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Abstract: The consumption of food-derived products, including the regular intake of pepper, is
increasingly evaluated for its potential benefits in protecting against diverse metabolic complications.
The current study made use of prominent electronic databases including PubMed, Google Scholar,
and Scopus to retrieve clinical evidence linking the intake of black and red pepper with the ame-
lioration of metabolic complications. The findings summarize evidence supporting the beneficial
effects of black pepper (Piper nigrum L.), including its active ingredient, piperine, in improving
blood lipid profiles, including reducing circulating levels of total cholesterol, low-density lipoprotein
cholesterol, and triglycerides in overweight and obese individuals. The intake of piperine was also
linked with enhanced antioxidant and anti-inflammatory properties by increasing serum levels of
superoxide dismutase while reducing those of malonaldehyde and C-reactive protein in individuals
with metabolic syndrome. Evidence summarized in the current review also indicates that red pepper
(Capsicum annum), together with its active ingredient, capsaicin, could promote energy expenditure,
including limiting energy intake, which is likely to contribute to reduced fat mass in overweight
and obese individuals. Emerging clinical evidence also indicates that pepper may be beneficial in
alleviating complications linked with other chronic conditions, including osteoarthritis, oropharyn-
geal dysphagia, digestion, hemodialysis, and neuromuscular fatigue. Notably, the beneficial effects
of pepper or its active ingredients appear to be more pronounced when used in combination with
other bioactive compounds. The current review also covers essential information on the metabolism
and bioavailability profiles of both pepper species and their main active ingredients, which are all
necessary to understand their potential beneficial effects against metabolic diseases.

Keywords: metabolic disease; oxidative stress; inflammation; pepper; piperine; capsaicin; capsinoid

Molecules 2023, 28, 6569. https://doi.org/10.3390/molecules28186569 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28186569
https://doi.org/10.3390/molecules28186569
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-5965-3610
https://orcid.org/0000-0001-6916-5426
https://orcid.org/0000-0002-3272-7525
https://orcid.org/0000-0003-3302-4335
https://orcid.org/0000-0003-2797-9717
https://orcid.org/0000-0001-9062-5650
https://orcid.org/0000-0002-4658-1619
https://orcid.org/0000-0002-6719-8512
https://orcid.org/0000-0002-1819-1699
https://orcid.org/0000-0001-7685-2099
https://orcid.org/0000-0002-7519-7106
https://doi.org/10.3390/molecules28186569
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28186569?type=check_update&version=2


Molecules 2023, 28, 6569 2 of 24

1. Introduction

Metabolic syndrome describes a cluster of metabolic complications, including insulin
resistance, hypertension, and hyperlipidemia, that increase the risk for the development of
cardiovascular diseases [1,2]. Cardiovascular diseases remain the leading cause of death
worldwide [3], especially in people with metabolic disorders [4]. Recent numbers indicate
that a growing number of individuals present with a cluster of metabolic disorders such as
hyperglycemia and dyslipidemia that are also linked with the development and progression
of type 2 diabetes [5]. This emphasizes an urgent need for multisectoral interventions to
decrease the global burden of metabolic syndrome and associated complications, especially
those involving overweight and obesity (Figure 1). Indeed, the consumption of a high-
calorie diet, in combination with reduced physical activity or a sedentary lifestyle, is known
to be the major cause of obesity that accelerates the development of metabolic syndrome [6].
An obese state is accompanied by excessive adiposity and enhanced ectopic accumulation,
which is associated with increased levels of oxidative stress and inflammation [7]. Both
oxidative stress and inflammation are considered prominent pathological mechanisms that
alter biochemical processes and cause cellular damage within many metabolic diseases [8,9].
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There has been an increasing interest in evaluating the therapeutic potential of dietary
sources, including foods rich in antioxidants, for their ameliorative effects against oxidative
stress and inflammation in diverse metabolic conditions. In fact, our group and others have
progressively reported on the potential benefits of plant- and/or food-derived bioactive
compounds for their capacity to improve metabolic status by blocking the toxic effects of ox-
idative stress and inflammation [10–14]. A growing body of literature has also progressively
reported on the potential benefits of pepper against diverse metabolic complications [15–18].
Piper, the genus of pepper plants or pepper vines, is contemplated to be part of the most
ancient pan-tropical flowering plant groups [19]. With an estimated 1000 species of herbs,
encompassing small trees, shrubs, and hanging vines, the genus Piper is considered to
have a rich ethnobotanical and ethnopharmaceutical history [20]. The reviewed literature
already indicates the potential therapeutic effects of pepper; however, it predominantly
focuses on preclinical findings [15–18]. In particular, reviewed information shows that
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black and red pepper, including their respective main bioactive compounds piperine and
capsaicin, display a variety of biological effects, including antimicrobial, anti-inflammatory,
gastro-protective, antidepressant, and antioxidant properties, in preclinical models [16,17].
Azlan and colleagues also recently reviewed evidence of the antioxidant and anti-obesity
effects of different chili peppers [18]. However, a gap remains in the evidence on the
clinical benefits of pepper against metabolic diseases. Importantly, there are no reviews that
have compared the therapeutic effects of both black pepper (Piper nigrum) and red pepper
(Capsicum annum) against metabolic diseases. This highlights the importance of the current
review, which critically discusses clinical evidence of the potential benefits of both black
and red peppers against diverse metabolic complications. The current review also covers
essential information on the biological properties, metabolism, and bioavailability profiles,
as well as the toxic effects, of pepper types and their main active ingredients, which are all
necessary to underscore its potential pharmacological relevance.

