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Abstract
Purpose  It may be important for women to have mammograms at different points in time to track changes in breast density, 
as fluctuations in breast density can affect breast cancer risk. This systematic review aimed to assess methods used to relate 
repeated mammographic images to breast cancer risk.
Methods  The databases including Medline (Ovid) 1946-, Embase.com 1947-, CINAHL Plus 1937-, Scopus 1823-, Cochrane 
Library (including CENTRAL), and Clinicaltrials.gov were searched through October 2021. Eligibility criteria included 
published articles in English describing the relationship of change in mammographic features with risk of breast cancer. 
Risk of bias was assessed using the Quality in Prognostic Studies tool.
Results  Twenty articles were included. The Breast Imaging Reporting and Data System and Cumulus were most commonly 
used for classifying mammographic density and automated assessment was used on more recent digital mammograms. Time 
between mammograms varied from 1 year to a median of 4.1, and only nine of the studies used more than two mammograms. 
Several studies showed that adding change of density or mammographic features improved model performance. Variation 
in risk of bias of studies was highest in prognostic factor measurement and study confounding.
Conclusion  This review provided an updated overview and revealed research gaps in assessment of the use of texture features, 
risk prediction, and AUC. We provide recommendations for future studies using repeated measure methods for mammogram 
images to improve risk classification and risk prediction for women to tailor screening and prevention strategies to level of 
risk.
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Introduction

Evolving technology from film mammograms to digital 
images has changed the sources of data and ease of access 
to study a range of summary measures from breast mam-
mograms and risk of breast cancer [1]. In particular, given 

women have repeated mammograms as part of a regular 
screening program [2–4], and access to repeated digital 
images has become more feasible in real time for risk clas-
sification. Improved risk classification is fundamental to 
counseling women for their risk management [5, 6].

The leading measure for risk categorization extracted from 
mammograms is breast density [7, 8]. This is now widely used 
and reported with many states requiring return of mammo-
graphic breast density measures to women as part of routine 
screening. Mammographic breast density is a strong reproduc-
ible risk factor for breast cancer across different approaches 
used to measure it (clinical judgement or semi/automated esti-
mation) [7]. Mammographic breast density has typically been 
measured as an average value across both left and right breasts 
to relate to risk of subsequent breast cancer. However, change 
in breast density has been much less frequently studied. The 
growing access to the large data from digital mammograms 
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encourages a reassessment of the approaches employed to 
assess change in density and risk of subsequent breast cancer 
[9, 10].

Guidelines recommend screening mammography from age 
45 (American Cancer Society [2]) or 50 (US Preventive Ser-
vices Task Force [3]), with either annual or biennial mammog-
raphy [4]. Women generally have a series of repeated mam-
mograms (longitudinal data). Additionally, these recurring 
screening mammograms capture both the left and right breast. 
Despite the availability of bilateral longitudinal images, gen-
eral decision making is still based on mammographic breast 
density at a point in time, averaged between the two breasts 
[11], to forecast the overall breast cancer risk. While a growing 
number of studies use more than just baseline mammogram 
values which could improve risk classification and is promis-
ing for clinical decision making, we note there is no systematic 
review and summary of these studies, although a recent publi-
cation reported results from 9 studies and combined the results 
to show a positive association between increase in the Breast 
Imaging Reporting and Data System (BI-RADS) density cat-
egory and increase in breast cancer risk [12]. However, this 
publication only included association studies describing the 
magnitude of risk for change in density compared to those with 
no change. A richer summary of methods used to classify den-
sity and other features on mammograms and evaluate change 
in relation to risk can identify common approaches and help 
guide the use of change for breast cancer risk prediction. While 
texture features, such as calcification, masses, and anatomi-
cally oriented texture features, are important breast cancer risk 
predictors independent of mammographic breast density, their 
influence has been much less studied. Studies show that they 
can improve prediction model performance when added to 
breast density, and because they are usually machine-derived, 
this reduces bias in their identification [13–20]. Furthermore, a 
recent studies show improved performance over Tyrer Cuzick 
[21] and others show sustained performance with external vali-
dation of a mammography-based risk model [15]. Therefore, 
we undertook the current systematic review including predic-
tion studies using change in mammographic breast density or 
other features for risk classification in addition to association 
studies.

