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Abstract
Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease (MND), is a progressive neurological disorder, 
characterised by the death of upper and lower motor neurons. The aetiology of ALS remains unknown, and treatment 
options are limited. Endogenous retroviruses (ERVs), specifically human endogenous retrovirus type K (HERV-K), have 
been proposed to be involved in the propagation of neurodegeneration in ALS. ERVs are genomic remnants of ancient viral 
infection events, with most being inactive and not retaining the capacity to encode a fully infectious virus. However, some 
ERVs retain the ability to be activated and transcribed, and ERV transcripts have been found to be elevated within the brain 
tissue of MND patients. A hallmark of ALS pathology is altered localisation of the transactive response (TAR) DNA binding 
protein 43 kDa (TDP-43), which is normally found within the nucleus of neuronal and glial cells and is involved in RNA 
regulation. In ALS, TDP-43 aggregates within the cytoplasm and facilitates neurodegeneration. The involvement of ERVs in 
ALS pathology is thought to occur through TDP-43 and neuroinflammatory mediators. In this review, the proposed involve-
ment of TDP-43, HERV-K and immune regulators on the onset and progression of ALS will be discussed. Furthermore, the 
evidence supporting a therapy based on targeting ERVs in ALS will be reviewed.
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Introduction

Amyotrophic lateral sclerosis (ALS), also known as motor 
neuron disease (MND), is a progressive and fatal neurologi-
cal disorder, characterised by the death of both upper and 
lower motor neurons in the primary motor cortex and spinal 
cord [1, 2]. Death of motor neurons results in muscular atro-
phy leading to the eventual inability to activate muscles of 
the body and control vital functions, such as respiration [2, 

3]. ALS is considered a highly complex and heterogenous 
disease where both the clinical features and disease progres-
sion can vary between patients [4]. This can make diagnos-
ing ALS extremely challenging, with patients often waiting 
a year from symptom onset to diagnosis. At present, the 
underlying cause of ALS remains elusive, and with no cure 
or disease-modifying therapy, the typical life expectancy lies 
between 2 and 5 years from diagnosis [5–7].

A hallmark of ALS pathology is cytoplasmic TDP-43 
aggregation. While only 4% of familial ALS cases can be 
attributed to mutations in TARDBP, 95% of ALS cases have 
a cellular TDP-43 pathology. Cytoplasmic TDP-43 aggre-
gation is present in both sporadic and familial ALS with 
the exception of those with familial ALS caused by SOD1 
mutations [8]. In healthy neurons and non-neuronal cells 
including astrocytes and microglia, TDP-43 is localised with 
the nucleus [9]. However, TDP-43 inclusions are present 
within the cytoplasm of neurons and some glial cells in ALS 
patients at autopsy [10, 11]. Cytoplasmic TDP-43 inclusions 
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have been implicated as a major player in the initiation and 
progression of neurodegeneration [12, 13].

Both central and peripheral inflammation have been 
well established in ALS, with this pathology encompass-
ing increased levels of inflammatory cytokines including 
tumour necrosis factor α (TNF-α) and interleukins (IL-1β, 
IL-4, IL-6 and IL-10) the involvement of non-neuronal cells 
including activation of microglia and astrocyte dysfunction, 
and T lymphocyte infiltration into the central nervous system 
(CNS) [14–17].

Expression of endogenous retroviruses (ERVs) has also 
been implicated in neurodegenerative mechanisms in ALS 
[18]. ERVs are remnants of ancient viral infection that 
became fixed within the genome. Due to mutations and 
deletions, ERVs were thought to be inactive and lack cod-
ing capacity [19, 20]. However, their involvement in ALS 
has been investigated with ERV transcripts discovered in 
the brain tissue from ALS patients [21] and with elevated 
reverse transcriptase (RT) levels in the serum and cerebral 
spinal fluid (CSF) of ALS patients [22]. ERV reactivation 
and TDP-43 proteinopathy have both been associated with 
increased inflammation, and hence a link between ERVs, 
TDP-43 and inflammation is thought to be a driving factor 
behind neurodegeneration in ALS [23, 24]. The mechanisms 
of TDP-43, neuroinflammation and ERVs in ALS will be the 
focus of this review, and the interplay between these three 
mechanisms will be discussed. The rationale for the use of 
antiretroviral therapy for ALS based on the involvement of 
ERVs will also be reviewed.

Genetics and Pathophysiology of ALS

Inherited genetic causes, known as familial ALS, account 
for 10% of cases, while the remaining 90% are regarded as 
sporadic [25]. Interestingly, twin studies have revealed that 
there is 65% heritability in familial ALS and up to 37% herit-
ability for relatives of an individual with no known genetic 
risk, demonstrating a strong genetic influence for develop-
ing ALS [26]. Within familial ALS, 60% of familial cases 
are accounted for by 4 genes including GGG​GCC​ hexanu-
cleotide repeats in chromosome 9 open reading frame 72 
(C9orf72; 40%) [27, 28], missense mutations in superoxide 
dismutase 1 (SOD1; 12%) [29], point mutations in TAR 
DNA binding protein 43 (TDP-43; 4%) [10] and point muta-
tions in the fused in sarcoma gene (FUS; 4%) [30, 31]. The 
remaining 40% of familial cases are thought to be explained 
by rare gene mutations in a number of ALS linked genes 
including TANK-binding kinase 1 (TBK1), NIMA-related 
kinase 1 (NEK1) and additional yet-to-be identified genes 
[15, 32].

The identification of genes involved in ALS pathology 
has helped elucidate some of the mechanisms underlying 

neurodegeneration including protein accumulation from 
SOD1 and TARDBP [15, 33, 34]. Other known neurode-
generative mechanisms include excitotoxic mechanisms as 
a result of increased glutamate levels [35], impaired protein 
homeostasis resulting in misfolded protein accumulation 
[36], axonal transport dysfunction [37], mitochondrial dys-
function [38], neuroinflammation [39] and TDP-43 pathol-
ogy [13].

