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Abstract: To monitor adherence to diets and to design and evaluate nutritional interventions, it
is essential to obtain objective knowledge about eating behavior. In most research, measures of
eating behavior are based on self-reporting, such as 24-h recalls, food records (food diaries) and food
frequency questionnaires. Self-reporting is prone to inaccuracies due to inaccurate and subjective
recall and other biases. Recording behavior using nonobtrusive technology in daily life would
overcome this. Here, we provide an up-to-date systematic overview encompassing all (close-to)
publicly or commercially available technologies to automatically record eating behavior in real-life
settings. A total of 1328 studies were screened and, after applying defined inclusion and exclusion
criteria, 122 studies were included for in-depth evaluation. Technologies in these studies were
categorized by what type of eating behavior they measure and which type of sensor technology
they use. In general, we found that relatively simple sensors are often used. Depending on the
purpose, these are mainly motion sensors, microphones, weight sensors and photo cameras. While
several of these technologies are commercially available, there is still a lack of publicly available
algorithms that are needed to process and interpret the resulting data. We argue that future work
should focus on developing robust algorithms and validating these technologies in real-life settings.
Combining technologies (e.g., prompting individuals for self-reports at sensed, opportune moments)
is a promising route toward ecologically valid studies of eating behavior.

Keywords: eating; drinking; daily life; real life; sensors; technology; behavior

1. Introduction

As stated by the World Health Organization (WHO) “Nutrition is coming to the fore
as a major modifiable determinant of chronic disease, with scientific evidence increasingly
supporting the view that alterations in diet have strong effects, both positive and negative,
on health throughout life” [1]. It is therefore of key importance to find efficient and solid
methodologies to study eating behavior and food intake in order to help reduce potential
long-term health problems caused by unhealthy diets. Past research on eating behaviors and
attitudes relies intensively on self-reporting tools, such as 24-h recalls, food records (food
diaries) and food frequency questionnaires (FFQ; [2–4]). However, there is an increasing
understanding of the limitations of this classical approach to studying eating behaviors and
attitudes. One of the major limitations of this approach is that self-reporting tools rely on
participants’ recall, which may be inaccurate or biased (especially when studying the actual
amount of food or liquid intake [5]). Recall biases can be caused by demand characteristics,
which are cues that may indicate the study aims to participants, leading them to change

Sensors 2023, 23, 7757. https://doi.org/10.3390/s23187757 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23187757
https://doi.org/10.3390/s23187757
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3601-5429
https://orcid.org/0000-0003-1051-5422
https://orcid.org/0000-0002-3136-8671
https://orcid.org/0000-0003-1961-4291
https://doi.org/10.3390/s23187757
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23187757?type=check_update&version=2


Sensors 2023, 23, 7757 2 of 27

their behaviors or responses based on what they think the research is about [6], or more
generally by the desire to comply with social norms and expectations when it comes to
food intake [7,8]. Additionally, the majority of the studies investigating eating behavior are
performed in the lab, which does not allow for a realistic replication of the many influences
on eating behavior that occur in real life (e.g., [9]). To overcome these limitations, it is
crucial to examine eating behavior and the effect of interventions in daily life, at home or
at institutions such as schools and hospitals. In contrast to lab research settings, humans
typically behave naturally in these settings. It is also important that testing real-life eating
behaviors in naturalistic settings relies on implicit, nonobtrusive measures [10] that are
objective and able to overcome potential biases.

There is growing interest in identifying technologies able to improve the quality and
validity of data collected to advance nutrition science. Such technologies should enable
eating behavior to be measured passively (i.e., without requiring action or mental effort
on the part of the users), objectively and reliably in realistic contexts. To maximize the
efficiency of real-life measurement, it is vital to develop technologies that capture eating
behavior patterns in a low-cost, unobtrusive and easy-to-analyze way. For real-world
practicality, the technologies should be comfortable and acceptable so that they can be used
in naturalistic settings for extended periods while respecting the users’ privacy.

To gain insight into the state of the art in this field, we performed a search for published
papers using technologies to measure eating behavior in real-life settings. In addition to
papers describing specific systems and technologies, this search returned many review
papers, some of which contained systematic reviews.

Evaluating these systematic reviews, we found that an up-to-date overview encom-
passing all (close-to) available technologies to automatically record eating behavior in
real-life settings is still missing. To fill this gap, we here provide such an overview, catego-
rized by what type of eating behavior they measure and which type of sensor technology
they use. We indicate to what extent these technologies are readily available for use. With
this review, we aim to (1) help researchers identify the most suitable technology to mea-
sure eating behavior in real life and to provide a basis for determining the next steps in
(2) research on measuring eating behavior in real life and (3) technology development.

2. Methods and Procedure
2.1. Literature Review

Our literature search reporting adheres to the Preferred Reporting Items for Systematic
reviews and Meta-Analyses (PRISMA) checklist [11,12]. The PRISMA guidelines ensure
that the literature is reviewed in a standard and systematic manner. This process underlies
four phases: identification, screening, eligibility and inclusion. The PRISMA diagram
showing the search flow and inclusion/exclusion of records and reports in this study is
shown in Figure 1.

2.2. Eligibility Criteria

Our literature search aimed to identify mature and practical (i.e., not too complex or
restrictive) technologies that can be used to unobtrusively assess food or drink intake in
real-life conditions. The inclusion criterium was a sensor-based approach to the detection
of eating or drinking. Studies not describing a sensor-based device to detect eating or
drinking were excluded.
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Figure 1. PRISMA flow diagram describing the procedure used to select records and reports for
inclusion in this review.

2.3. Information Sources and Search

The literature search included two stages: an initial automatic search of online
databases and a manual search based on the reference lists from the papers selected
from the previous search stage (using a snowballing approach [13,14]). In addition, papers
recommended by a reviewer were added.

