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Abstract: High-rise building fires pose a serious threat to the lives and property safety of people. The
lack of reliable and accurate positioning means is one of the main difficulties faced by rescuers. In the
absence of prior knowledge of the high-rise building fire environment, the coverage deployment of
mobile base stations is a challenging problem that has not received much attention in the literature.
This paper studies the problem of the autonomous optimal deployment of base stations in high-rise
building fire environments based on a UAV group. A novel problem formulation is proposed that
solves the non-line-of-sight (NLOS) positioning problem in complex and unknown environments.
The purpose of this paper is to realize the coverage and deployment of mobile base stations in complex
and unknown fire environments. The NLOS positioning problem in the fire field environment is
turned into the line-of-sight (LOS) positioning problem through the optimization algorithm. And
there are more than three LOS base stations nearby at any point in the fire field. A control law which
is formulated in a mathematically precise problem statement is developed that guarantees to meet
mobile base stations’ deployment goals and to avoid collision. Finally, the positioning accuracy of our
method and that of the common method were compared under many different cases. The simulation
result showed that the positioning error of a simulated firefighter in the fire field environment was
improved from more than 10 m (the positioning error of the traditional method) to less than 1 m.

Keywords: swarm intelligence; trajectory planning; fire rescue; autonomous deployment; collaborative
positioning

1. Introduction

Due to the high land price, limited land resources, and the rapidly growing economy’s
demand for landmark buildings, high-rise and super high-rise buildings have become
one of the effective means to address the space demand of urbanization and economic
growth [1–3]. China is home to 5 of the world’s top 10 skyscrapers [4]. Statistics show that
the number of high-rise and super high-rise buildings in China have been in the forefront
in the world for eight consecutive years [5–7]. Although super high-rise buildings bring
people enjoyment in life and greatly save space, they also bring people many problems.
Fire is one of the most serious problems. According to statistics, urban high-rise building
fire accidents can account for more than 90% of all fire accidents [8,9], and it is difficult to
rescue and safely evacuate, which has brought huge losses to the national economy and
people’s lives and property.

The biggest problem in the high-rise building fire rescue and evacuation of people
in distress is positioning. Because the global positioning system (GPS) cannot be used in
the indoor environment and the positioning base station cannot be deployed in advance,
the positioning system in a high-rise building fire rescue has to face the impact of the
non-line-of-sight environment, which greatly affects the positioning accuracy and real time.
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Firefighters and people in distress cannot obtain their exact positions in real time, which
leads to the very low efficiency of rescue and evacuation. Therefore, the ultra-wide band
(UWB) positioning system is the best choice in this case. The accuracy of the UWB base
station coordinates affects the positioning accuracy of firefighters directly. So, obtaining
the accurate position of the UWB base stations is very significant for the firefighters’ safety.
But traditional methods are very difficult to obtain the accurate position of the base station
in an environment with unknown obstacles [10]. It cannot meet the needs for the rapid
deployment of UWB base stations.

Non-line-of-sight (NLOS) positioning means that there is at least one obstacle on
the straight line between the base station and the positioning objective. Whereas line-
of-sight (NLOS) positioning means that there is no obstacle on the straight line between
the base station and the positioning objective. Non-line-of-sight (NLOS) positioning is
much more difficult than LOS positioning so it has always been a bottleneck problem to
improve the positioning accuracy in complex environments [11]. Obstacle obstruction will
cause multipath effects, signal hysteresis, and other negative effects [12,13]. Up to now,
no ideal solution has been found [14,15]. Targeting this bottleneck problem, a method for
the autonomous deployment of positioning base stations based on swarm intelligence is
proposed. The cooperation among unmanned aerial vehicles (UAVs) is used to achieve
the autonomous coverage and deployment of the fire field, and the non-line-of-sight
environment is converted into the line-of-sight environment, so as to achieve the accurate
positioning of targets in the fire field environment.