TDP‑43 Mislocalisation is Associated 
with Progression of ALS

TDP‑43 Structure and Function

TDP-43 contains a nuclear localisation sequence, a nuclear 
export signal, two highly conserved RNA recognition motifs 
(RRM1 and RRM2) and a glycine-rich C-terminal domain 
[33]. The nuclear localisation sequence and nuclear export 
signal enable the transport of TDP-43 between the nucleus 
and the cytoplasm through importin-α [40]. The RNA rec-
ognition motifs enable the identification and binding of the 
TDP-43 to RNA, while the glycine-rich domain of TDP-43 
is critical for protein–protein interactions [11, 41, 42]. The 
functions of TDP-43 occur predominately within the nucleus 
where TDP-43 binds to DNA and RNA and is involved in 
transcriptional regulation, RNA splicing and stability and 
transport of mRNA [43, 44]. TDP-43 also has cytoplasmic 
functions including translation, mRNA transport and stress 
granule formation [12, 45, 46]. TDP-43 was first described 
as a transcription factor that regulates the transcription of 
the human immunodeficiency virus (HIV) trans-activation 
response (TAR) element to repress HIV-1 transcription [47]. 
Since then, TDP-43 has been identified as a transcriptional 
repressor involved in the repression of a spermatid-specific 
gene ACRV with the promotor region containing TDP-43 
binding sites [48]. Lalmansingh et al. [49] experimentally 
identified the role of TDP-43 in transcriptional repression 
of ACRV, localising the repressor activity to the RRM1 
region of TDP-43. Mutations in TDP-43 causing dysfunc-
tional RRM1 mitigated the repressor activity of TDP-43. 
In addition, TDP-43 was also found to be involved in the 
alternative splicing of human cystic fibrosis transmembrane 
conductance regulator (CFTR) exon 9 [50] and human sur-
vival of motor neuron 2 (SMN2), a gene associated with 
sporadic ALS [51]. Furthermore, TDP-43 also regulates the 
alternative splicing of ciliary neurotrophic factor receptor 
(CNTFR), a protein that is implicated in neurodegeneration 
[52–54].

In 2006, the initial link between TDP-43 and familial 
ALS was identified through the presence of ubiquitinated 
and hyper-phosphorylated TDP-43 inclusions in histologi-
cal sections of the cortex and spinal cord, which are now 
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considered a hallmark pathology of ALS [10, 55]. Since 
this discovery, approximately 35 ALS-causing mutations 
related to TDP-43 have been discovered [56, 57]. Most of 
these mutations are missense mutations located within the 
glycine-rich domain of the protein with only 4 mutations in 
the RRM1 and RRM2 domains [33, 58]. These single nucle-
otide mutations interrupt the function of the glycine-rich 
C-terminal domain, impairing protein–protein interactions 
including its direct binding to members of the heterogenous 
nuclear ribonucleoprotein family, which are involved in 
alternative splicing. Some mutations have been proposed to 
alter TDP-43 phosphorylation sites, which has been hypoth-
esised to result in the accumulation of protein aggregates 
and hyperphosphorylation of TDP-43, potentially involved 
in neurodegeneration [59, 60].

Another potential mechanism contributing to the forma-
tion of TDP-43 protein aggregates is via the disruption to 
the autoregulatory activity of TDP-43. Under normal con-
ditions, TDP-43 self-regulates its own expression through 
binding to 3′UTR sequences in its own mRNA, promoting 
degradation to decrease TDP-43 levels [61]. However, this 
self-regulating negative feedback loop is affected by non-
functional TDP-43 aggregates that are unable to bind the 
mRNA, increasing TDP-43 levels and perpetuating the neu-
rodegenerative process [61].

TDP‑43 Involvement in Neurodegeneration

One hypothesis for TDP-43 linked neurodegeneration is a 
loss-of-function of nuclear TDP-43. DNA damage and an 
impaired DNA repair system have been proposed as a cause 
of neurodegeneration from nuclear loss of TDP-43 [62, 63]. 
In neuronal SH-SY5Y cells with an inducible TDP-43 deple-
tion system, an increase in unrepaired DNA double-strand 
breaks correlated with the level of TDP-43 depletion in a 
dose-dependent manner and was independent of cytoplasmic 
aggregations [63]. Similarly, changes in expression of genes 
related to DNA damage have been observed in pathology-
affected neurons from neocortex brain tissue from ALS 
patients and associated with loss of nuclear TDP-43 [64]. 
Loss of nuclear TDP-43 has been suggested to cause neuro-
degeneration by altering RNA processing as determined by 
altered patterns of gene splicing in shRNA-mediated TDP-
43 knock-down in NSC34 cells [65].

In addition to loss-of-function TDP-43-associated neu-
rodegeneration, a gain of toxicity from the cytoplasmic 
TDP-43 inclusions may also induce neurodegeneration. 
Barmada et  al. [66] used rat primary cortical neurons 
transfected with constructs encoding human ALS-linked 
mutant TDP-43 or wild-type TDP-43, to identify the 
effects of TDP-43 nuclear clearance and cytoplasmic 
aggregation on neuronal death. Transfection of mutant 
TDP-43 increased the presence of cytoplasmic TDP-43 

aggregates compared to the wild-type TDP-43 transfected 
cells, and the level of cytoplasmic TDP-43 was an accurate 
predictor of cell death, indicating gain-of-function toxic-
ity [12, 66]. Gain-of-function toxicity from cytoplasmic 
TDP-43 occurs through both the disruption of protein syn-
thesis and transport [67] and mitochondrial dysfunction 
[68]. Aberrant TDP-43 accumulation within the cytoplasm 
results in the formation of stress granules and ribonucleo-
protein complexes and reduces protein synthesis within 
the axon and synapse [46, 69]. These translation deficits 
influence synaptic function and reduce the integrity of the 
neuromuscular junction, resulting in muscular atrophy. In 
human induced pluripotent stem cell (iPSC)-derived motor 
neurons, clearance of the axonal accumulation of TDP-43 
restored the function of the neuromuscular junctions [70].