The initial search was conducted on 24 February 2023 across the ACM Digital Library,
Google Scholar (first 100 results), IEEE Xplore, MDPI, PubMed and Scopus (Elsevier)
databases. The results were date-limited from 2018 to date (i.e., 24 February 2023). As this
field is rapidly advancing and sensor-based technologies evaluated in earlier papers are
likely to have been further developed, we initially limited our search to the past 5 years.

Our broad search strategy was to identify papers that included terms in their title,
abstract or keywords related to food and drink, eating or drinking activities and the
assessment of the amount consumed.

The search was performed using equivalents of the following Boolean search string
(where* represents a wildcard): “(beverage OR drink OR food OR meal) AND (consum*
OR chew* OR eating OR ingest* OR intake OR swallow*) AND (portion OR serving OR
size OR volume OR mass OR weigh*) AND (assess OR detect OR monitor OR measur*)”.
Some search terms were truncated in an effort to include all variations of the word.

The records retrieved in the initial search across the six databases and the results of
manual bibliography searches were imported into EndNote 20 (www.endnote.com) and
duplicates were removed.

2.4. Screening Strategy

Figure 1 presents an overview of the screening strategy. In the first round, the titles and
abstracts returned (n = 1241, after the elimination of 68 duplicates) were reviewed against
the eligibility criterium. If the title and/or abstract mentioned a sensor-based approach
to the detection of eating or drinking, the paper was included in the initial screening
stage to be further assessed in the full-text screening stage. Papers that did not describe a
sensor-based device to detect eating or drinking were excluded. Full-text screening was
conducted on the remaining articles (n = 126), leading to a final sample of 73 included

www.endnote.com
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papers from the initial automatic search. Papers focusing on animal studies (n = 4), food
recognition (n = 7), nutrient estimation (n = 6), system design (n = 2) or other nonrelated
topics (n = 10) were excluded. While review papers (n = 20) were also excluded from our
technology overview (Table 1), they were evaluated (Tables A1 and A2 in Appendix A)
and used to define the scope of this study. Additional papers were identified by manual
search via the reference lists of full texts that were screened (n = 91). Full-text screening of
these additional papers led to a final sample of 49 included papers from the manual search.
Papers about dietary recall (n = 7), food recognition (n = 11), nutrient estimation (n = 7),
describing systems already described in papers from the initial automatic search (n = 2) or
other nonrelated topics (n = 6) were excluded. Again, review papers (n = 8) were excluded
from our technology overview (Table 1) but evaluated and used to define the scope of this
study. The total number of papers included in this review amounts to 123.

All screening rounds were conducted by two of the authors. Each record was reviewed
by two reviewers to decide its eligibility based on the title and abstract of each study, taking
into consideration the exclusion criteria. When a record was rejected by one reviewer and
accepted by the other, it was further evaluated by all authors and kept for eligibility when
a majority voted in favor.

2.5. Reporting

We evaluated and summarized the review papers that our search returned in two tables
(Appendix A). Table A1 includes systematic reviews, while Table A2 includes nonsystematic
reviews. We defined systematic reviews as reviews following the PRISMA methodology.
For all reviews, we reported the year of publication and the general scope of the review. For
systematic reviews, we also reported the years of inclusion, the number of papers included
and the specific requirements for inclusion.

We summarized the core information about the devices and technologies for measur-
ing eating and drinking behaviors from our search results in Table 1. This table categorizes
the studies retrieved in our literature search in terms of their measurement objectives,
target measures, the devices and algorithms that were used as well as their (commercial or
public) availability and the way they were applied (method). In the column “Objective”, the
purposes of the measurements are described. The three objectives we distinguish are “Eat-
ing/drinking activity detection”, “Bite/chewing/swallowing detection” and “Portion size
estimation”. Note that the second and third objectives can be considered as subcategories
of the first—technologies are included in the first if they could not be grouped under the
second or third objective. The objectives are further specified in the column “Measurement
targets”. In the column “Device”, we itemize the measurement tools or sensors used in the
different systems. For each type of device, one or more representative papers were selected,
bearing in mind the TRL (technology readiness level [15]), the availability (off-the-shelf) of
the device and algorithm that were used, the year of publication (recent) and the number
of times it was cited. The minimum TRL level was 2 and the paper with the highest TRL
level among papers using similar techniques was selected as the representative paper.
A concise description of each representative example is given in the “Method” column.
The commercial availability of the example devices and algorithms is indicated in the
“Off-the-shelf device” and “Ready-to-use algorithm” columns. Lastly, other studies using
similar systems are listed in the “Similar papers” column. Systems combining devices for
several different measurement targets can appear in different table rows. To indicate this,
they are labeled with successive letters for each row they appear in (e.g., 1a and 1b).

For each of the three objectives, we counted the number of papers that described
sensors that are designed (1) to be attached to the body, (2) to be attached to an object, (3) to
be placed in the environment or (4) to be held in the hand. Sensors attached to the body
were further subdivided by body location. The results are visualized using bar graphs.
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3. Results

Table 1 summarizes the core information of devices and technologies for measuring
eating and drinking behaviors from our search results.