Given a known environment without obstacles, the algorithms for the deployment of
base stations are well studied [16–18]. The main practical motivation and application for
the deployment of base stations in an ideal environment is to construct a communication
network in the air to provide wireless signal coverage for the fire field [19,20]. In recent
years, many scholars have applied machine-learning methods to solve control and path
planning problems in multi-agent systems, such as deep learning, reinforcement learning,
and deep reinforcement learning, and have achieved some success [21–23]. However, there
are still many big challenges in solving the control problem of multi-agent systems in
complex unknown closed environments, such as high-rise building fire fields. The multi-
agent system used for fire environment detection has extremely high requirements for
stability, reliability, environmental adaptability, lightweight, and so on. Machine learning
cannot meet the application requirements for the detection of a high-rise building fire field
because of the lack of interpretability and generalization.

Therefore, there has been very little work in the literature on how multi-UAV systems
solve the positioning problem of NLOS in an unknown complex closed and GPS-denied
environment with swarm UAVs. Existing works in the literature require robots equipped
with sensors that are able to localize themselves precisely. The literature [24,25] focuses
on using object-level features with both semantic and geometric information to model
landmarks in the environment not need a prior constructed precise geometric map, which
greatly releases the storage burden, especially for large-scale navigation. The algorithm
is effective, but the deployment needs the accurate positioning information of UAVs that
cannot meet the requirements for a high-rise building fire rescue. To the best of our
knowledge, this is the most feasible approach for solving the precise positioning problem
of a high-rise building fire rescue using GPS-denied swarm UAVs.

The main contribution and novel part in this paper is that it provides the approach
for transforming the NLOS positioning problem into the LOS positioning problem in a
2D unknown complex environment with swarm UAVs and a host computer. There are
two fundamental problems in the deployment of mobile base stations for coverage with
communication constraints. The first problem is how to control the movement and behavior
of multi-agent systems to realize a desired configuration. The second one is how to optimize
the deployment in order to enhance the efficiency of the multi-agent system. A UAV lands
and keeps static as a base station when UAV obtains the right position. Every UAV is
equipped with a UWB positioning device to obtain the distance to adjacent UAVs and
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Zigbee equipment to send its own relative position information to other adjacent base
stations and the host computer.

The rest of this paper is organized as follows: In Section 2, we formulate the prob-
lem and then define the sensing area of the UAV and the function of the sensing ability.
The optimization method for the autonomous cooperative coverage deployment of base
stations is presented in Section 3. The control law of multi-UAVs is given to make the cov-
erage deployment operation feasible in complex environments in the presence of unknown
obstacles and to ensure it can turn a non-line-of-sight environment into a line-of-sight envi-
ronment. Section 4 demonstrates the effectiveness and feasibility of the proposed approach
via computer simulations. Section 5 summarizes the paper and draws some conclusions.

2. Problem Formulation

To achieve precise target positioning in the fire field, there are two main problems to
be solved in the optimization algorithm for the autonomous deployment of base stations in
complex unknown environments.

1. How to realize the coverage deployment of mobile base stations in the fire field, and
ensure that the target at any point in the area will be surrounded by at least three base
stations nearby that can locate the target with LOS;

2. How to avoid collision when a large-scale multi-UAV system moves in a complex and
unknown environment.

This becomes more difficult in the absence of GPS for navigation and positions. With-
out the global information, agents can only obtain local localization via a limited informa-
tion exchange and estimate their own position or neighbor’s relative position based on the
relative distance they measured.

2.1. Study Objective

In the process of solving the first problem, we set the different coverage values for the
fire field according to the duration of the different area being detected and guided the UAV
to move to the area where it is not effectively detected (the coverage value of the area is
less than the effective coverage value).