2. General Overview of Black Pepper (Piper nigrum), including Its Metabolism and
Bioavailability Profile

The genus Piperaceae, of the pepper family, contains flowering plants including small
trees, shrubs, or herbs. This class consists of about 3600 species and five genera, including
Piper, Peperomia, Zippelia, Manekia, and Verhuellia. Most of the species are found in the
Piper genera, with about 2171 species, and Peperomia, with over 1000 species [21]. The
most popular species of the Piperaceae family is Piper nigrum, which produces peppercorns
that are generally used as spices, including black pepper, which is considered the king
of spices [22]. Another well-known species of the Piperaceae is Piper longum, which yields
black, white, and green peppercorns [23]. It is believed that the Piper genus is endogenous
to India [24], being broadly cultivated within the Karala region [25]. Black pepper contains
a major bioactive pungent alkaloid commonly known as piperine, which is found in the
fruits of Piper longum and Piper nigrum [23]. Piperine content within black pepper is
estimated to range from 2–10% [26–31]. Piperine was first extracted around the 1800s, while
its chemical composition was elucidated much later, around 1882–1894 [32]. Since then,
research has extensively studied black and its constituent piperine, with the description
of different isomers of the bioactive compound currently acknowledged, including the
trans–trans isomer (piperine), cis–trans isomer (isopiperine), cis–cis isomer (chavicine),
and trans–cis isomer (isochevicine) (Figure 2). Other alkaloids that have been identified
in black pepper include piperanine, piperettine, piperolein, piperylin, and pipericine [22].
Reviewed information already indicates that other bioactive compounds can be found in
the African Piper species [33]. Like other natural compounds that are widely ingested orally,
piperine gets broken down within the body into small components or metabolites.
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Evidence from animal studies shows that oral administration of 170 mg of piper-
ine yields approximately 3–4% of the original ingested bioactive compounds, which is
detected mainly in feces after 4 or 5 days in rats, while about 96–97% is projected to be
absorbed [35,36]. Ingested piperine is normally absorbed within the small intestines of
rats [35]. When 170 mg of the bioactive compound is given to rats, about 38.8 µmol of
piperine is detected in the serum, while some of the trace elements of the compound are
found in the liver and kidneys [36]. Although some studies could not detect the presence
of piperine in urine or serum [35–38], others have reported piperine metabolites includ-
ing piperonylic acid, piperonyl alcohol, piperonal, and their conjugates in the urine of
rats [39]. Piperine, when conjugated with iron, can inhibit the activity of CYP450 3A4 [40],
an essential enzyme involved in drug metabolism and detoxication processes within the
liver [41]. Additional evidence indicates that twelve metabolites of piperine can be detected
in rat plasma, bile, feces, and urine [42]. Apparently, piperine can undergo a series of
chemical modifications through the enzymes responsible for the liver first-pass metabolic
effect [43]. Studies support effective absorption of piperine in rats, especially after an
initial oral dose of 20 mg is given [44]. Others have also affirmed effective absorption of
piperine through enhanced levels in the brain and plasma of rats after the ingestion of a
dose of 35 mg [45]. The metabolism of 50 mg of piperine in humans translates to about
0.71–0.83 mg of the bioactive compound being detected within the plasma [46]. Impor-
tantly, piperine metabolites, including 5-(3-4-dihydroxphenyl) valeric acid piperidide and
its derivative 5-(3-4-dihydroxphenyl)valeric acid-4-hydroxypiperidide, have been detected
in the urine of humans [47].