3.1. Eating and Drinking Activity Detection

For “eating/drinking activity detection”, many systems have been reported that mea-
sure eating- and drinking-related motions. In particular, many papers reported measuring
these actions using motion sensors such as inertial sensor modules (i.e., inertial measure-
ment units or IMUs). IMUs typically consist of various sensors such as an accelerator,
gyroscope and magnetometer. These sensors are embedded in smartphones and wearable
devices such as smartwatches. In [16], researchers collected IMU signals with off-the-shelf
smartwatches to identify hand-based eating and drinking-related activities. In this case,
participants wore smartwatches on their preferred wrists. Other studies have employed
IMUs worn on the wrist, upper arm, head, neck and combinations thereof [17–20]. IMUs
worn on the wrist or upper arms can collect movement data relatively unobtrusively dur-
ing natural eating activities such as lifting food or bringing utensils to the mouth. Recent
research has also improved IMUs that are attached to the head or neck, combining sensors
with glasses or necklaces so that they are less bulky and users are not aware that they are
being worn. Besides IMUs, proximity sensors, piezoelectric sensors and radar sensors
are also used to detect hand-to-mouth gestures or jawbone movements [21–23]. Pressure
sensors are used to measure eating activity as well. For instance, in [24], eating activities
and the amount of consumed food are measured by a pressure-sensitive tablecloth and tray.
These devices provide information on food-intake-related actions such as cutting, scooping,
stirring or the identification of the plate or container on which the action is executed and
allow the tracking of weight changes of plates and containers. Microphones, RGB-D images
and video cameras are also used to detect eating and drinking-related motions. In [25],
eating actions are detected by a ready-to-use algorithm as the 3D overlap of the mouth
and food, using RGB-D images taken with a commercially available smartphone. These
imaging techniques have the advantage of being less physically intrusive than wearable
motion sensors but they still restrict subjects’ natural eating behavior as the face must be
clearly visible to the camera. Ear-worn sensors can measure in-body glucose levels [26] and
tooth-mounted dielectric sensors can measure impedance changes in the mouth signaling
the presence of food [27]. Although these latter methods can directly detect eating activity,
the associated devices and data processing algorithms are still in the research phase. In
addition, ref. [28] reports a wearable array of microneedles for the wireless and continuous
real-time sensing of two metabolites (lactate and glucose, or alcohol and glucose) in the
interstitial fluid (Figure 2). This is useful for truly continuous, quantitative, real-time
monitoring of food and alcohol intake. Future development of the system is needed on
several aspects such as battery life and advanced calibration algorithms.



Sensors 2023, 23, 7757 6 of 27Sensors 2023, 23, x FOR PEER REVIEW 6 of 29 
 

 

 
Figure 2. A microneedle-based wearable sensor system (Reprinted with permission from Ref. [28]. 
2023, Springer Nature). 

3.2. Bite, Chewing or Swallowing Detection 
In the “bite/chewing/swallowing detection” category, we grouped studies in which 

the number of bites (bite count), bite weight and chewing or swallowing actions are meas-
ured. Motion sensors and video are used to detect bites (count). For instance, OpenPose 
is an off-the-shelf software that analyzes bite counts from videos [29]. To assess bite 
weight, weight sensors and acoustic sensors have been used [30,31]. In [30], the bite weight 
measurement also provides the estimation of a full portion. 

Chewing or swallowing is the most well-studied eating- and drinking-related activ-
ity, as reflected by the number of papers focusing on such activities (31 papers). Motion 
sensors and microphones are frequently employed for this purpose. For instance, in [32], 
a gyroscope is used for chewing detection, an accelerometer for swallowing detection and 
a proximity sensor to detect hand-to-mouth gestures. Microphones are typically used to 
register chewing and swallowing sounds. In most cases, commercially available micro-
phones are applied, while the applied detection algorithms are custom-made. Video, elec-
trogloĴograph (EGG) and electromyography (EMG) devices are also used to detect chew-
ing and swallowing. EGG detects the variations in the electrical impedance caused by the 
passage of food during swallowing, while EMG in these studies monitors the masseter 
and temporalis muscle activation for recording chewing strokes. The advantages of EGG 
and EMG are that they can directly detect swallowing and chewing while eating and are 
not, or are less, affected by other body movements compared to motion sensors. However, 
EMG devices are not wireless and EGG sensors need to be worn around the face, which 
is not optimal for use in everyday eating situations. 

3.3. Portion Size Estimation 
Portion size is estimated mainly by using weight sensors and food image analysis. 

Regarding weight sensors, the amount of food consumed is calculated by comparing the 
weights of plates before and after eating. An open-source system consisting of a wireless 
pocket-sized kitchen scale connected to a mobile application has been reported in [33]. As 
shown in Figure 3, a system turning an everyday smartphone into a weighing scale is also 
available [34]. The relative vibration intensity of the smartphone’s vibration motor and its 
built-in accelerometer are used to estimate the weight of food that is placed on the 
smartphone. Off-the-shelf smartphone cameras are typically used for volume estimation 
from food images. Also, several studies use RGB-D images to get more accurate volume 

Figure 2. A microneedle-based wearable sensor system (Reprinted with permission from Ref. [28].
2023, Springer Nature).

3.2. Bite, Chewing or Swallowing Detection

In the “bite/chewing/swallowing detection” category, we grouped studies in which
the number of bites (bite count), bite weight and chewing or swallowing actions are mea-
sured. Motion sensors and video are used to detect bites (count). For instance, OpenPose
is an off-the-shelf software that analyzes bite counts from videos [29]. To assess bite
weight, weight sensors and acoustic sensors have been used [30,31]. In [30], the bite weight
measurement also provides the estimation of a full portion.