2.2. Assumptions and Constrains

In this paper, a UAV is denoted by A. Let S be a region that it is required to cover. Let
N be the number of UAVs and let pi and vi denote the position and the velocity of UAV
Ai, respectively, i ∈ I = {1, 2, 3, . . . , N}. Each UAV Ai, i ∈ I, satisfies the following such
kinematic equations of motion:

.
pi = vi, i ∈ I (1)

Define the instantaneous coverage function Di as a continuous map that describes
how effective a UAV Ai senses a point p ∈ S. In this paper, we consider sensors with the
following properties:

(1) The communication of a multi-UAV system is fully connected.
(2) The detection probability of the on-board sensor is 100%, that is, the detection proba-

bility of the sensor detection equipment has no effect on the results.
(3) Each UAV has a limited sensory domain Di(t) with a sensory range Ri. The sensory

domain of each UAV is given by

Di(t) = {p ∈ S :||pi(t)− p||≤ Ri} (2)

Let the union of all coverage regions be denoted by D(t) = ∪i∈SDi(t).
(4) Without the loss of generality, we consider the vision-based sensor for aerial detection

may be modeled by following mathematical Formula (3). Each UAV’s sensor has a
circular sensing symmetry about the position pi, which is a practical property of a
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sensor in real applications. Within the sensing range of the UAV, each UAV has a peak
sensing capacity of Mi exactly at the position pi of UAV Ai. That is, we have

Di(qi, qi) = Mi > Di(q, qi), ∀q 6= qi (3)

Hence, the divergence angle of the detector is θ, the detection height is hi, then, the
sensing radius is Ri, as shown in Figure 1.
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(5) Mathematically, such a sensor function is a second-order polynomial function of
d =|qi − q|. Hence, the perceptual ability at the different position q of the UAV can be
given by

Gi(d) =


Mi

R4
i
(d2 − R2

i )
2 , d ≤ Ri

0 , d > Ri

(4)

The information accumulation of a point in the fire field obtained by a UAV using
the sensor increases with time, that is, the coverage value of a point in the area increases
with time. The coverage level of any point q ∈ Ωi from the initial time t = 0 to t is defined
as follows:

γi(q, t) =
∫ t

0
Gi(|qi − q|)dτ (5)

Let k ⊆ I be the subset of UAVs that covered q and the effective coverage by a subset
of UAVs Ak = {Ai|i ∈ k ⊆ I} in surveying q is then given by [26,27]

γk(q, t) =
∫ t

0
∑
i∈k

Gi(|qi(τ)− q|2)dτ (6)

It can be obviously seen that γk(q, t) is a non-decreasing function of time. That is,

∂

∂t
γk(q, t) = ∑

i∈k
Gi(|qi(τ)− q|) ≥ 0 (7)

3. Adaptive Control Law

In the process of solving the second problem, the traditional artificial potential field
method was abandoned. Because the acceleration of UAVs is limited, they need time
and space to brake and avoid collisions. Therefore, the alignment interaction range was
determined based on the expected optimal relation between the velocity difference and
distance. Consequently, the movement state of each UAV itself can be adjusted in real time
to effectively avoid collisions according to the relative distance and relative speed of the
surrounding objects.

The rationale of adaptive control law is to use the flocking aggregation morphology
control algorithm to enable the UAV group to construct a local network. The perception
range is expanded to avoid collisions through the information interaction between adjacent
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UAVs. In addition, the gradient descent method is used to optimize the navigation path in
real time to achieve the autonomous coverage and deployment of the UAV group to the
fire field.

When an agent moves in the fire field, it will be affected by the driving force from
the unknown area, the repulsive force from the obstacles or other adjacent agents, and the
viscous force to reduce the difference in the velocity vectors of nearby UAVs or obstacles. So,
the optimal velocity of an agent is the sum of the vectors of the optimum coverage velocity,
repulsive velocity, and viscous velocity. The specific design process and implementation
steps are as follows:

3.1. Optimum Coverage Velocity

The rationale of the optimum coverage velocity is to make each UAV move toward the
direction of a low coverage level by establishing the potential energy function regarding
the error between the expected coverage level and the actual coverage level, so that UAVs
can autonomously and intelligently complete the coverage deployment task of mobile
base stations.