As mentioned above, a gain-of-function toxicity from 
cytoplasmic TDP-43 can also influence mitochondrial func-
tion. Using transgenic mice expressing wild-type hTDP-43 
under a mouse prion promoter, Xu et al. [71] identified 
aberrant mitochondrial aggregation and dysfunctional mito-
chondrial mechanics from TDP-43 overexpression in the 
cytoplasm. Similarly, TDP-43 was found to be aggregated 
within mitochondria isolated from the spinal cord and cortex 
neurons in ALS patients [72]. In HEK-293 cells overexpress-
ing wild-type or mutant TDP-43, TDP-43 localised within 
the mitochondria and disrupted mitochondrial function 
determined through increased mitochondrial fragmentation 
and reduced ATP levels [72]. Blocking TDP-43 localisa-
tion via genetic ablation of the mitochondrial localisation 
sequence reduced TDP-43 localisation to the mitochondria 
and reduced the neuronal loss and mitochondrial fragmenta-
tion compared to mutant TDP-43.

In conclusion, the combined effects of both loss of 
nuclear TDP-43 and the gain of toxic cytoplasmic TDP-
43 aggregates should not be ruled out as the cause of 
TDP-43-related neurodegeneration. Knock-down of 
endogenous TDP-43 by siRNA in the murine spinal cord-x 
neuroblastoma hybrid cell line (NSC-34) was used to 
measure cell viability in the absence of cytoplasmic TDP-
43 aggregates. Neuronal toxicity was indicated by both 
a significant reduction in cell viability and an increase 
of caspase-3 activity was found, suggestive that loss-of-
function toxicity can occur without the need for TDP-43 
aggregation. However, a similar result was found when 
TDP-43 inclusion bodies were intracellularly delivered 
via a plasmid expressing human TDP-43 into the NSC-34 
cell line to mimic cytoplasmic aggregation. The relative 
contributions of loss-of-function and gain-of-function 
toxicity were calculated and determined to equally 
contribute to neuronal toxicity [73].

It has been proposed that another mechanism of TDP-
43-associated neurodegeneration involves the expres-
sion of ERVs, which were previously thought to remain 
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dormant within the genome. This mechanism is discussed 
further below.

Neuroinflammatory Involvement in ALS

The Role of Inflammation in ALS Neurodegeneration 

The impact of inflammation has been well established in 
ALS with dysregulation of inflammatory cytokines in ALS 
patients, involvement of astrocytes and microglia, and T 
lymphocyte infiltration into the CNS linked to ALS disease 
progression [74]. Animal models of ALS including SOD1, 
C9orf72 and TARDBP also have dysregulated inflamma-
tory processes, as seen in human ALS [14, 75, 76]. Trans-
genic mice with a loss-of-function C9orf72 mutation had 
increased inflammatory cytokine expression within plasma 
and reduced survival rates compared to wild-type controls 
[77]. Furthermore, a TDP-43Q331K mouse model was used to 
investigate the inflammatory processes with the transgenic 
TDP-43 mice showing increased microglial activation that 
correlated with motor deficits and subsequent increased 
progression of neurodegeneration compared to WT mice 
[78]. Modulation of the inflammatory processes evident 
in these animal models has provided evidence for slowing 
motor neuron degeneration and extending animal survival. 
For instance, cytotoxic CD8 T cells infiltrate the CNS selec-
tively destroying motor neurons in mutant SOD1G93A mice 
and increase the expression of interferon-γ (IFN-γ) [79]. 
Removal of this cell population via genetic ablation results in 
a slowing of this selective motor neuron degeneration. While 
the role of the immune system has been explored in the more 
common forms on inherited ALS, less frequent mutations in 
OPTN, SQSTM1, VCP and TBK1 are also associated with 
inflammation [14, 80]. In addition, patients with sporadic 
ALS exhibit an activated immune phenotype including 
changes in cytokine concentrations including TNF-α, IL-1β, 
IL-4, IL-6 and IL-10 in serum [81–83]. Other inflammatory 
markers that can be detected within CSF, serum or urine of 
ALS patients includes monocyte chemoattractant protein 1 
(MCP-1), C-reactive protein (CRP) and neopterin [83–85].

Dysregulation of the cGAS/STING Pathway 
Influences Immune‑Mediated Neurodegeneration 
in ALS

The cyclic guanosine monophosphate-adenosine monophos-
phate (cGAMP) synthase (cGAS) and stimulator of inter-
feron genes (STING) pathway (cGAS/STING) pathway has 
been implicated in neuroinflammation-mediated neurode-
generation [86, 87]. cGAS detects danger signals such as 
double-stranded DNA within the cytoplasm and triggers the 
formation of cyclic cGAMP. cGAMP binds to STING and 

subsequently activates TBK1 resulting in phosphorylation 
of interferon regulatory factor (IRF) 3, IRF7 and release 
of nuclear factor kappa-light-chain-enhancer of activated 
B cells (NF-κB) from the cytoplasm. These transcription 
factors move to the nucleus and subsequently induce tran-
scription of mRNA for multiple inflammatory factors such 
as IL-6 and TNF-α and interferons (IFNs) including IFN-α 
and IFN-β and released from the cell [88, 89]. Translation 
and release of IFN-α and IFN-β from these cells can act on 
neighbouring cells via the IFN-α/β receptor (IFNAR) to acti-
vate the Janus-associated kinase (JAK) and signal transducer 
and activator of transcription (STAT) pathway and induce 
transcription for interferon-stimulated genes (ISGs) [90]. 
Under normal physiological conditions, the cGAS/STING 
is neuroprotective and produces an immune response to clear 
unwanted pathogens and prevent cell death [87]. However, 
aberrant activation of this pathway has been linked to neu-
rodegeneration, where increased IFN production results in 
faster disease progression [91, 92]. ALS mouse models have 
been used to investigate the role of cGAS/STING in neuro-
degeneration. In C9orf72−/− mice, there is an upregulation 
of type 1 IFNs resulting in systemic CNS inflammation due 
to increased cGAS-STING pathway signalling [93]. Through 
STING−/− in a neurodegenerative disease model, Nazmi 
et al. [94] proposed a STING-dependent toxic increase in 
IFNs, resulting in neurodegeneration through microglial 
phenotype modulation. Furthermore, a recent investigation 
has demonstrated that TDP-43 cytoplasmic mislocalisation 
results in mitochondrial DNA release that also activates 
the cGAS/STING pathway, resulting in the upregulation 
of NF-kB and IFN pathways [86]. In contrast, inhibition 
of STING using a validated STING inhibitor, H-151 [95] 
in ALS patient derived iPSCs and a TDP-43 mouse model 
normalises IFN levels, resulting in reduced neuronal loss and 
improved motor performance in mice [86], providing further 
evidence for the role of inflammation in the propagation of 
neurodegeneration in ALS (Fig. 2).