Chewing or swallowing is the most well-studied eating- and drinking-related activity,
as reflected by the number of papers focusing on such activities (31 papers). Motion
sensors and microphones are frequently employed for this purpose. For instance, in [32],
a gyroscope is used for chewing detection, an accelerometer for swallowing detection
and a proximity sensor to detect hand-to-mouth gestures. Microphones are typically
used to register chewing and swallowing sounds. In most cases, commercially available
microphones are applied, while the applied detection algorithms are custom-made. Video,
electroglottograph (EGG) and electromyography (EMG) devices are also used to detect
chewing and swallowing. EGG detects the variations in the electrical impedance caused by
the passage of food during swallowing, while EMG in these studies monitors the masseter
and temporalis muscle activation for recording chewing strokes. The advantages of EGG
and EMG are that they can directly detect swallowing and chewing while eating and are
not, or are less, affected by other body movements compared to motion sensors. However,
EMG devices are not wireless and EGG sensors need to be worn around the face, which is
not optimal for use in everyday eating situations.

3.3. Portion Size Estimation

Portion size is estimated mainly by using weight sensors and food image analysis.
Regarding weight sensors, the amount of food consumed is calculated by comparing
the weights of plates before and after eating. An open-source system consisting of a
wireless pocket-sized kitchen scale connected to a mobile application has been reported
in [33]. As shown in Figure 3, a system turning an everyday smartphone into a weighing
scale is also available [34]. The relative vibration intensity of the smartphone’s vibration
motor and its built-in accelerometer are used to estimate the weight of food that is placed
on the smartphone. Off-the-shelf smartphone cameras are typically used for volume
estimation from food images. Also, several studies use RGB-D images to get more accurate
volume estimations from information on the height of the target food. For image-based
approaches, AI-based algorithms are often employed to calculate portion size. Some studies
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made prototype systems applicable to real-life situations. In [35], acoustic data from a
microphone was collected along with food images to measure the distance from the camera
to the food. This enables the food in the image to be scaled to its actual size without training
images and reference objects. However, in other cases, image processing mostly uses a
reference for comparing the food size. Besides image analysis, in [36], researchers took a
360-degree scanned video obtained with a laser module and a diffraction lens and applied
their volume estimation algorithm to the data. In addition to the above devices, a method
to estimate portion size using EMG has been reported [37]. In this study, EMG embedded
in an armband device detects different patterns of signals based on the weight that a user is
holding.
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For estimating portion size in drinks, several kinds of sensors have been tested. An
IMU in a smartwatch was used to estimate drink intake volume from sip duration [38].
Also, in [39], liquid sensors such as a capacitive sensor and a conductivity sensor were
used to monitor the filling levels in a cup. Some research groups developed so-called
smart fridges that automatically register food items and quantities. In [40], image analysis
of a thermal image taken by an infrared (IR) sensor embedded in a fridge provides an
estimation of a drink volume. Another study proposed a system called the Playful Bottle
system [41], which consists of a smartphone attached to a common drinking mug. Drinking
motions such as picking up the mug, tilting it back and placing it on the desk are detected
by the phone’s accelerometer. After the drinking action is completed and the water line
becomes steady, the phone’s camera captures an image of the amount of liquid in the mug
(Figure 4).

3.4. Sensor Location

Figure 5 indicates where sensors are typically located per objective. The locations of
the sensors are classified as body-attached (e.g., ear, neck, head, glasses), embedded in
objects (e.g., plates, cutlery) and the environment (e.g., distant camera, magnetic trackers).
For eating/drinking activity detection, sensors are mostly worn on the body, followed by
embedded in the objects. Body-worn sensors are also used for bite/chewing/swallowing
detection. On the other hand, for portion size estimation, object-embedded and handheld
sensors are mainly chosen depending on the measuring targets. Figure 6 shows the locations
of wearable body sensors used in the reviewed studies. Sensors attached to wrists are most
frequently used (32 cases), followed by embedded in glasses (19 cases) and attached to the
ear (14 cases).
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Table 1. Summary of core information of devices and technologies for measuring eating and drinking behaviors. The commercial availability of the example devices
and algorithms is indicated “Y”(Yes) and “N”(No). Letters a and b following the reference numbers indicate systems that combine devices for several different
measurement targets, and therefore appear in two table rows (i.e., a and b).

Objective Measurement Target Device Representative
Paper Method Off-the-Shelf

Device
Ready-to-Use
Algorithm Similar Papers

Eating/drinking
activity detection

eating/drinking
motion

motion sensor

[16] eating and drinking detection from smartwatch
IMU signal Y N

[42] a, [43] a, [44–46],
[47] a, [41] a, [21,48],
[49] a, [22,50,51], [52]
a, [38] a, [53] a,
[17,18,54,55], [37] a,
[56], [19] a, [57–59],
[60] a, [61], [62] a,
[63], [20] a, [64] a,
[42,65–68]

[23] detecting eating and drinking gestures from
FMCW radar signal N N

[24] a
eating activities and amount consumed
measured by pressure-sensitive tablecloth
and tray

N N

microphone [47] b
eating detection from fused inertial-acoustic
sensing using smartwatch with embedded IMU
and microphone

Y N [26] a, [69], [60] b

RGB-D image [25] a eating action detected from smartphone RGB-D
image as 3D overlap between mouth and food Y Y

video [70] eating detection from cap-mounted
video camera Y N [55] a

liquid level liquid sensor [71] capacitive liquid level sensor N N [72]

impedance change
in mouth dielectric sensor [27]

RF coupled tooth-mounted dielectric sensor
measures impedance changes due to food
in mouth

N N

in-body glucose level glucose sensor [26] b glucose level measured by ear-worn sensor N N [28] a

in-body alcohol level microneedle sensor [28] b alcohol level measured by microneedle sensor
on the upper arm N N

user identification
PPG (photoplethys-
mography)
sensor

[53] b sensors on water bottle to identify the user
from heart rate N N
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Table 1. Cont.