Let C0 be the desired attained effective coverage at all points in the S. The goal is to
attain a network coverage of γk(q, t) = C0 for all points q ∈ S at some time t. Consider the
following error function:

J(t) =
∫

Ω
h(C0 − γI(q, t))dq (8)

where h(x) is a penalty function, which is strictly convex in the interval (0,C0], twice
differentiable, and positive definite, that is, h(x) > 0, h′(x) > 0, h′′ (x) > 0, ∀x ∈ (0, C0].
And that satisfies h(x) = h′(x) = h′′ (x) = 0 for all x ≤ 0. When J(t) = 0, it means that the
coverage task in the sensing area Ω is completed.

To guarantee the coverage of the entire domain S with an effective coverage of C0
under appropriate assumptions, the UAV has to move toward the area where γI(q, t) < C0.
In order to improve the coverage efficiency, the area coverage problem can be described as
the optimization problem of seeking the minimum J(t) in Formula (9) [28,29]:

Minimize J(t) =
∫

S
h(C0 − γI(q, t))dq, qi ∈ S (9)

The gradient descent method can be used to solve (9) to obtain the optimal coverage
speed of the UAV. The accumulated error will generate an attractive “force” on a UAV.
Once γI(q, t) = C0 at a point, the error at this point is zero no matter how much additional
time UAVs spend detecting that point, that is, the excessive coverage has no effect on the
motion. Therefore, the optimal coverage speed of the UAV can be designed as follows:

→
v i1(t) = −kc · dJ(t)

dt
= −kc ·

∫
S h′(C0 − γI(q, t))∑

i∈I
G(|qi − q|)dq (10)

where kc > 0 is the fixed coverage velocity adjustment gain.
Since the optimal coverage speed of the UAV is based on local information, when the

points in the perception area of the UAV are effectively covered, the UAV will tend to be
stationary. If the whole area has not been covered effectively at this point, a traction speed
is required for the UAV to avoid becoming stuck in a local minimum.

Firstly, set P(t) represents a set of points that are not effectively covered in the area S
at time t. That is

P(t) = {q ∈ S : 0 < γI(q, t) < C0} (11)

For UAV Ai, let Pi(t) be the set of points with the shortest distance from qi(t) in set
P(t), that is

Pi(t) =
{

q∗ ∈ P(t) : q∗ = argminq∈P(t)

∣∣∣qi − q
∣∣∣} (12)
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A rule can be set to choose a unique point from the set to calculate the speed of the
UAV at the next moment. The traction speed

→
v s of the UAV can be designed according to

the artificial potential field method [30] as follows:

→
v s = −ks · (

→
q i −

→
q m) (13)

where ks > 0 is the traction velocity adjustment gain,
→
q i is the position vector of the UAV

projected on the OXY plane, and
→
q m is the position vector of point qm on the OXY plane.

In summary, the expected optimal coverage velocity of each UAV is:

→
v

c
i (t) =

{
−kc · dJ(t)

dt
−ks · (

→
q i −

→
q m)

, J(t) 6= 0
, J(t) = C0 6= 0

(14)

3.2. Repulsion

A linear velocity term was chosen for the local repulsion. Let r0 be the maximum
interaction range under which the UAV starts to repulse other UAVs and obstacles:

−→v
r

ij =

 p0·(r0 − rij)·
−→r i−
−→r j

rij
, rij < r0

0 , otherwise
(15)

In the equation above, p0 is the linear gain of the pairwise repulsion and rij =
∣∣∣→r i −

→
r j

∣∣∣
is the distance between UAV i and obstacle j. The total repulsion term calculated for UAV i
with respect to the other UAVs or obstacles is

→
v

r
i = ∑

j 6=i

→
v

r
ij (16)

where j is iterated for all other UAVs and obstacles.