To further outline the role of the immune response in 
neurodegeneration, TBK1 mutations have also been linked 
to ALS in a small number of familial ALS cases [96, 97]. 
TBK1 is involved in the cGAS/STING pathway and induces 
IFNs while also being involved in autophagy mechanisms 
[98]. The dysregulation of TBK1 could be contributing to 
neurodegeneration through disrupted autophagy resulting in 
aberrant protein aggregation or through increased neuroin-
flammation from activation of the inflammatory pathways 
involving TBK1 [99].

Non‑neuronal Cells and Release 
of Pro‑inflammatory Cytokines in ALS

Neuroinflammation in ALS includes the activation of micro-
glia and the polarisation of microglia into two different 
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phenotypes, either pro-inflammatory, M1, or anti-inflam-
matory, M2 [14]. In early stages of ALS, activated micro-
glia produce a neuroprotective response with production of 
anti-inflammatory cytokines, such as IL-4 and IL-10, and 
are referred to as M2 microglia [100, 101]. Further into ALS 
disease progression, microglia become activated into an M1 
phenotype with neurotoxic properties, releasing pro-inflam-
matory cytokines including IL-1β, TNF-α, IL-6 and IL-18 
[102, 103]. As the disease progresses, levels of pro-inflam-
matory cytokines including TNF-α and IL-6 are increased in 
the blood and CSF from ALS patients compared to healthy 
controls or patients with other neurological diseases such 
as Parkinson’s disease [104–106]. TNF-α also mediates 
the activation of NF-κB which has apoptotic and neuro-
toxic properties, with increased activation of the NF-κB 
signalling pathway in ALS, driving further inflammatory 
cytokine release [74, 107]. TDP-43 and SOD1 aggregates 
within microglia are likely to induce a pro-inflammatory M1 
phenotype due to increased NF-κB signalling pathways and 
NLRP3 inflammasome [108, 109].

Astrocyte-mediated neurotoxicity has been proposed to 
be caused by protein aggregation such as mutant SOD1 and 
TDP-43 [110, 111]. Furthermore, astrocytes may contrib-
ute to neurodegeneration through alteration of secreted fac-
tors [112]. In healthy function, astrocytes provide the sur-
rounding motor neurons with neurotrophic factors such as 
brain-derived neurotrophic factor (BDNF) [113]. In ALS, 
astrocytes release toxic factors such as nitric oxide, trans-
forming growth factor β1 (TGF-β1) and pro-inflammatory 
cytokines to the surrounding motor neurons and microglia 
[114, 115]. Overexpression of astrocyte-derived TGF-β1 in 
SOD1G93A mice was shown to reduce the neuroprotective 
state of microglia and resulted in faster disease progression 
[116]. Moreover, an astrocyte cell line treated with CSF 
from ALS patients showed impaired regulation of nitric 
oxide and release of pro-inflammatory cytokines, IL-6 and 
TNF-α compared to control CSF and reduced release of 
neurotrophic factors [117]. In the pro-inflammatory state, 
T-helper type 1 cells also release IFN-γ which can further 
activate IRF-1 and NF-κB [118, 119].

In conclusion, while the exact mechanism of neuroinflam-
mation-mediated neurodegeneration remains unknown, it is 
proposed to occur through a perpetual cycle of motor neuron 
death and sustained microglia and astrocyte activation with 
neurotoxic pro-inflammatory cytokine increases (Fig. 2). 
Cell-to-cell spread of toxicity occurs between non-neuronal 
cells and surrounding motor neurons to propagate neurode-
generation [120, 121]. The use of anti-inflammatories has 
been used to target neuroinflammation-mediated neurode-
generation in vitro including tocilizumab, an IL-6 receptor 
antagonist [122], and lenalidomide and thalidomide, a TNF-α 
antagonist [39, 123]. However, a phase II clinical trial of 
thalidomide in ALS patients did not show any differences in 

disease progression according to the ALS functional Rating 
Scale Revised (ALSFRS-R), compared to historical controls, 
and no significant changes in serum levels of TNF-α were 
determined [124]. A phase II clinical trial of an immune 
regulator, NP001, identified slower progression of ALS in 
patients with higher C-reactive protein levels at baseline but 
failed to reach significance in the whole cohort [125]. Target-
ing other players involved in neuroinflammation, such as the 
cGAS/STING pathway (Fig. 2), has been proposed as another 
potential therapeutic avenue for ALS, with STING inhibitors 
already in development [126, 127].

Endogenous Retroviruses are Associated 
with the Progression of ALS

Retrovirus Structure

Retroviruses are enveloped, positive-sense single stranded 
RNA viruses [128]. Retroviruses use an RNA-dependent 
DNA polymerase (RdDpol), termed reverse transcriptase (RT) 
that enables transcription of their viral RNA to viral DNA 
during replication. This is a unique property of some viruses 
and not a normal function found in eukaryotic cells. Instead, 
in eukaryotic cells, transcription of cellular genes converts 
DNA to RNA by DNA-dependent RNA polymerase (DdRpol) 
[129]. Retroviruses that are transmitted between individuals 
are considered as exogenous retroviruses. Two pathogenic 
exogenous retroviruses that infect humans are HIV and human 
T cell leukaemia virus type 1 (HTLV-1) [130]. The retrovirus 
particle consists of an RNA genome packaged with replication 
machinery, including integrase and RT inside the capsid core 
and surrounded by the envelope containing viral glycoproteins 
and lipid derived from cell membranes. When an exogenous 
retrovirus infects a cell, the genomic RNA is reverse tran-
scribed into double-stranded DNA in the cytoplasm, that then 
moves to the nucleus and integrates into the chromosome of 
the host cell forming a provirus.