We aim to summarize the methods used, the time from 
mammogram to diagnosis of breast cancer, methods for 
analysis of data from either one or both breasts (averaged or 
assessed individually), and identify gaps in evidence to prior-
itize future studies.

Methods

Eligibility criteria

Population

We considered all studies of adult women (at least 18 years 
old) involving primary data. Abstract-only papers, review 
articles, and conference papers were excluded.

Intervention

We included studies measuring change in mammographic 
features between mammograms. A study had to use at least 
two different mammograms to be included.

Outcomes

Our primary outcomes of interest were risk of breast cancer, 
including both invasive and in situ cancers, and differences 
in mammographic features over time. Presence of breast can-
cer was required to be dichotomized (yes/no), and analysis 
of other risks (e.g., risk of interval vs. screen-detected can-
cer) were not included. Studies were required to assess the 
relationship of the change in mammographic features with 
risk of breast cancer.

Only studies available in English were included.

Information sources

The published literature was searched using strategies 
designed by a medical librarian (AH) for the concepts of 
breast density, mammography, and related synonyms. These 
strategies were created using a combination of controlled 
vocabulary terms and keywords and were executed in Med-
line (Ovid) 1946-, Embase.com 1947-, CINAHL Plus 1937-, 
Scopus 1823-, Cochrane Library (including CENTRAL), 
and Clinicaltrials.gov. Results were limited to English using 
database-supplied filters. Letters, comments, notes, and edi-
torials were also excluded from the results using publication 
type filters and limits.

Search strategy

An example search is provided below (for Embase).
( 'breast  density ' /exp OR ( (breast  NEAR/3 

densit*):ti,ab,kw OR (mammary NEAR/3 densit*):ti,ab,kw 
OR (mammographic NEAR/3 densit*):ti,ab,kw)) AND 
('mammography'/deOR mammograph*:ti,ab,kwOR 
mammogram*:ti,ab,kwOR mastrography:ti,ab,kwOR 
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‘digital breast tomosynthesis’:ti,ab,kwOR ‘x-ray breast 
tomosynthesis’:ti,ab,kw)NOT ('editorial'/it OR 'letter'/it OR 
'note'/it) AND [english]/lim.

The search was completed for the first time on September 
9, 2020, and was run again on October 14, 2021 to retrieve 
citations that were published since the original search. The 
second search was date limited to 2020–October 14, 2021. 
Full search strategies are provided in Supplementary File 1.

Selection process

Two reviewers (AA, CS) worked independently to review the 
titles and abstracts of the records. Next, the two reviewers 
independently screened the full-text of the articles that they 
did not reject and indicated those measuring mammographic 
features over time, which were ultimately eligible for inclu-
sion. Any disagreements of which articles to include were 
resolved by consensus.

Reference lists of included studies were hand searched to 
find additional relevant studies.

Data collection process

We created a data extraction sheet which two reviewers (AA, 
YC) used to independently extract data from the included 
studies. Disagreements were resolved by a third reviewer. 
If included studies were missing any desired information, 
any additional papers from the work cited, such as previous 
reports, methods papers, or protocols, were reviewed for this 
information.

Data items

Any estimate of change in a mammographic feature over 
time or risk of breast cancer was eligible to be included. 
Predictive ability could be evaluated using an area under 
the curve, hazard ratio, odds ratio, or relative risk. Change 
could be reported as a percentage or an absolute value. No 
restrictions on follow-up time were placed. For studies that 
reported multiple risk estimates, we prioritized the primary 
models which were discussed in the results section of the 
paper. If all models were discussed equally, then we listed 
the models with the best ability to predict breast cancer. For 
studies that reported multiple types of change, we prioritized 
the primary types which were discussed in the results section 
of the paper. If all types were discussed equally in the results 
section of the paper, then we listed the most frequent types 
of change observed in women using data listed in the tables.