Like with other natural compounds, the delivery of piperine is supposedly com-
promised by its low water solubility, which could lead to poor clinical applications [48].
However, research has evaluated the potential use of delivery systems like nanoparticles,
nanoliposomes, and micelles among advances to improve the bioavailability of natural
bioactive and food compounds [49]. For example, the encapsulation of piperine in a
nanoparticle of sodium chitosan triphosphate could improve its absorption, leading to
enhanced biological activity [50]. A combination of piperine and curcumin shows im-
proved efficacy compared to that of each bioactive compound alone [51]. Others have
indicated that the use of mixed micelles of D-alpha tocopherol polyethylene glycol succi-
nate and soluplus could improve the efficacy of encapsulated piperine over that of free
piperine [52]. Cubic-nanoparticle-encapsulated piperine and protopanaxadiol also show im-
proved bioavailability [53]. Such studies indicate that piperine is released at a much faster
rate within in vivo systems, while also promoting increased absorption. Another interesting
formulation is a nanoliposome with piperine and gentamicin, as investigated in bacterial
growth [54]. It has been found that this liposomal combination was effective in inducing
death and bacterial inhibition. Lastly, other researchers have used solid lipid nanoparticles
encapsulating piperine to test the ameliorative effect of piperine against the complications
of Alzheimer’s disease [55]. Interestingly, it was found that this nano-formulation could
reduce the levels of superoxide dismutase (SOD) as well as oxidative stress at a dose of
2 mg/kg [55]. This further indicates that the bioavailability profile or bioactivity of piperine
can be enhanced through recent developments in drug discovery, especially when used in
combination with other bioactive compounds or food products [56,57].

3. Red Pepper (Capsicum annum), including Its Metabolism and Bioavailability Profile

Red pepper belongs to the Solanaceae family of the genus Capsicum, consisting of five
domesticated species such as C. annuum L., C. chinense Jacq., C. frutescens L., C. baccatum
L., and C. pubescens Ruiz et Pav [58,59]. It appears the capsicum species were first discov-
ered in Bolivia, with their cultivation expanding to Mexico prior to the Columbian times
(7000 B.C.) [60]. The capsicum genus is known by different names including hot pepper,
chili pepper, bell pepper, sweet pepper, and sometimes just pepper across the world. Red
pepper consists of different secondary metabolites collectively called capsaicinoids [61].
Capsaicinoids include capsaicin (8-methyl-N-vanillyl-6-nonenamide) and homologs of
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capsaicin with acid amides of vanillyl amine, as well as 8–to–18 carbon fatty acids. Other
capsaicinoids that exist in pungent red pepper apart from capsaicin include the 6,7-dihydro
analog of capsaicin, called dihydrocapsaicin, and nordihydrocapsaicin, which contains the
mono-nor homolog of the acyl residue of dihydrocapsaicin [62].