The proviral DNA genome consists of gag, pol and env 
coding regions, flanked by long terminal repeats (LTRs). Gag 
(group-specific antigen) encodes structural proteins including 
the capsid, matrix and nucleocapsid; pol encodes the enzy-
matic functions of the virus, viral protease, RT and integrase; 
and the env encodes the surface and transmembrane glyco-
proteins, gp120 and gp140 [129]. Complex retroviruses also 
contain accessory genes such as tat within the HIV genome, 
encoding a transcriptional activator. Each LTR consists of 
a unique 3′ region (U3), a repeat (R) and unique 5′ region 
(U5). The U3 region of the LTRs serves as the viral promoter 
regions controlling gene expression. The R region contains 
the trans-activation response element (TAR), which interacts 
with viral tat protein during transcription and recruits cellular 
factors to enhance viral gene transcription [129].
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Endogenous Retroviruses: Structure and Function

ERVs are a type of transposable element which is a type of 
mobile genetic element that can move to other locations in 
the genome. Transposable elements are classified as DNA 
transposons or RNA transposons. Based on the presence of 
LTRs, retrotransposons are further classified into non-LTRs 
including short interspersed nuclear elements (SINE) and 
long interspersed nuclear elements (LINE) or ERVs with 
LTRs. LTR retrotransposons can be transcribed from the 
host cell genome into ERV RNA, then, in the same cell, 
reverse transcribed back into double-stranded DNA and re-
integrated into another site of the host genome [131, 132]. 
This would have the potential to be damaging to the host 
cell genome, and hence many species, including humans, 
have cellular processes to restrict this from happening [133]. 
ERVs are then classified into three different classes based 
on their homology to exogenous retroviruses genera. Class 
I encompasses gammaretroviruses, class II encompasses 
betaretroviruses and Class III spumaviruses [131]. The rela-
tionship between classification of transposable elements and 
ERVs is seen in Fig. 1A. One type of ERV, HERV-K (HML-
2) and its association with ALS is discussed further below.

While exogenous retroviruses are capable of horizontal 
transmission from person to person and produce infec-
tious virions, ERVs, in contrast, are traditionally not 
thought to produce infectious virions and are not hori-
zontally transmitted. Instead, ERV’s have integrated into 
the host genome and are vertically transmitted through 
the germ lines [131, 135]. The process of germ-line inte-
gration of ERVs occurred millions of years ago with the 
subsequent process of endogenization. After endogeni-
zation within the genome, the virus no longer produces 
an infectious particle and lacks the capacity to infect as 
an exogenous retrovirus [136]. Eventually, ERVs will 
be fixed within the genome and inherited within every 
member of the species. The koala retrovirus is believed 
to be an example of a current exogenous retrovirus in the 
process of endogenization in the koala population [137]. 
In humans, ERVs compose 8–10% of the human genome, 
usually thought to be transcriptionally silent and lack the 
ability to transpose [131, 138]. In contrast, 10% of the 
mouse genome is comprised of endogenous retroviruses 
and, unlike human ERVs, most murine ERVs remaining 
transcriptionally active [139, 140].

HERV Benefit and Role in Disease

Most human endogenous retroviruses (HERVs) are not tran-
scribed and contain deletions and mutations resulting in a 
lack of functional protein production and lack the compo-
nents required for a functional virus [141]. Recently, how-
ever, transcriptional activation of ERV elements in humans 

has been proposed as a causative factor or progressive factor 
for a multitude of diseases, including ALS [134, 142–144]. 
One type of HERV, HERV-W, does have a physiological 
benefit to the host with an important placental protein, 
syncitin-1, encoded by the HERV-W envelope gene [145]. 
Syncitin-1 aids in trophoblast fusion and is a necessary step 
in the healthy formation of the placenta [146]. Abnormal 
expression of syncitin-1 has been associated with preg-
nancy-related disorders, such as pre-eclampsia and other pla-
centa-related pathologies [147]. While this type of HERV-W 
plays an important role in placental development, HERV-W 
expression has also been associated with multiple sclero-
sis (MS) pathology [148]. Several studies have identified 
increased levels of HERV-W env protein within brain tissue 
and PBMCs from MS patients compared to healthy controls 
[149–152]. The reactivation of HERV-W and the association 
with MS have been proposed to be caused by an exogenous 
viral infection from Epstein-Barr virus [148, 153, 154].

Thus, while some HERVs have physiological importance, 
dysfunctional expression of these HERVs can have detri-
mental effects on the host. Other HERVs have been cor-
related with a variety of diseases: HERV-K, HERV-E, and 
HERV-W are associated with cancers such as ovarian cancer 
and breast cancer [155–158], HERV-W and HERV-K are 
associated with autoimmune diseases [155, 159], and HERV-
W is associated with schizophrenia [160, 161].

The evolutionarily youngest ERV to enter the human 
genome is HERV type K (HERV-K), which is predicted to 
have endogenized into the human genome approximately 
700,000 years ago [162]. HERV-K is a class II ERV and is 
referred to as type K due to the use of lysine (single amino 
acid code, K) tRNA as a reverse transcription primer. HERV-
K is further classified into 10 families denoted from HML-1 
to HML-10 based on their similarity with the mouse mam-
mary tumour virus (MMTV), a prototype used for compari-
son when new HERVs first became to be described [163]. 
Human endogenous mouse mammary tumour virus like-2 
(HML-2) is the best preserved HERV-K element, maintain-
ing the capability of encoding viral proteins such as the env 
protein [164]. The delineation of HERV-K and HML sub-
types is shown in Fig. 1A, and the HERV-K proviral genome 
structure can be seen in Fig. 1B [155, 165].