Objective Measurement Target Device Representative
Paper Method Off-the-Shelf

Device
Ready-to-Use
Algorithm Similar Papers

Bite/chewing/
swallowing
detection

bites (count)
motion sensor [73]

a gyroscope mounted on a finger to detect
motions of picking up food and delivering it to
the mouth

Y N [74,75]

video [29] bite count by video analysis using OpenPose
pose estimation software Y Y

bite weight
weight sensor [30] a

plate-type base station with embedded weight
sensors to measure amount and location
of bites

N N [55] a

acoustic sensor [31] commercial earbuds, estimation model based
on nonaudio and audio features Y N

chewing/
swallowing

motion sensor [32] a
chewing detection from gyroscope, swallowing
detection from accelerometer, hand-to-mouth
gestures from proximity sensor

Y Y
[76–79], [49] b,
[80,81], [82] a, [83],
[84] a, [85–87], [62] b,
[20] b

microphone [88] wearable microphone with minicomputer to
detect chewing/swallowing sounds Y N

[43] b, [89–91], [82] b,
[19] b, [92], [84] b,
[93]

video [94] classification of facial action units related to
chewing from video Y N [55] b

EGG [95] swallowing detected by larynx-mounted EGG
device Y N

EMG [96] eyeglasses equipped with EMG to monitor
temporalis muscles’ activity N N [43] c, [97]
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Table 1. Cont.

Objective Measurement Target Device Representative
Paper Method Off-the-Shelf

Device
Ready-to-Use
Algorithm Similar Papers

Portion size
estimation

portion size food

motion sensor [34] acceleration sensor of smartphone, measuring
vibration intensity Y Y [98] a

weight sensor [33] wireless pocket-sized kitchen scale connected
to app Y Y

[99–103], [55] b, [104],
[30] b, [98] b, [105],
[106] a, [107], [64] b,
[24] b

image

[108] AI-based system to calculate food leftovers Y Y
[32] b, [35,109–116],
[117] b, [106] b,
[106,118–123]

[35]
measuring the distance from the camera to the
food using smartphone images combined with
microphone data

Y N [124]

[125]
RGB-D image and AI-based system to estimate
consumed food volume using before- and
after-meal images

Y Y [25] b, [126–132]

laser [36]

360-degree scanned video; the system design
includes a volume estimation algorithm and a
hardware add-on that consists of a laser
module and a diffraction lens

N N [133]

EMG [37] b weight of food consumed from EMG data N N

portion size drink

motion sensor [38] b volume from sip duration from IMU in
smartwatch Y N [42] b, [52] b

infrared (IR) sensor [40] thermal image by IR sensor embedded in
smart fridge N N

liquid sensor [39]
capacitive sensor, conductivity sensor, flow
sensor, pressure sensor, force sensors
embedded in different mug prototypes

N N

image [41] b smartphone camera attached to mug N N [134]
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4. Discussion

This systematic review provides an up-to-date overview of all (close-to) available
technologies to automatically record eating behavior in real life. Technologies included in
this review should enable eating behavior to be measured passively (i.e., without users’
active input), objectively and reliably in realistic contexts to avoid reliance on subjective
user recall. We performed our review in order to help researchers identify the most suitable
technology to measure eating behavior in real-life settings and to provide a basis for
determining the next steps in both technology development and the measurement of eating
behavior in real life. In total, 1332 studies were screened and 123 studies were included
after the application of objective inclusion and exclusion criteria. A total of 26 studies
contained more than one technology. We found that often, relatively simple sensors are
used to measure eating behaviors. Motion sensors are commonly used for eating/drinking
activity detection and bite/chewing/swallowing; in addition, microphones are often used
in studies focusing on chewing/swallowing. These sensors are usually attached to the
body, in particular to the wrist for eating/drinking activity detection and to areas close
to the face for detecting bite/chewing/swallowing. For portion size estimation, weight
sensors and images from photo cameras are mostly used.

Concerning the next steps in technology development, the information from the “Off-
the-shelf device” and “Ready-to-use algorithm” columns in the technology overview table
indicates which devices and algorithms are not ready for use yet and would benefit from
further development. The category “portion size estimation” seems the most mature with
respect to off-the-shelf availability and ready-to-use algorithms. Overall, what is mostly
missing is ready-to-use algorithms. It is an enormous challenge to build fixed algorithms
that accurately recognize eating behavior under varying conditions of sensor noise, types
of food and individuals’ behavior and appearance. Typically, with algorithms, we refer to
machine learning or AI algorithms. These are trained using annotated (correctly labeled)
data and only work well in conditions that are similar to the ones they were trained in. In
most reviewed studies, demonstrations of algorithms are limited to controlled conditions
and a small number of participants. Therefore, these algorithms still need to be tested
and evaluated for accuracy and generalizability outside the laboratory, such as in homes,
restaurants and hospitals.

When it comes to real-life studies, the obtrusiveness of the devices is an important fac-
tor. Devices should minimally interfere with the natural behavior of participants. Devices
worn on the body with wires connected to a battery or other devices may restrict eating
motions and constantly remind participants that they are being recorded. Wireless devices
are suitable in that perspective but at the same time, battery duration may be a limitation
for long-term studies. Devices such as tray-embedded sensors and cameras that are not
attached to the participant’s body are advantageous in terms of both obtrusiveness and
battery duration.

Although video cameras can provide holistic data on participants’ eating behaviors,
they present privacy concerns. When a camera is used to film the course of a meal, the
data provide the participant’s physical characteristics and enable the identification of the
participant. Also, when the experiments are performed at home, participants cannot avoid
showing their private environment. Ideally, the experiments should allow data to be col-
lected anonymously if this information is not needed for a certain purpose such as clinical
data collection. This could be achieved by only storing extracted features from the camera
data rather than the images themselves, though this prohibits later validation and improve-
ment of feature extraction [135]. Systems using weight sensors do not suffer from privacy
issues as camera images from the face do. Ref. [106] used a weight sensor in combination
with a camera pointing downward at the scales to keep track of the consumption of various
types of seasonings.