We collected data on:

The report: author, publication year;
The study: location/institution, number of cases, number 
of controls;

The research design and features: lapsed time from mam-
mogram to diagnosis;
The mammogram: machine type, mammogram view (s), 
breast (s) used for analysis, time between mammograms, 
number of mammograms;
The model: how density was measured, type of model, 
baseline variable (s), texture feature (s), prediction hori-
zon.

Risk of bias

The quality of the included studies was assessed using the 
Quality in Prognostic Studies (QUIPS) tool [22]. Risk of 
bias was rated as high, moderate, low, or unclear by two 
reviewers (AA and CS) across six domains including study 
participation, study attrition, prognostic factor measurement, 
outcome measurement, study confounding, and statistical 
analysis and reporting. Raters independently recorded sup-
porting information and justification for judgements of risk 
of bias for each domain. Any disagreements were resolved 
by consensus.

For the prognostic factor measures domain, studies that 
used discrete categories of density were rated as high-risk 
of bias and those that used continuous measures assessed 
by machine were rated as low-risk of bias. For the study 
confounding domain, studies that adjusted for age, body 
mass index, menopausal status, and hormone therapy were 
considered to have a low-risk of bias.

Registration and protocol

This review was not registered, and a protocol was not 
prepared.

Results

The search and study selection process is shown in Fig. 1. A 
total of 11,111 results were retrieved from the initial data-
base literature search and imported into Endnote. Eleven 
citations from ClinicalTrials.gov were retrieved and added to 
an Excel file library. After removing duplicates 4,863 unique 
citations remained for analysis. The search was run again in 
October 2021 to retrieve citations that were published since 
the original search. A total of 1,633 results were retrieved 
and imported to Endnote. After removing duplicates, includ-
ing duplicates from the original search, 466 unique citations 
were added to the pool of results for analysis. Between the 
two searches a total of 11,577 results were retrieved, and 
there were 5,329 unique citations.

Of the 5,329 unique citations, 5,124 were excluded based 
on review of title and abstract. Two hundred five full-text 
reports were retrieved and assessed for eligibility by two 
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readers. Of these, One hundred eighty five were excluded 
for reasons such as not measuring change, not having risk of 
breast cancer as an outcome, being an abstract or a duplicate 
paper, or not being published in English.

Ten potential reports were identified from hand searching 
of citations. All of these were reviewed by full-text, and nine 
were excluded for being duplicates or not having a measure 
of change in a mammographic feature.

After fully screening search results, twenty studies meet-
ing eligibility criteria were included in the review [23–42]. 
These twenty studies used two or more mammograms to 
relate change in density or other features to risk of breast 
cancer and met eligibility criteria as set out in the selection 
flow chart. See the Preferred Reporting Items for Systematic 
Review and Meta-Analyses (PRISMA) flow chart (Fig. 1).

The key descriptive features of the 20 eligible studies are 
summarized in Table 1. These rely on mammography film 
records (ten studies) though studies published from 2016 
onwards often use digital images. Measures of breast density 
used in these studies are summarized in Table 1. BI-RADS 
(six studies) [28–30, 32, 33, 36] and Cumulus (five studies) 
[25, 26, 34, 35, 42] were the most commonly used methods 
for density assessment. Automated assessments were used 
on digital mammograms. Studies differed in the view used to 
forecast the overall breast cancer risk, with some only using 
the craniocaudal (three studies) [26, 35, 40] or mediolateral 
oblique (four studies) [23, 25, 31, 34] while others consid-
ered both (seven studies) [24, 27, 28, 32, 36, 38, 39]. The 
number of cases included in each study ranged from a low of 
fourty five cases [28] to a high of 22,781 in a Korean cohort 
study as shown in Supplementary Table 1 [33].

Figure 2 shows that from the twenty studies only nine 
used more than two images separated in time to assess 
change in relation to risk [23, 25, 34, 35, 37–41]. Supple-
mentary Table 2 shows that the time between mammograms 
varied across studies from one to a median of 4.1 years 
reflecting differences in guidelines and screening practices 
across countries. Furthermore, these studies used varying 
statistical methods to model change and covariates were gen-
erally included, such as age, body mass index, and menopau-
sal status. However, the covariates used to adjust estimates 
of association varied substantially across these studies.