Figure 3 shows some homo-capsaicinoids, including homocapsaicin, homodihydro-
capsaicin and N-vanillyl nanoamide [63]. However, capsaicin, a major bioactive capsai-
cinoid that occurs as a colorless and odorless hydrophobic compound and is crystalline
to waxy [64], is mainly responsible for the burning sensation of the fruit when orally in-
gested [65]. It has been reported that capsaicin and dihydrocapsaicin make up about 70–90%
of the capsaicinoids within the Capsicum genus [66,67]. Studies have also discovered other
capsaicinoid-like residues that are structurally related to capsaicin but of the non-pungent
cultivar of Capsicum annuum L. [68]. The other structures of these capsaicinoid-like residues
have been identified and denoted as capsiate, dihydrocapsiate, and nordihydrocapsiate,
with the chemical nomenclature 4-hydroxy-3-methoxybenzyl [E]-8-methyl-6-nonenoate,
4-hydroxy-3-methoxybenzyl 8-methyloctanoate, and 4-hydroxy-3-methoxybenzyl, respec-
tively [68,69]. Structurally, these capsinoids differ from capsaicin by their two moieties
that are linked by an ester bond rather than an amine bond [70], and they are called capsi-
noids [69]. Studies on the pungent components of capsicum with different names such as
capsicol, capsaicin, and capsaicin began as early as the 1800s [71]. This is almost the same
time when capsaicin was extracted from Capsicum [72], and its chemical composition was
then characterized by the 1900s [73].
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Figure 3. The chemical structure of capsaicinoids, including capsaicin, homocapsaicin, homodihydro-
capsaicin and N-vanillyl nanoamide. Information adapted from previous literature [63,74].

Just like piperine, capsaicin also undergoes liver first-pass metabolism upon oral
administration [75]. Evidence indicates that capsaicin can undergo hepatic metabolism,
leading to the generation of metabolites like hydroxycapsaicin and dihydrocapsaicin [76].
Apparently, five metabolites of capsaicin have been detected in the human liver, with
hydroxycapsaicin, hydroxycapsaicin, and dehydrocapsaicin being the most abundant [77].
Accordingly, the most abundant metabolites in the liver fractions of rats included vanilly-
lamine, hydroxycapsaicin, and dehydrocapsaicin [77]. This finding indicates that capsaicin
is metabolized at a higher rate within the liver of rodents. Others have indicated the dis-
tribution of capsaicin in different organs of rats, showing that this bioactive compound is
abundantly found in the spinal cord and the brain when compared to levels in the liver after
intravenous administration [75]. It has also been indicated that reduced levels of capsaicin
within the liver may be due to the detoxification process, which produces tolerable con-
jugates with glucuronic acid or sulfuric acid [75]. This hypothesis has been confirmed by
others showing that hydrocapsaicin and other metabolites are found in the urine and feces
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of rats [71]. It appears that hydrocapsaicin is mainly hydrolyzed by the liver to yield fatty
acids and vanillylamine, which are later reduced to vanillin and lastly vanillic acid and/or
vanillyl alcohol. Dicapsaicin is another identified metabolite of capsaicin within the liver of
rats [78]. Apparently, the P450 enzymes can metabolize capsaicin to produce free-radical in-
termediates. Other studies have also reported the involvement of a monooxidase system in
livers treated with capsaicinoids. For instance, it was previously reported that capsaicinoids
were converted to N-(4,5,dihydroxy-3-methoxybenzy1) acylamides in rat livers through a
mixed-function monooxidase system promoted by hexobarbital injection [71]. In vitro, it
was shown that N-(4,5,dihydroxy-3-methoxybenzy1) acylamide was the only metabolite
detected in the incubation medium containing rat liver homogenate and capsaicin [71].

In terms of bioavailability, intestinal absorption of capsaicin in rats and hamsters
in vitro has been reported [79]. From these results, it was evident that hamsters had better
capsaicin intestinal absorption than rats [71]. Capsaicinoids are absorbed better in the
stomach than in the small intestine in vivo, while in vitro evidence through intestinal sacs
also supports enhanced intestinal absorption of capsaicin [79]. Capsaicin can also be better
absorbed by the jejunum and ileum than by the stomach in rats [80]. The absorption of
capsaicin in the lungs appears to be 20–40-fold slower than that in the liver microsomes of
both rats and humans [76]. However, the capsaicin metabolites observed in human lung
microsomes were similar to those in liver microsomes. Notably, the metabolic profile of red
pepper and capsaicin has been poorly investigated in clinical subjects.

