration. Rather than implicating 
specific regions or networks, respiration seems to impact 
both medial and lateral cortical regions as well as the ante-
rior and posterior cortex including higher- and lower-order 
regions. The global role of respiration in the brain signal 
hinges on physiological and biochemical processes. We show 
significant topographical overlap between respiration, heart 
activity, and CO2 fluctuations. Regions associated with this 
overlap include frontal (OFPFC, MPFC, LPFC), temporal 
(STG), parietal (PMC, SSC), occipital (OC), midline (ACC, 
MCC, PCC, precuneus), insular (aINS, mINS, pINS), and 
cerebellar regions. In addition, subcortical regions included 
the thalamus and the putamen (for individual references see 
Supplementary Table 9). Interestingly, many of these regions 
have been implicated in important networks responsible for 
the sense of self and cognition such as the default mode and 
salience networks [57–59]. This, albeit indirectly, provides 
evidence for the possible connection of respiratory activity 
with neuro-mental functions like self and consciousness; this 
is further supported by the differential neuro-mental impact 
of different slow-fast respiration protocols.

We believe that this global topographic involvement is, at 
least in part, mediated by the biochemical and physiologi-
cal dynamics inherently linked to respiration. For example, 
CO2 has been shown to fluctuate with the respiratory cycle 
and has been shown to be a potent vasodilator [6–9, 60, 
61]. This dilatory property of CO2 facilitates modulations in 
cerebral blood flow. In fact, there have been studies apply-
ing transcranial Doppler ultrasound that show as much as a 
5% modulation in blood flow per 1 mmHg change in pCO2 
[29]. That considered, one would expect the BOLD signal 
to be most affected by the respiratory cycle in regions with 
a high blood supply, which is exactly what we present in 
this review.

From Lung to Brain Ii—Respiration and Dynamics

It is becoming well established that respiration entrains 
oscillations at the same frequency as the respiration rate 
in several regions, at least in the rodent brain [24, 62, 63]. 
Moreover, these studies particularly implicate the theta and 
gamma bands in the frontal regions are phase-locked to res-
piration [24, 62, 63]. Researchers suggest that the respiratory 
rhythm in rodents, like humans, is propagated and modu-
lated via a central pattern generator (pre-Botzinger complex) 
buried deep within the brainstem [15, 64, 65].

In mammals, activity within the pre-Botzinger complex 
is particularly sensitive to changes in blood acidity (pH) lev-
els (for details on the relationship between respiration and 
pH see the box provided). Central chemoreceptors act in a 
negative feedback loop with respiratory and cardiac cent-
ers to modulate heart and respiration rates accordingly [64, 
65]. Given that there is a fundamental connection between 
respiration and central brain activity, the global frequency 
involvement of respiration should not come as a surprise.

In line with other studies, our review confirms the 
involvement of multiple frequencies in the coupling of res-
piratory and neural activity (for reviews see [43, 66, 67]). 
Support for the involvement of slower frequencies (0.01 
to 0.3 Hz) comes (indirectly) from fMRI where infraslow 
fluctuations in respiratory volume (0.01 to 0.05 Hz; [6, 12]) 
or frequency (0.1–0.3 Hz; [10]) modulate neural activity 
in that frequency range. This is important as the infraslow 
frequency range of fMRI (0.01 to 0.1 Hz) corresponds to 
the frequency range of respiration (including its variability; 
0.01 to 0.3 Hz).

From Lung to Mind—Respiration and Mental Activity

Although neuroimaging techniques such as fMRI have been 
used in many studies, about 2% of all examinations had to be 
aborted due to abnormally high state anxiety related to the 
scanner [68]. It has been demonstrated that increased state 
anxiety carries abnormal coupling patterns between breath-
ing and cardiac oscillations. In fact, negative RSA refers to 
the condition where increased state anxiety induces a com-
plete reversal of the phasic relationship between respiration 
and cardiac activity where the heart rate slows down during 
inhalation and speeds up during exhalation [69, 70].

Chronic mental conditions such as anxiety and panic dis-
order are often accompanied by abnormalities in respiratory 
patterns [71]. Patients often have a faster respiration rate, 
higher mean heart rate, diminished HRV amplitude, and a 
lower level of baseline pCO2 (for reviews see [26, 38–40, 
56]). Over time, diminished levels of pCO2 lower the thresh-
old of chemoreceptors to trigger the body’s intrinsic asphyx-
iation alarm. With lower threshold values, slight increases in 
pCO2 may trigger feelings of dyspnea, discomfort, anxiety, 



1586	 Neurosci. Bull. October, 2023, 39(10):1577–1590

1 3

and panic [42]. Interestingly, respiration is an autonomic 
process that can be somatically modulated. In fact, studies 
investigating slow respiration techniques have shown it to 
increase HRV amplitude, raise pCO2, and promote feelings 
of positive affect [44–46, 71].