Data from studies of change in mammographic density or 
other features and subsequent risk incorporated into models 
that are evaluated using an area under the curve (AUC) are 
summarized in Table 2 [24, 29, 31, 39, 40]. There is much 
variation in approaches to analysis used to relate change in 
breast density or other mammographic features to breast 
cancer risk. Approaches included change in BI-RADS cat-
egory, change from first to last image (ignoring intermediate 
images), and change in density as a continuous measure.

Kerlikowske et al. showed modest improvement in esti-
mating 5- and 10-year risk with AUC increasing from 0.635 
using only one measure of density to 0.640 using two meas-
ures [29]. Brandt et al. showed similar modest change in 
AUC to discriminate cases from controls using volumet-
ric percent density change in cancerous breast and normal 
breast from 0.52 to 0.54 after adding change in density to a 
model incorporating age, body mass index (BMI), change in 
BMI, and time between mammograms. However, the time 
horizon appears to be the time between the two mammo-
grams used for this study (median time 3 years) [24]. Tan 

Fig. 1   PRISMA 2020 flow diagram
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et al. on the other hand evaluated bilateral asymmetry of 
breast density between left and right breast as a marker of 
near-term cancer risk, comparing current mammograms to 
the three most recent which had been previously interpreted 
as negative [39].

In Supplementary Table 3, we summarize the number 
of mammograms used and the prediction horizon, which 
is how far ahead the model predicts risk of breast cancer. 

Only 1 study (Kerlikowske et al.) [29] based on change in 
BI-RADS category between two mammograms) reported a 
prediction horizon of 5 and 10 years. In others, the predic-
tion horizon was not clearly defined with investigators using 
the next screening mammogram [24, 31, 39, 40, 43].

Other measures of association (relative risk, hazard ratio 
(HR), odds ratio (OR)) are reported in studies that focus 
on the association between mammographic features and 

Table 1   Features of studies using repeated assessment of mammographic features included in systematic review (sorted by year published)

avg average, BI-RADS Breast Imaging Reporting and Data System, CC craniocaudal, MLO mediolateral oblique, mmg mammogram, NR not 
reported

Author Year Machine type View used (CC/MLO/both) Side used (left/right/both/
avg)

Density (BI-RADS catego-
ries/continuous)

Salminen [37] 1998 Film NR Avg Wolfe’s classification
van Gils [41] 1999 Film Up until 1981/1982 the 

lateromedial view was 
used and, after that time, 
the MLO view

Ipsilateral Fully computerized method

Maskarinec [35] 2006 Film CC Avg Cumulus
Kerlikowske [30] 2007 NR NR Both BI-RADS
Vachon [40] 2007 Film CC Both Computer-assisted thresh-

olding program
Lokate [34] 2013 Over 99% of the mammo-

grams were film
MLO Left Cumulus

Work [42] 2014 Film NR Left Cumulus
Kerlikowske [29] 2015 NR NR NR BI-RADS
Busana [25] 2016 Film MLO Left for Cumulus. Left and 

avg for ImageJ
Cumulus and ImageJ-based 

method
Humphrey [27] 2016 Digital (not specified 

further)
Both both Volpara

Khoo [31] 2016 Film MLO Contralateral for cases, 
random side chosen for 
controls

New framework for fully 
automatically measuring 
breast density and detect-
ing change in density

Tan [39] 2016 Digital (not specified 
further)

Both Both Computer-aided detection 
scheme

Byrne [26] 2017 Film CC Contralateral for cases, 
random side chosen for 
controls

Cumulus and Madena

Brandt [24] 2019 Hologic Selenia Both Both Volpara
Román [36] 2019 Film and digital (not speci-

fied further)
Both NR BI-RADS

Azam [23] 2020 GE Medical Systems, 
Philips Healthcare, Sectra 
Imtec AB and FUJI

MLO Contralateral for cases, 
random side chosen for 
controls

STRATUS

Kim [32] 2020 Hologic Selenia Dimen-
sions and General Electric 
Senographe 2000D/DMR/
DS A21