Two LTR regions are also present on a portion of other 
HERV families [165, 166]. HERV-K (HML-2) is further 
classified into two types based on the expression of acces-
sory genes. HML-2 type I proviruses have a 292 bp deletion 
within env and encode accessory protein, Np9 while type II 
proviruses encode accessory protein, Rec [167]. Rec is simi-
lar to HIV-1 Rev accessory gene, a protein that is involved 
in RNA splicing. While the biological role of these proteins 
is still unclear, mRNA transcripts for Rec and Np9 from 
multiple HERV-K loci have been found in many human tis-
sue types [168].
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Many of the HERVs that exist in the human genome are in 
the form of solitary LTRs [19, 20]. However, some HERVs, 
as described above for HERV-K and HERV-W, retain intact 
open reading frames (ORFs), with the ability to produce 
functional proteins [169, 170]. Approximately 950 soli-
tary LTRs have been described in the human genome [163] 
with 17 identified full-length HERV-K [171–173]. Both the 
solo LTRs and the HERV-K proviral elements capable of 

producing RNA and proteins have been implicated in dis-
eases [173].

Human Endogenous Retrovirus Type K is Associated 
with ALS

The link between ALS and retrovirus activity was first 
identified in 1975, through discovery of RT activity in 

Fig. 1   Human endogenous retrovirus type K (HERV-K) elements 
in the human genome. A HERV-K is a Class II betaretrovirus that 
is long terminal repeat (LTR) containing retrotransposons present 
within the human genome. HERV-K is distinct from other endog-
enous elements such as DNA transposons, the non-LTR retrotrans-
posons such as long interspersed nuclear elements (LINE) and short 
interspersed nuclear elements (SINE). HERV-K is related to other 
LTR-containing endogenous retroviruses such as HERV-W (a Class I 
gammaretrovirus) and the Class III spumaviruses. The HERV-K fam-
ily is further subdivided into 10 human mammary tumour-like (HML) 

elements, where HERV-K (HML-2) is further grouped into type I 
(np9) and type II (rec) based on the envelope sequence, as shown in 
(B) HERV-K (HML-2) represents full-length provirus, approximately 
9.5 kb, with a capacity to generate infectious virus by virtue of the 
presence of 2 complete LTR’s containing U3, R and U5 regions that 
flank the viral structural proteins gag, pol and env. type I env region 
encodes the accessory protein np9, while type II harbours an addi-
tional 292 base pair region in the env ORF and encodes the accessory 
protein Rec.  Adapted from Li et al. [134]. Figure made in BioRender
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brain tissue of two ALS patients [174]. Further studies con-
firmed this finding with elevated RT levels in serum and 
CSF of ALS patients without exogenous retroviral infection 
[175–177]. Andrews et al. [175] demonstrated increased RT 
levels in 59% of the 56 ALS patients compared to 5% of the 
58 controls. In a separate cohort of 14 ALS patients, RT 
activity in serum was detected in 47% of the ALS patients 
compared to 18% in the controls. However, RT activity 
was also elevated in blood relatives of the ALS patients in 
this cohort [18, 176]. Rare cases of an ALS-like syndrome 
were observed in patients infected with exogenous retrovi-
ruses such as HIV-1 [178, 179]. Additionally, these motor 
symptoms were observed to be reversed in the HIV positive 
patients after they were inititated on antiretrovial therapy 
(ART). This association between HIV and development of 
ALS-like motor symptoms was proposed to occur through 
activation of a specific endogenous retrovirus, HERV-K with 
a reduction in the levels of HERV-K DNA within the plasma 
after ART [19, 180].

Experimental studies further supported the proposed 
association between ALS and ERVs. Hadlock et al. [181] 
evaluated the immunoreactivity of ALS patient serum to 
HML-2 gag protein. Their study observed that ALS patient 
serum had greater than fivefold higher IgG reactivity to 
recombinant gag (57% vs 11% in ALS patients and age-
matched controls respectively). This finding suggests that 
HML-2 gaga can induce an antibody response in ALS 
patients and the involvement of ERVs in Immune-mediated 
ALS has been proposed [178].

Recently, an antibody response to specific epitopes of 
HERV-K (HML-2) env has also been demonstrated with a 
greater antibody response in ALS patients compared to age- 
and sex-matched controls [182].

Furthermore, HERV-K pol transcripts, measured through 
quantitative real-time PCR, in the brain tissue from the pre-
frontal cortex, sensory cortex and occipital cortex of 28 ALS 
patients were compared to levels in brain tissue from people 
who succumbed to other diseases. These HERV-K pol tran-
scripts were found to be significantly higher in ALS patients 
than age-matched controls [21]. Post-mortem cortical brain 
tissue analysis from 11 ALS patients using RT-PCR iden-
tified increased expression of 3 HERV-K genes, gag, pol 
and env compared to control brain tissue [134]. Transfection 
of a construct to express the HERV-K env gene in human 
neuronal cultures, derived from iPSCs, has demonstrated 
the toxicity env, with reduced viable neuronal cell number 
after env transfection [134]. Similarly, Steiner et al. [22] 
found an increase of HERV-K env protein in CSF from 11 
out of 15 ALS patients measured through immunocapillary 
Western blot and in only one healthy age-matched control. 
The authors also demonstrated the neurotoxic properties 

of HERV-K env protein through intracerebral injection of 
recombinant env protein into mice, showing a reduction in 
neuronal cell number 1-week post-injection compared to 
control injection. These results provide further support for 
a role of HERV-K in neurodegeneration in ALS.