For future research, we think it will be powerful to combine methods and sensor
technologies. While most studies rely on single types of technologies, there are successful
examples of combinations that illustrate a number of ways in which system and data quality
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can be improved. For instance, a novel and robust device called SnackBox [136] consists
of three containers for different types of snacks embedded on weight sensors (Figure 7)
and can be used to monitor snacking behavior at home. It can be connected to wearables
and smartphones, thereby allowing for contextualized interpretation of signals recorded
from the participant and for targeted ecological momentary assessment (EMA [137]). With
EMA, individuals are probed to report current behavior and experiences in their natural
environment and this avoids reliance on memory. For instance, when the SnackBox detects
snacking behavior, EMA can assess the individual’s current mood state through a short
questionnaire. This affords the collection of more detailed and more accurate information
compared to asking for this information at a later moment in time. Combining different
sensor technologies can also have other benefits. Some studies used a motion detector
or an audio sensor as switches to turn on other devices such as a chewing counter or
a camera [62,91]. These systems are useful to collect data only during meal durations,
thereby limiting superfluous data collection that is undesirable from the point of view of
privacy and battery life of the devices that are worn the whole day. In a study imitating a
restaurant setting, a system consisting of custom-made table-embedded weight sensors and
passive RFID (radio-frequency identification) antennas was used [99]. This system detects
the weight change in the food served on the table and recognizes what the food is using
RFID tags, thereby complementing information that would have been obtained by using
either or alone and facilitating the interpretation of the data. Other studies used an IMU in
combination with a microphone to detect eating behaviors [60,82]. It was concluded that
the acoustic sensor in combination with motion-related sensors improved the detection
accuracy significantly compared to motion-related sensors alone.
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Besides investing in research on combining methods and sensor technologies, research
applying and validating these technologies in out-of-the-lab studies is essential. Test gener-
alizability between lab and real-life studies should be examined as well as generalizations
across situations, user groups and user experience. These studies will lead to further
improvements and/or insight into the context in which the technology can or cannot be
used.

The current review has some limitations. First, we did not include a measure of
accuracy or reliability of the technologies in our table. Some of the reviews listed in our
reviews’ table (Table A1 in Appendix A, e.g., [138,139]) included the presence of evaluation
metrics indicating the performance of the technologies (e.g., accuracy, sensitivity and
precision) as an inclusion criterion. We decided not to have this specific inclusion criterion
as we think in our case it is hard to have comparable measures among studies. Also,
whether accuracy is “good” very much depends on the specific research question and
study design. Second, our classification of whether an algorithm is ready-to-use could
not be based on information directly provided in the paper, but should be considered as a
somewhat subjective estimate from the authors of this review.

In conclusion, there are some promising devices for measuring eating behavior in
naturalistic settings. However, it will take some time before some of these devices and
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algorithms will become commercially available due to a lack of examples from a large
number of test users and in various conditions. Until then, research in- and outside
the lab needs to be carried out using custom-made devices and algorithms and/or with
combinations of existing devices. The approach to combine different technologies is
recommended as it can lead to multimodal datasets consisting of different aspects of
eating behavior (e.g., when people are eating and at what rate), dietary intake (e.g., what
people are eating and how much) and contextual factors (e.g., why people are eating and
with whom). We expect this to result in a much fuller understanding of individual eating
patterns and dynamics, in real-time and in context, which can be used to develop adaptive,
personalized interventions. For instance, physiological measures reflecting food elicited
attention and arousal have been shown to be positively associated with food neophobia
(the hesitance to try novel food) [140] in controlled settings [141,142]. Measuring these
in naturalistic circumstances together with eating behavior and possible interventions
(e.g., based on distracting attention from food) could increase our understanding of food
neophobia and inspire methods to stimulate consuming novel, healthy food.

New technologies measuring individual eating behaviors will be beneficial not only
in consumer behavioral studies but also in the field of food and medical industries. New
insights into eating patterns and traits discovered using these technologies may contribute
to clarifying the use of food products in a wide range of consumers or to allow for guidance
in improving patients’ diets.
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Appendix A

Table A1. Systematic review papers that were evaluated and used to define the scope of this study (see Section 1). Listed for all systematic reviews are the year
of publication, the focus of the review, the years of inclusion, the number of papers included and the specific requirements for inclusion. Text in italic represents
literal quotes.

Reference Year of
Publication Focus of Review Years of Inclusion Number of Papers

Included Specific Requirements for Inclusion

[143] 2020

In this review paper [they] provide an overview about
automatic food intake monitoring, by focusing on
technical aspects and Computer Vision works which
solve the main involved tasks (i.e., classification,
recognitions, segmentation, etc.).

2010–2020

23 papers that present
systems for automatic food
intake monitoring + 46
papers that address
Computer Vision tasks
related to food
images analysis

Method should apply computer vision techniques.

[138] 2020

[This] scoping review was conducted in order to:
1. catalog the current use of wearable devices and sensors
that automatically detect eating activity (dietary intake
and/or eating behavior) specifically in free-living
research settings;
2. and identify the sample size, sensor types,
ground-truth measures, eating outcomes, and evaluation
metrics used to evaluate these sensors.

Prior to 22
December 2019 33

I—description of any wearable device or sensor (i.e., worn on
the body) that was used
to automatically (i.e., no required actions by the user) detect
any form of eating (e.g., content of food consumed, quantity
of food consumed, eating event, etc.). Proxies for “eating”
measures, such as glucose levels or energy expenditure, were
not included.
II—“In-field” (non-lab) testing of the sensor(s), in which
eating and activities were performed at-will with no
restrictions (i.e., what, where, with whom, when, and how
the user ate could not be restricted).
III—At least one evaluation metric (e.g., Accuracy,
Sensitivity, Precision, F1-score) that indicated the
performance of the sensor on detecting its respective form
of eating.