3.3. Viscous Velocity

The pairwise velocity alignment can be obtained with a velocity term that depends
on the difference in the velocity vectors of nearby UAVs or obstacles. Previous works
based on the artificial potential field method adjusted the velocity of the UAV attenuating
asymptotically to zero at the expected position according to the distance relative to the
obstacle at a different time [31]. These models work fine when UAVs move within a lower
velocity regime. However, the UAVs have to fly through the narrow corridor at a relatively
high velocity in order to reduce the rescue time for people in distress at the high-rise fire
scene. In this case, the previous method caused the obvious self-excited oscillations of
the UAV in the process of the repulsion. Therefore, the viscous velocity appended to the
control law was useful to solve this problem. It not only synchronizes motion to achieve
the collective behavior of UAVs, but it also has to serve as a damping medium, reducing
the self-excited oscillations emerging due to the relatively high velocity of the UAV during
the repulsion.

To fulfill the practical deployment requirements of mobile base stations in the high-rise
fire field, we have chosen an ideal braking function in the space that is denoted by D(.):

D(r, a, p) =


0 if r ≤ 0
rp if 0 < rp < a / p√

2ar− a2/p2 otherwise
(17)

where r is the distance between a UAV and an expected stopping point, a is the preferred
acceleration, and p is a linear gain also determining the crossover point between the two
phases of deceleration.
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The rationale behind our viscous velocity term is to prohibit two UAVs having a larger
velocity difference at a given distance than what is allowed by this ideal braking function
and to serve as a buffer medium to eliminate the self-excited oscillations of the UAV:

vfmax
ij = max(vf, D(rij − rf

0, af, pf)), (18)

→
v

f
ij =

 Fs(vij − vfmax
ij ) ·

→
v i−

→
v j

vij
if vij > vfmax

ij

0 otherwise (19)

In the equations above, Fs is a linear coefficient of the velocity alignment error reduc-
tion, vf is a velocity slack to allow for a certain amount of velocity difference independently
of the inter-UAV distance, rf

0 is the distance of the stopping point for UAV i relative to
and in front of UAV j, pf and af are the linear gain and the acceleration parameters of the
pairwise alignment, and vij =

∣∣∣→v i −
→
v j

∣∣∣ is the amplitude of the velocity difference between
UAVs i and j. The total viscous velocity term calculated for UAV i with respect to the other
UAVs—similarly to the repulsion term—is

→
v

f
i = ∑

j 6=i

→
v

f
ij (20)

where j is iterated for all other UAVs.

4. Simulation Results

In this section, we provide the simulation results for the fully connected network case.
Assume that S is a square region with the side length of l = 700 dm. Let the original position
of each UAV be distributed randomly in the zone so that x ∈ [0, 150] and y ∈ [550, 700]. Let
the original velocity of each UAV be

∣∣∣→v 0

∣∣∣= 10 dm/s and set the direction of the original
velocity be set randomly. Set the original relay distance dr = 50 dm. Let the effective
coverage C0 = 40 and the number of UAVs N = 78. Obstacles are marked with the black
color. The UAV is marked with the blue color and the base station is marked with the red
color. The red line between two base stations means the distance between them db ≤ dr.

Due to the fire field being an unknown complex environment, there is no way to plan
the path for each UAV before the beginning of the mission. The only way is to depend on
their cooperation. It can be seen from the trajectory of UAVs at different times in Figure 2
that each UAV can keep a safe distance from obstacles and other UAVs. There is no one
UAV which collides with the obstacles and beyond the boundaries. It can be seen from
Figure 2e that the base stations were deployed evenly in the unknown mission area with
obstacles and can cover the whole mission area. There is no obstacle in the middle of the
line between every two adjacent base stations so that the non-line-of-sight problem in the
unknown complex environment can be turned into the line-of-sight problem. Therefore,
the efficiency and accuracy of the target positioning will be greatly enhanced.