Both Both BI-RADS

Sartor [38] 2020 Siemens Novation and 
Inspiration and GE Seno-
graph

Both Both Libra

Kang [28] 2021 GE Senograph DS/ESSEN-
TIAL

Both Both BI-RADS

Kim [33] 2021 NR NR NR BI-RADS
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cancer risk. The statistical methods used to model change 
and assumptions including the breast imaged (ipsilateral 
or contralateral to the cancer) and approach to comparing 
cases and controls for 15 other association studies are sum-
marized in Supplementary Table 4 [23, 25–28, 30, 32–38, 
40–42]. Some studies used change in BI-RADS category 
while others had continuous breast density generated from 
machine-derived measures and then categorized change 
from the variable.

Many of these studies also observed increased breast 
density over time was associated with an increase in the 
risk of breast cancer [23, 26, 28, 30, 32, 34, 36, 37, 41, 42] 
However, some results were not statistically significant [23, 
26, 28, 32, 34, 37, 40, 42], often due to wide confidence 
intervals [23, 26, 28, 32, 37, 42] For example, van Gils et al. 
showed women whose mammographic density increased 
from 5–25 to > 25% had a significantly increased breast 
cancer risk (OR 6.9 95% CI 2.1–22.9) compared to those 
with a persisting density of 5–25% [41] On the other hand, 
Work et al. reported that a > 5% increase in percent density 
was positively associated with breast cancer (OR 2.55 95% 
CI 0.63–10.26) compared to women with a < 5% increase or 
decrease, but these results were non-significant [42].

Results from the assessment of risk of bias are shown in 
Supplementary Table 5. While many studies demonstrated 
similar risk of bias within specific domains, there is some vari-
ability, especially for prognostic factor measurement and study 
confounding. For prognostic factor measurement, studies that 
used categorical approaches such as BI-RADS or averaged the 
left and right breasts had a higher risk of bias than those using 
continuous measures assessed by machine approaches. For 
study confounding, studies that adjusted for age, body mass 
index, menopausal status, and hormone therapy were consid-
ered to have a lower risk of bias.

Study reporting impacted our ability to rate risk of bias. 
Only one study reported information to judge study attrition 
risk of bias [26], leaving most with an unclear risk of bias. 
Likewise, for study population, most studies did not report on 
the characteristics of the source population [23–28, 30–35, 
37–42] making it difficult to determine whether the population 
of interest was adequately represented.

Fig. 2   Number of mammo-
grams per study

Table 2   Models of repeated measures of mammographic features and incidence of breast cancer reporting AUC (sorted by average number of 
mammograms used)

AUC​ area under curve, NR not reported
a Kerlikowske 2015 uses change in density to predict future risk of breast cancer, whereas other studies report association between change in 
mammographic characteristics and risk of breast cancer

Author Year AUC (baseline with density) Overall AUC (with change in density or texture features)

Kerlikowskea 2015 5-year risk model: 0.635 (0.635 from fivefold cross-valida-
tion). 10-year risk model: 0.622. 5-year risk model among 
women who changed density categories: 0.630 (0.629 
from fivefold cross-validation)

5-year risk model: 0.640 (0.639 from fivefold cross-
validation). 10-year risk model: 0.628. 5-year risk model 
among women who changed density categories: 0.641 
(0.639 from fivefold cross-validation)

Khoo 2016 0.566 0.590
Brandt 2019 0.52 for VPD, 0.53 for DV 0.54 for VPD, 0.56 for DV
Tan 2016 0.730 for prior 1, 0.710 for prior 2, 0.666 for prior 3 NR
Vachon 2007 NR 0.65
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Discussion