[144] 2019

The goal of this review was to identify unique
technology-based tools for dietary intake assessment,
including smartphone applications, those that captured
digital images of foods and beverages for the purpose of
dietary intake assessment, and dietary assessment tools
available from the Web or that were accessed from a
personal computer (PC).

January
2011–September
2017

43

(1) publications were in English,
(2) articles were published from January 2011 to September
2017, and
(3) sufficient information was available to evaluate tool
features, functions, and uses.
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Table A1. Cont.

Reference Year of
Publication Focus of Review Years of Inclusion Number of Papers

Included Specific Requirements for Inclusion

[145] 2017

This article reviews the most relevant and recent
researches on automatic diet monitoring, discussing their
strengths and weaknesses. In particular, the article
reviews two approaches to this problem, accounting for
most of the work in the area. The first approach is based
on image analysis and aims at extracting information
about food content automatically from food images. The
second one relies on wearable sensors and has the
detection of eating behaviours as its main goal.

Not specified Not specified n/a

[146] 2019

The aim of this review is to synthesise research to date
that utilises upper limb motion tracking sensors, either
individually or in combination with other technologies
(e.g., cameras, microphones), to objectively assess eating
behaviour.

2005–2018 69

(1) used at least one wearable motion sensor,
(2) that was mounted to the wrist, lower arm, or upper arm
(referred to as the upper limb in this review),
(3) for eating behaviour assessment or human activity
detection, where one of the classified activities is eating or
drinking. We explicitly also included studies that
additionally employed other sensors on other parts of the
body (e.g., cameras, microphones, scales).

[147] 2022

This paper consists of a systematic review of sensors and
machine learning approaches for detecting food intake
episodes. [. . .] The main questions of this systematic
review were as follows: (RQ1) What sensors can be used
to access food intake moments effectively? (RQ2) What
can be done to integrate such sensors into daily lives
seamlessly? (RQ3) What processing must be done to
achieve good accuracy?

2010–2021 30

(1) research work that performs food intake detection;
(2) research work that uses sensors to detect food with the
help of sensors;
(3) research work that presents some processing of food
detection to propose diet;
(4) research work that use wearable biosensors to detect
food intake;
(5) research work that use the methodology of deep learning,
Support Vector Machines or Convolutional Neural Networks
related to food intake;
(6) research work that is not directly related to image
processing techniques;
(7) research work that is original;
(8) papers published between 2010 and 2021; and
(9) papers written in English
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Table A1. Cont.

Reference Year of
Publication Focus of Review Years of Inclusion Number of Papers

Included Specific Requirements for Inclusion

[148] 2021

This article presents a comprehensive review of the use of
sensor methodologies for portion size estimation. [. . .]
Three research questions were chosen to guide this
systematic review:
RQ1) What are the available state-of-the-art SB-FPSE
methodologies? [. . .]
RQ2) What methods are employed for portion size
estimation from sensor data and how accurate are these
methods? [. . .]
RQ3) Which sensor modalities are more suitable for use
in the free-living conditions?

Since 2000 67

Articles published in peer-reviewed venues; [. . .] Papers that
describe methods for estimation of portion size; FPSE
methods that are either automatic or semi-automatic; written
in English.

[135] 2022 [They] reviewed the current methods to automatically
detect eating behavior events from video recordings. 2010–2021 13

Original research articles [. . .] published in the English
language and containing findings on video analysis for
human eating behavior from January 2010 to December 2021.
[. . .] Conference papers were included. [. . .] Articles
concerning non-human studies were excluded. We excluded
research articles on eating behavior with video
electroencephalogram monitoring, verbal interaction analysis,
or sensors, as well
as research studies not focusing on automated measures as
they are beyond the scope of video analysis.

[139] 2022

The aim of this study was to identify and collate
sensor-based technologies that are feasible for dietitians
to use to assist with performing dietary assessments in
real-world practice settings.

2016–2021 54

Any scientific paper published between January 2016 and
December 2021 that used sensor-based devices to passively
detect and record the initiation of eating in real-time. Studies
were further excluded during the full text screening stage if
they did not evaluate device performance or if the same
research group conducted a more recent study describing a
device that superseded previous studies of the same device.
Studies evaluating a device that did not have the capacity to
detect and record the start time of food intake, did not use
sensors, were not applicable for use in free-living settings, or
were discontinued at the time of the search were
also excluded.
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Table A1. Cont.

Reference Year of
Publication Focus of Review Years of Inclusion Number of Papers

Included Specific Requirements for Inclusion

[149] 2021

This paper reviews the most recent solutions to automatic
fluid intake monitoring both commercially and in the
literature. The available technologies are divided into
four categories: wearables, surfaces with embedded
sensors, vision- and environmental-based solutions, and
smart containers.

2010–2020 115

Papers that did not study liquid intake and only studied food
intake or other unrelated activities were excluded. Since this
review is focused on the elderly population, in the wearable
section, we only included literature that used wristbands and
textile technology which could be easily worn without
affecting the normal daily activity of the subjects. We have
excluded devices that were not watch/band or textile based
such as throat and ear microphones or ear inertial devices as
they are not practical for everyday use. [. . .] Although this
review is focused on the elderly population, studies that used
adult subjects were not excluded, as there are too few that
only used seniors.

[150] 2022

The purpose of this review is to analyze the effectiveness
of mHealth and wearable sensors to manage Alcohol Use
Disorders, compared with the outcomes of the same
conditions under traditional, face-to-face (in person)
treatment.