Association Between HERV‑K, TDP‑43 
and Inflammation May Cause neurodegeneration 
in ALS

The association between HERV-K and ALS pathology is 
proposed to occur through an interaction with TDP-43. 
Importantly, chromatin immunoprecipitation identified 
5 binding sites for TDP-43 on the consensus sequence of 
HERV-K LTR [134]. This suggests that TDP- 43 may be 
involved in HERV-K transcriptional regulation, discussed 
previously in the “TDP-43 structure and function” section 
[47]. HERV-K RT expression is positively correlated with 
TDP-43 protein levels within the cortical brain tissue and 
human neuronal cells from iPSCs supporting this regulatory 
link [21, 134]. An in vitro study with cultured human neu-
ral progenitor cells transfected with a construct to express 
mutant human TDP-43 identified an increase in HERV-K RT 
mRNA levels in the transfected cells compared to untrans-
fected cell [183].

HERV-K has also been shown to influence TDP-43 
expression and aggregation [134, 184]. Ibba et al. [185] 
proposed an association between HERV-K and TDP-43 
when disruption of HERV-K env throughout the genome 
resulted in a decrease in TDP-43 mRNA and protein lev-
els in human prostate adenocarcinoma cells. While previ-
ous findings have identified TDP-43-dependent increases in 
HERV-K expression [183], the above finding demonstrates 
the inverse relationship in that HERV-K is capable of regu-
lating TDP-43 mRNA and protein expression levels, sug-
gesting a positive feedback loop of TDP-43 and HERV-K 
activation [185, 186]. Chang and Dubnau [187] established 
a drosophila model expressing TDP-43 within glial cells 
to elucidate the mechanisms of ERV-TDP-43 involvement 
in neuronal damage. In this model, glial TDP-43 protein 
aggregates increased the expression of drosophila ERVs 
within the glial cells. This increased ERV expression within 
glia resulted in increased cellular release of neuronal toxic 
factors that induced DNA damage and neuronal death in 
surrounding neurons. These studies provide evidence for a 
self-perpetuating feedback loop between HERV-K and TDP-
43 as a potential mechanism of neurodegeneration in ALS.

As outlined above, there is increased activity of tran-
scription factors that drive inflammatory mediator produc-
tion including IRF-1, IRF-3 and NF-κB in ALS [74, 188]. 
The TDP-43 promoter has binding sites for IRF-1, IRF-3 
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and NF-κB, suggesting the role of activation of these tran-
scription factors in driving increased expression of TDP-43 
and potentially TDP-43 proteinopathy. Similarly, HERV-K 
expression is induced by inflammatory mediators within 
neurons and non-neuronal cells. HERV-K LTR consensus 
sequences contain two interferon-stimulated response ele-
ments, which will activate HERV-K expression when acti-
vated by type I IFN signalling and activation of the JAK/
STAT pathway [189]. Furthermore, IFN-γ has been experi-
mentally shown to increase transcription of HERV-K gag 
and pol determined by q-RT-PCR and increased RT activ-
ity in an astrocytic cell line [190]. Additional evidence for 
the association between ERVs and inflammation has been 
demonstrated in vivo [23, 191, 192]. Genetic deletion of 
known ERV repressor, Trim28, in mice during development 
resulted in increased ERV expression in the adult cortex of 
the mice and increased microglia activation, suggestive of a 
pro-inflammatory environment in the brain [23].

In support of the relationship between inflammation and 
ERVs, NF-κB is also thought to induce HERV-K expres-
sion. Manghera et al. [24] demonstrated increases in HERV-
K expression, measured by levels of HERV-K RT activity, 
when transfected with constructs expressing NF-κB in 
human neural progenitor cells. Neuroinflammatory media-
tors such as TNF-α and NF-κB also increase TDP-43 expres-
sion which can drive further HERV-K expression and further 
neuroinflammation. This pathway may result in the neuro-
degeneration observed in ALS, with cell-to-cell spread of 
toxicity [193, 194].

Treatment of HERV‑K Associated ALS Through 
Antiretroviral Therapy

As described, HERV-K has been implicated in the causa-
tion and perpetuation of the signals that drive neurode-
generation in ALS. This and the early clinical anecdotal 
findings of improved ALS-like symptoms in HIV patients 
on ART led to the proposal that targeting ERVs could be 
used as a treatment for ALS, through ART designed to 
target HIV [180, 195]. Two early clinical trials investigated 
the effect of two different antiretrovirals in ALS patients, 
a nucleoside reverse transcriptase inhibitor (NRTI), Zido-
vudine and a protease inhibitor, Indinavir [196, 197]. Nei-
ther study identified any slowing of disease progression, 
although low sample sizes and poor adherence due to the 
advancing ALS symptoms resulted in inconclusive results. 
An in vitro study demonstrated the ability of an NRTI, 
abacavir, to inhibit HERV-K using a pseudotyped HERV-K 
with infectious capabilities. Pseudotyped HERV-K-infected 
HeLa cells were treated with abacavir, and HERV-K RT 
levels were examined through RT assay and determined 

to be significantly reduced [195]. Interestingly, abacavir 
was more potent against HERV-K than HIV as determined 
by significantly lower IC50 and IC90 concentrations of the 
drug. Triumeq is an example of combination ART that is 
widely used for treatment of HIV which consists of two 
NRTIs, abacavir and lamivudine and an integrase inhibi-
tor, dolutegravir, all of which are capable of penetrating 
the CNS [198–200].

Theoretically, the two reverse transcriptase inhibitors 
within Triumeq, abacavir and lamivudine could inhibit the 
formation of HERV-K double-stranded DNA inside cells 
where HERV-K has been activated. cGAS/STING is a cell 
sensor that detects dsDNA in the cytoplasm as a danger 
signal, and an activation of the cGAS/STING pathway has 
been suggested to occur in ALS [86]. Thus, NRTI actions 
to inhibit HERV-K RT activity and reduced production of 
dsDNA in the cytoplasm that would subsequently activate 
cGAS/STING can be envisioned as a mechanism that may 
underpin the therapeutic success of ART and agents such as 
Triumeq. It would be expected that such a treatment would 
reduce production of inflammatory mediators and to slow 
progression of ALS (Fig. 2).