We identified twenty studies addressing change in breast 
density or other mammographic features and risk of breast 
cancer. Of these, nine had only two images [24, 26, 27, 
29–31, 33, 36, 42] giving only modest ability to detect an 
association between change in density and risk of breast 
cancer. Only five studies report AUC for their analysis 
[24, 29, 31, 39, 40], and four of these use this measure to 
summarize discrimination of the cases from the controls 
[24, 31, 39, 40]. Only Kerlikowske et al. uses change in 
density categories from BI-RADS classification to predict 
5- and 10-year risk. In that study, adding change in density 
to the prediction model gave a modest improvement in 
model performance [29]. While Kerlikowske et al. used 
AUC to determine whether change in mammographic fea-
tures predicts risk of subsequent breast cancer, the other 
studies were association studies and report a measure 
of association between change and breast cancer. While 
these studies provide evidence of an association, they did 
not assess prediction performance of future risk, limit-
ing their clinical translation [44]. Overall, approaches to 
analysis of repeated mammogram images reflect the under-
lying approach to density (categorical or continuous) and 
this variation further limits interpretation of this body of 
evidence.

Variation in risk of bias observed in these studies reflect 
the variation in methods particularly in prognostic factor 
measurement and consideration of confounding. Level of 
reporting impacted our ability to fully assess risk of bias 
in these studies.

It is difficult to draw conclusions about the differences 
in results and overall conclusions across the different 
measurements of change summarized here. Since 2016 
analyses draw extensively on digital mammograms with a 
number of approaches to summarizing breast density and 
change in density. For example, only one study reported 
mammographic density change in terms of breast dense 
area [34]. In general, density decreased over time consist-
ent with published literature [45]. We observed no sub-
stantial differences in the results or overall conclusions 
between studies that used different methods for measuring 
change in mammographic density, such as reporting abso-
lute change using subtraction as compared to reporting 
relative change using the ratio of change from baseline. 
While studies still report change in BI-RADS categories 
[29, 30, 33, 36, 46, 47], continuous measures of density 
would be preferable.

Focus of these studies is predominantly on mammo-
graphic breast density with limited study of change in 
texture features. Only two studies look at change in tex-
ture features [31, 39]. A recent meta-analysis of change in 

density and breast cancer risk used data from four cohort 
studies and reported a pooled HR for increase in breast 
density compared to women with non-dense breast tissue 
(HR 1.61; 95% CI 1.33–1.92) for studies reporting haz-
ard ratios and pooled OR for those reporting odds ratios 
(OR 1.98; 95% CI 1.31–3.0) [12] In that meta-analysis, 
decrease in breast density was associated with reduced risk 
compared to women with stable breast density (HR 0.78; 
95% CI 0.71–0.87). Of note, a single study contributed 
multiple measures of change in density within this analysis 
without adjustment for use of a common reference group.

The twenty studies included in our review varied in the 
view of the breast used. A meta-analysis showed that the 
craniocaudal view may have a stronger association with 
breast cancer risk [48], but the inconsistent approaches to 
handling these views increases variability across studies. 
Interval between images used for change is also variable 
(range from as short as 1 year to median of 4.1 years). The 
majority of studies evaluate change in category of density; 
for example, BI-RADS is not a continuous measure of den-
sity. Not only can this lead to misclassification, but these cat-
egories are also subjective, varying between readers, while 
continuous measures generally involve automation.

With only two images used, change in category is limited 
and the shorter time interval between images reduces power 
to differentiate trajectories of mammographic features over 
time. There is a steady decline in mammographic breast den-
sity through midlife to menopause and beyond [45, 49]. This 
slow decrease over time makes a discrete change in category 
harder to capture and will be limited compared to use of 
continuous mammographic density measures that are now 
becoming more broadly available. Future studies using the 
continuous density measures may better capture change and 
the risk associated with these changes.

We might ask, given the low rate of decline in mammo-
graphic density with age as described [45, 49], is the interval 
used in studies sufficient to detect meaningful change? To 
address this gap in the literature, future studies should use 
repeated measures methods incorporating more mammo-
graphic images over longer time periods such as the recent 
paper by Jiang et al. [50].