Our findings provide a direct link between respiratory, 
neural, and mental activity. The impact of different respira-
tion protocols on neural dynamics and topography as well as 
on mental features like emotions suggest a mechanistic link. 
We propose the topography and slow-fast dynamics shared 
by respiratory, physiological, neural, and mental activity act 
as their “common currency” [18, 19]. This is illustrated in 
Fig. 5 where we draw connections from respiratory dynam-
ics to neural and mental dynamics mediated by the dynam-
ics of physiological and biochemical variables related to 
respiration. Beyond opening a novel understanding of the 
body-brain-mind relationship, this can serve as the basis for 
the brain-based mechanistic development of novel forms of 
respiration-based therapeutic intervention in mental disor-
ders like anxiety disorders.

Limitations and Future Directions

A major limitation to consider is that in some instances, 
sample sizes were small, and methodologies between stud-
ies varied significantly. Thus, we acknowledge a certain 
degree of generalizability may be lacking from this work. 
In addition, although this manuscript clearly describes clini-
cal implications, at the time of writing, there appears to be 
a lack of large-scale clinical data on this matter. Although 
we describe some of the existing clinical research in our 
analysis, more work is needed to establish a clear neuro-res-
piratory mechanism for mental activity. The future is bright, 
however. We are hopeful that recent increases in interest in 
non-pharmacological interventions for individuals suffering 
from mental illness and other cognitive disorders may bring 
much-needed funding into the field so that these data can 
be acquired.

Future research should focus on refining existing para-
digms, such as developing a more precise methodology for 
collecting and analyzing respiration-entrained neuronal data. 
Large amounts of high-quality neuro-respiratory data may 
allow researchers to flesh out the mechanistic links between 
respiration, neuronal activity, and behavior. In addition, 
large-scale, longitudinal clinical trials should be conducted 
to assess the efficacy of deliberate breathing protocols in the 
treatment of neuro-cognitive disorders in at-risk populations 
(i.e., advanced aging, anxiety, and depression, …). Further, 
this “big data” approach should focus on the dynamics of 
neuro-respiratory covariance and how these interactions 
impact behavior and mental health.

Conclusions

Respiration is a fundamental activity of life as it provides 
the necessary metabolic ingredients for all organs of our 
body including the brain. Does respiration contribute useful 
information to the neural signal rather than just "noise"? Our 
review suggests this is indeed the case.

We show that respiration affects a widespread set of 
regions throughout the brain as well as a range of frequen-
cies ranging from slow (0.01 to 0.3 Hz) to faster (1–80 Hz). 
Our review furthermore demonstrates that physiological 
(HRV) and biochemical (CO2) variables induce similar neu-
ral changes in the brain in both its topography and dynam-
ics. These physiological and biochemical variables likely 
mediate the coupling of respiratory and neural activity thus 
providing their direct link. Addressing our initial question, 
these findings strongly suggest that respiration is not a mere 
nuisance variable but an integral component of the brain’s 
neuro-mental activity which is mediated by various physi-
ological and biochemical variables.

Our review also shows the differential neural and even 
mental effects of slow and fast respiration protocols. The 
respiratory-neural connection seems to have particularly 
strong effects on emotions: slow respiration protocols like 
resonance respiration exert a relaxing and calming effect, 
while faster respiration tends to induce anxiety states. These 
observations suggest that slow-fast dynamics may be shared 
by respiratory, physiological, neural, and mental activity, 
thus providing a mechanistic (or better yet dynamic) link as 
their “common currency” [18, 19]. We, therefore, propose 
that an individual’s respiratory rhythm serves a fundamental, 
intrinsic role that modulates the topography and dynamics of 
the whole brain. Going beyond respiration-brain coupling, 
this opens the door for the application of respiration as a 
therapeutic technique in mental disorders like anxiety dis-
orders and others.
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Appendix

The following citations were included in the topographic 
analysis (Supplementary Table 3) but were not referenced 
in the text [70, 72–95].

The following citations were included in the neural 
dynamic analysis (Supplementary Table 4) but were not 
referenced in the text [69, 70, 76, 79, 80, 87, 90–99].
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The following citations were included in the effects of 
breathing protocols on physiological and neuronal dynamics 
analysis but were not referenced in the text [98, 100–109].
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