At present, the commonly used positioning method is to set a UWB positioning base
station at the periphery of the fire field. We assume that eight UWB base stations were
deployed evenly on the boundary of the fire field as shown by the green triangle mark in
Figure 3 and the inter distance of adjacent UWB base stations is 35 m. There are more than
three LOS positioning base stations nearby at any point in the fire field after the deployment
of mobile base stations in the fire field is finished. The position of the firefighter is (550,
480) shown as the blue star mark in Figure 3 The distance between the firefighter and UWB
base station can be obtained due to the UWB label on the firefighter. The closest three
mobile base stations to the firefighter are marked by the yellow triangle in Figure 3 and
were used to obtain the precise position information of the firefighter. It can be easily seen
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from Figure 4 that the problem for the common method is to solve the NLOS positioning,
but the problem for the method in this paper is to solve the LOS positioning.
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and were used to obtain the precise position information of the firefighter. It can be easily 
seen from Figure 4 that the problem for the common method is to solve the NLOS posi-
tioning, but the problem for the method in this paper is to solve the LOS positioning. 

Figure 2. Coverage deployment of mobile base stations at different times: (a) coverage deployment
at the time of 10 s; (b) coverage deployment at the time of 20 s; (c) coverage deployment at the time
of 40 s; (d) coverage deployment at the time of 50 s; (e) coverage deployment at the time of 60 s.
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According to our experience, we assume that the system error of the UWB is 0.2 m,
0.4 m, 0.6 m, 0.8 m, and 1 m, respectively. The position of the firefighter was measured
many times with the same UWB unit. The optimal position of the firefighter was estimated
with the least square method [32,33]. The simulation results of the above two methods are
shown in the following figures.

5. Discussion

The most important problem in the deployment of mobile base stations for coverage
with connectivity constraints is how to control their movement and behavior to achieve a
desired configuration and how to establish decentralized coordination among the multiple
UAVs team. This becomes more difficult for the navigation and positions of UAVs in
the absence of GPS. In the absence of GPS, robots can only perform local localization by
estimating their adjacent UAV’s relative locations and sending limited messages out with
Zigbee. Especially in the fire field of a high-rise building, this mechanism is more significant
to realize the fast deployment of UWB base stations with a UAV group.

In the simulation experiment, the system error of the UWB is set as 0.2 m, 0.4 m, 0.6 m,
0.8 m, and 1 m, respectively. It can be seen from Figure 5 that the positioning error of the
algorithm presented in this paper is less than 1.2 m. It is much less than the positioning
error of the traditional algorithm that is more than 10 m, as shown in Figure 4.
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Figure 5. LOS positioning error simulation results with three base stations.

On the other hand, the large scale of a multi-agent system can effectively reduce the
moving distance of each agent. The less moving distance not only reduces the accumulative
positioning error but also means low energy a large scale of smaller and cheaper UAVs can
be used to satisfy the requirement for the deployment of mobile UWB base stations in the
fire field.

The real-world implementation of such a system could face potential challenges. The
most important one is that the size, shape, and position of the obstacle would change
randomly with the development of the fire. Therefore, the self-adaptive control law of the
multi-agent system is a very challenging issue that is worth further research.

6. Conclusions

In this paper, we formulated a control problem that addresses the autonomous deploy-
ment of a massive multi-agent system in a complex unknown high-rise fire environment.
The goal is to achieve the coverage deployment of mobile base stations to make sure that
there are more than three base stations nearby to any one point in the fire field so that the
NLOS positioning problem of the common positioning method can be transformed into
the LOS positioning problem. The viscous velocity was appended to the control law. The
simulation results show that the coverage deployment of the mobile base stations can be
realized safely in the complex environment with unknown obstacles. Finally, we compared
the simulation results of the common method and the method illustrated in this paper.
The result of the comparison shows that this method can greatly improve the positioning
accuracy and meet the practical positioning requirements of a high-rise fire rescue.
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