Some studies indicate differences in mammographic den-
sity between the left and right breasts may be a risk factor 
for breast cancer, but more research is needed [14, 51, 52]. 
While breast cancer rarely develops simultaneously in both 
breasts, current models still utilize average mammographic 
density and/or other features between the two breasts in con-
ducting the risk prediction. Although mammographic den-
sity from the two breasts appears to be highly correlated at 
the baseline, deviation between the two breasts may be better 
captured over time using repeated mammography. Based on 
this review of the literature, we conclude that longitudinal 
bivariate analysis [53] of mammograms which accounts for 
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both breasts individually over long periods of time has been 
used in only one recently published breast cancer epidemi-
ology study [50]. We note limited use of change measures 
for improving risk prediction. Reporting AUCs and net 
reclassification index to evaluate how much prediction has 
improved is critical. To address the issues present in these 
studies, we recommend that more studies assess the use of 
texture features with a focus on risk prediction and report 
AUC. Using continuous measures of density and more mam-
mographic images over longer periods of time including the 
craniocaudal view may improve prediction of risk of sub-
sequent breast cancer. Additionally, evaluating features in 
both breasts individually and accounting for confounding 
factors such as age, BMI, menopausal status, and hormone 
therapy use would strengthen the utility of models. Future 
studies should take care to thoroughly report methods used, 
especially for study attrition and study population, to allow 
for more accurate assessments of risk of bias.

It can be more difficult for radiologists to detect cancers 
in dense breasts, as the cancer can be masked by the dense 
tissue [8]. Because of this, mammography has reduced 
sensitivity in dense breasts. As a result, women with dense 
breasts may be at higher risk for interval cancers, which 
tend to be larger and more advanced than cancers that are 
detected on a mammogram, and they are associated with a 
lower survival rate [54]. Supplemental screening with breast 
magnetic resonance imaging (MRI) in women with dense 
breasts could potentially improve the detection of breast can-
cer. When high-risk screening MRI detects interval cancers, 
they are frequently cases of ductal carcinoma in situ (DCIS) 
and have a lower stage of primary tumor compared to can-
cers identified due to symptoms [55]. Additionally, MRI is 
more sensitive than mammography in women with dense 
breasts [56], and ultrasound may be an alternative adjunct 
to tomosynthesis [57].

There is increasing interest in bringing breast cancer risk 
reduction approaches to women according to their level of 
risk [5, 58]. In Canada, for example, ongoing research is 
evaluating the integration of risk prediction tools and single 
nucleotide polymorphisms into clinical preventive care to 
better balance benefits and harms of screening [59]. The 
WISDOM trial evaluates risk based screening [60]. Analy-
ses also evaluate the potential of family history of breast 
cancer plus a polygenic risk score to guide screening before 
age 50 [61]. In Europe and the UK risk models are used to 
inform recommended screening and prevention [62]. These 
approaches require continuing translation of advances in 
biotechnology to focus treatment and prevention according 
to level of risk and refinement of the balance of risks and 
benefits of treatment or prevention [63]. Cancer prevention 
is often conceptualized as strategies that interrupt cancer 
pathways and maximize the short- and long-term benefits 
of prevention intervention [64–66] These strategies need to 

be applicable in real time in the clinical setting maximiz-
ing benefit-to-harm ratio [63, 67], such as in the context of 
increasing supplemental screening with breast MRI or ultra-
sound in women with dense breasts. Focus should also be 
placed on better use of repeated mammographic measures of 
breast features to stratify risk and identify both the high-risk 
groups and also the low-risk groups [68] to tailor screening 
and prevention strategies [59].

Limitations

There are several limitations with the current review. Hetero-
geneity of the data did not allow for a meta-analysis. No joint 
models considering features through time and risk were also 
included in this review, as none were identified that met our 
inclusion criteria. This highlights a gap in methodology that 
future work could address. Additionally, systematic reviews 
are always subject to possible publication bias if all relevant 
studies have not been published. We used several strategies 
to reduce the risk of this including using a thorough search 
strategy designed by a medical librarian with expertise in 
searching for systematic reviews and searching clinicaltrials.
gov for any ongoing studies.

Conclusion

There exist several gaps in the methodology of studies 
assessing risk of breast cancer using change in mammo-
graphic features. Based on these, we provide recommenda-
tions for future studies to make use of accumulating image 
data. Despite current limitations in the literature, the more 
widespread use of digital mammography and availability of 
digital images repeated over time offers growing opportu-
nities to improve risk classification and risk prediction for 
women.
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