Recently, the de-repression of HERV-K was proposed to 
be involved in ageing, with increased HERV-K gag, pol and 
env transcript levels and protein levels in senescent human 
mesenchymal progenitor cells (hMPCs) compared to pheno-
typically young cells [201]. The increased HERV-K levels 
in these cells coincided with increased activation of cGAS/
STING. Senescent hMPCs treated with abacavir showed 
reduced HERV-K DNA and reduced levels of inflammatory 
cytokines IFN-α, IFN-β and IL-1β measured through q-PCR 
compared to vehicle treated senescent hMPCs. Antiretrovi-
rals have also been shown to have anti-inflammatory prop-
erties, decreasing immune activation and inflammatory 
mechanisms as determined by reductions in TNF-α, IL-6 
and IFN-γ in patients with HIV [202, 203].

A phase IIa clinical trial for Triumeq as a treatment for 
ALS has recently been completed [204]. This clinical trial 
involved investigating the safety and tolerability of Triumeq 
in 40 patients with ALS across 24 weeks of treatment. Dur-
ing the 24 weeks, the amyotrophic lateral sclerosis func-
tional rating scale—revised (ALSFRS-R) was used as a pri-
mary outcome measure of disease progression along with 
secondary measures of respiratory function, grip strength 
and the biomarkers, p75ECD, neurofilament-light and phos-
phorylated neurofilament heavy. Levels of serum HERV-K 
were also measured through droplet digital PCR.

The results of the study showed patients on Triumeq 
treatment had a slower clinical decline as measured by the 
ALSFRS-R compared to pre-treatment. HERV-K DNA 
serum levels were significantly decreased over the treatment 
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course [204, 205]. This research has progressed to a phase 
III clinical trial to further assess the efficacy of Triumeq in 
halting the progression of ALS and increasing survival. This 
will be completed with approximately 400 ALS patients 
from Europe, UK and Australia. While the phase IIa clinical 
trial has shown promise, the mechanism of action of Tri-
umeq for use as an ALS therapeutic is still unclear. Interest-
ingly, another antiretroviral, raltegravir, has been trialled in 
relapsing remitting multiple sclerosis, but unfortunately this 
did not produce any clinical improvement [206].

Previous studies in mice and drosophila have identified 
the regulation of ERVs from TDP-43 expression suggesting a 
similar mechanism of TDP-43 binding to ERVs as is seen with 
HERVs and TDP-43 [207, 208]. Furthermore, a recent study 
has shown the effectiveness of using antiretroviral therapy on 
inhibiting mouse ERVs and reducing inflammation as shown 
by a reduction in IL-1β and Il-6 in abacavir-treated mice com-
pared to vehicle controls [201]. Therefore, mouse models may 
be useful for understanding the complex interplay between 
ERVs, TDP-43 and inflammation in human ALS and elucidat-
ing the benefits of Triumeq on this interaction.

Conclusions and Future Perspectives

The causation and progression of ALS are elusive, and the 
current approved therapeutics for ALS have limited effect 
[209]. The involvement of TDP-43 and the involvement of 
inflammatory processes are well-established in neurodegen-
eration in ALS, yet therapeutics targeting these mechanisms 
have not shown clinical efficacy [210]. The development and 
discovery of therapeutics for ALS require further investiga-
tion into the pathogenesis of ALS to determine candidate 
targets. The involvement of HERV-K has been experimen-
tally established to be involved in neurodegeneration and 
proposed to be associated with TDP-43 and neuroinflam-
matory mechanisms including the cGAS/STING pathway 
[86]. This involvement of HERV-K in ALS led to the ongo-
ing clinical trial of antiretroviral therapy for ALS patients 
(NCT05193994) with earlier trials having promising effects 
[204]. However, the exact mechanism of the involvement of 
HERV-K in neurodegeneration in ALS and the relationship 
with TDP-43 and neuroinflammation are still unclear. Future 
research will need to investigate the effects of antiretroviral 

Fig. 2   Depiction of the proposed interactions of HERV-K, TDP-43 
and inflammatory mediators in the process of neurodegeneration in 
ALS. A Astrocytes and Microglia release pro-inflammatory cytokines 
that can induce TDP-43 cytoplasmic mislocalisation in neurons. B 
Mislocalisation of TDP-43 to the cytoplasm de-represses HERV-K 
transcription which leads to the production of HERV-K RNA. The 
HERV-K mRNA is translated into HERV-K proteins including Gag, 
envelope (env) and the reverse transcriptase enzyme (RT) from the 
pol gene. The RT enzyme acts to reverse transcribe the HERV-K into 
double-stranded DNA (dsDNA). Cytoplasmic dsDNA is a danger sig-
nal that is recognised by and activates the cGAS/STING pathway that 
subsequently activates TBK1 resulting in phosphorylation of IRF3, 
IRF7 and release of NF-κB from the cytoplasm. These transcription 

factors move to the nucleus and subsequently induce transcription 
of mRNA for multiple inflammatory factors and interferons. Addi-
tionally, NF-κB can further drive HERV-K transcription. C Triumeq 
contains two RT inhibitors which could act on inhibiting the reverse 
transcription of HERV-K RNA into dsDNA to prevent the activation 
of cGAS/STING pathway. D This would be predicted to reduce the 
release of inflammatory mediators and prevent the spread of toxic-
ity between neurons. IRF3/7, interferon regulatory factors 3 and 7; 
NF-κB, nuclear factor kappa-light-chain-enhancer of activated B 
cells; TNF-α, tumour necrosis factor alpha; TGF-β1, transforming 
growth factor β1; NO, nitric oxide; P, phosphorylation; TBK1, tank 
binding kinase 1; IL-6, interleukin 6; T, Triumeq. Image made in 
BioRender
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therapy on HERV-K, TDP-43 proteinopathy and inflamma-
tory processes including inflammatory cytokine expression. 
Thus, further elucidating the functional relationship between 
HERV-K, neuroinflammation and TDP-43 will allow for a 
greater understanding of potential therapeutics to target the 
intersection of these mechanisms and hopefully slow or halt 
ALS disease progression.
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