2012–2022 25

Articles for analysis were published in the last 10 years in
peer-reviewed academic journals, and published in the
English language. They must include participants who are
adults (18 years of age or older). Preferred methods were true
experiments (RCT, etc.), but quasi-experimental,
non-experimental, and qualitative studies were also accepted.
Other systematic reviews were not accepted so as not to
confound the results. Works that did not mention wearable
sensors or mHealth to treat AUD were excluded. Studies
with participants under age 18 were excluded. Studies that
did not report results were excluded.

[151] 2023

This paper reviews the existing work [. . .] on
vision-based intake (food and fluid) monitoring methods
to assess the size and scope of the available literature and
identify the current challenges and research gaps.

Not specified 253

(1) at least one kind of vision-based
technology (e.g., RGB-D camera or wearable camera) was
used in the paper;
(2) eating or drinking activities or both identified in the paper;
(3) the paper used human participants
data;
(4) at least one of the evaluation criteria (e.g., F1-score) was
used for assessing the performance of the design
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Table A2. Nonsystematic review papers that were evaluated and used to define the scope of this study (see Section 1). Listed for all nonsystematic reviews are the
year of publication and the focus of the review. Text in italic represents literal quotes.

Reference Year of
Publication Focus of Review

[152] 2019

A group of 30 experts gathered to discuss the state of evidence with regard to monitoring calorie intake and eating behaviors [. . .] characterized into 3 domains: (1)
image-based sensing (e.g, wearable and smartphone-based cameras combined with machine learning algorithms); (2) eating action unit (EAU) sensors (eg, to measure feeding
gesture and chewing rate); and (3) biochemical measures (e.g, serum and plasma metabolite concentrations). They discussed how each domain functions, provided examples of
promising solutions, and highlighted potential challenges and opportunities in each domain.

[153] 2022

This paper concerns the validity of new consumer research technologies, as applied in a food behaviour context. Therefore, [they] introduce three validity criteria based on
psychological theory concerning biases resulting from the
awareness a consumer has of a measurement situation. [. . .] The three criteria addressing validity are: 1. Reflection: the research method requires the ‘person(a)’ of the
consumer, i.e., he/she needs to think about his-/herself or his/her behaviour, 2. Awareness: the method requires the consumer to know he or she is being tested, 3. Informed: the
method requires the consumer to know the underlying research question.

[154] 2022
They present a high-level overview of [their] recent work on intake monitoring using a smartwatch, as well as methods using an in-ear microphone. [. . .] [This paper’s] goal
is to inform researchers and users of intake monitoring methods regarding (i) the development of new methods based on commercially available devices, (ii) what to expect in
terms of effectiveness, and (iii) how these methods can be used in research as well as in practical applications.

[155] 2021 A review of the state of the art of wearable sensors and methodologies proposed for monitoring ingestive behavior in humans

[156] 2017
This article evaluates the potential of various approaches to dietary monitoring with respect to convenience, accuracy, and applicability to real-world environments. [They]
emphasize the application of technology and sensor-based solutions to the health-monitoring domain, and [they] evaluate various form factors to provide a comprehensive
survey of the prior art in the field.

[157] 2022 The original ultimate goal of the studies reviewed in this paper was to use the laboratory test meal, measured with the UEM [universal eating monitor], to translate animal
models of ingestion to humans for the study of the physiological controls of food intake under standardized conditions.

[158] 2022 This paper describes many food weight detection systems which includes sensor systems consisting of a load cell, manual food waste method, wearable sensors.
[159] 2018 This paper summarizes recent technological advancements, such as remote sensing devices, digital photography, and multisensor devices, which have the potential to improve

the assessment of dietary intake and physical activity in free-living adults.

[160] 2022
Focusing on non-invasive solutions, we categorised identified technologies according to five study domains: (1) detecting food-related emotions, (2) monitoring food choices, (3)
detecting eating actions, (4) identifying the type of food consumed, and (5) estimating the amount of food consumed. Additionally, [they] considered technologies not yet
applied in the targeted research disciplines but worth considering in future research.

[161] 2020
In this article [they] describe how wrist-worn wearables, on-body cameras, and body-mounted biosensors can be used to capture data about when, what, and how much people
eat and drink. [They] illustrate how these new techniques can be integrated to provide complete solutions for the passive, objective assessment of a wide range of traditional
dietary factors, as well as novel measures of eating architecture, within person variation in intakes, and food/nutrient combinations within meals.

[162] 2021 This survey discusses the best-performing methodologies that have been developed so far for automatic food recognition and volume estimation.
[163] 2020 This paper reviews various novel digital methods for food volume estimation and explores the potential for adopting such technology in the Southeast Asian context.

[164] 2017
This paper presents a meticulous review of the latest sensing platforms and data analytic approaches to solve the challenges of food-intake monitoring, ranging from ear-based
chewing and swallowing detection systems that capture eating gestures to wearable cameras that identify food types and caloric content through image processing techniques.
This paper focuses on the comparison of different technologies and approaches that relate to user comfort, body location, and applications for medical research.

[165] 2020 In this survey, a wide range of chewing activity detection explored to outline the sensing design, classification methods, performances, chewing parameters, chewing data
analysis as well as the challenges and limitations associated with them.

[166] 2021
Recent advances in digital nutrition technology, including calories counting mobile apps and wearable motion tracking devices, lack the ability of monitoring nutrition at the
molecular level. The realization of eff ective precision nutrition requires synergy from diff erent sensor modalities in order to make timely reliable predictions and efficient
feedback. This work reviews key opportunities and challenges toward the successful realization of eff ective wearable and mobile nutrition monitoring platforms.
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