With a rapid advancement in science, nanotechnology has been employed as a poten-
tial delivery system to enhance the bioavailability of capsaicin. In this context, polymeric
nanocapsules have been used to improve the efficacy of capsaicin [81]. Such data has
verified that capsaicin is insoluble in water; thus, the introduction of a high-water emulsion
reduces its loading efficacy. Solid-lipidic nanoparticles and nanostructured lipid carriers
have also been investigated as transdermal transporters of capsaicin. It has been reported
that this delivery emulsion exhibits enhanced transdermal permeability and retention in
mice skin [82]. Like most of the formulations, the nano-vascular ethosomal formulation
was found to improve permeability in ex vivo human skin and improved the anti-arthritic
form of capsaicin [83,84]. Also, there has been interest in exploring the use of nanofibers as
a capsaicinoid transdermal delivery strategy. A nanofiber was loaded 0.5–2% of capsaicin
extract, and it was demonstrated that the release of this bioactive compound and its perme-
ability in snakeskin were high [85]. Lastly, researchers attempted to encapsulate capsaicin
in nanoparticles and incorporate chitosan hydrogel to improve its permeability through the
skin [86]. This study compiled as many of the formulation strategies for capsaicin delivery
systems as possible. Ongoing research continues to cover the different formulations that
can be used to enhance the absorption of capsaicin [63].

4. Traditional Uses and Proposed Pharmacological Properties of Pepper and Its
Bioactive Compounds

Black pepper and piperine have been acknowledged to have beneficial effects on
human health. Starting with preclinical evidence, it has been shown that the administration
of piperine at a dose of 50 mg/kg could improve the digestive system while reducing
oxidative stress and inflammation in mice [87]. In diverse experimental models of chronic
diseases, it was shown that piperine can reduce complications of arthritis [88], hepatic
steatosis [89,90], and type 2 diabetes or obesity [91]. It was disclosed that piperine can also
reduce depression in mice when given at doses of 2.5, 5, or 10 mg/kg for 14 days [92,93].
Reviewed information has also covered the beneficial effects of black pepper and piperine in
various experimental models of disease [94,95]. The molecular mechanisms and signaling
pathways that are associated with the ameliorative effects of piperine against the toxic
effects of oxidative stress have been discussed, and these include the activation of nuclear
factor erythroid 2-related factor 2, peroxisome proliferator-activated receptor-gamma,
cyclooxygenase-2, and nitric oxide synthases-2, which is essential to promote intracellular
antioxidant responses [96,97]. This bioactive compound can also block inflammation
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and improve cellular function by effectively modulating or inhibiting multiple signaling
pathways, such as those of protein-kinase-activated NLR family pyrin domain containing-3
inflammasome, nuclear factor-κB, Jun N-terminal kinase/p38 mitogen-activated protein
kinase, and pro-inflammatory molecules [96,98].

On the other hand, red pepper has been used traditionally to relieve toothache. Other
traditional uses of red pepper include its application as a home remedy to heal lung
conditions like bronchitis, lower glucose levels in diabetes, stabilize blood pressure, and
relieve burning feet [99,100]. Scientific evidence indicates that red pepper can improve
blood circulation and gastric abnormalities [101] while ameliorating neuralgia and rheuma-
tism [102,103]. Capsaicin and its derivatives are effective against abdominal pain, bloat-
ing [104], and pain [105–107], as well as alleviating other complications that underlie
diabetes and overweight [108]. In addition, it has been shown that capsaicin alone has
anti-inflammatory [109] and antioxidant [110–112] properties. Other reviews have also
given a general perspective into the diverse biological activities of capsaicin, especially
in relation to the alleviation of metabolic-disease-related complications [16,63]. It appears
that the secondary metabolites of red pepper are equally important in improving human
health [113]. In terms of molecular insights, Caterina and colleagues [114] were fundamen-
tal in discovering the role of capsaicin as an analgesic agent. Their findings affirmed that
capsaicin receptor is a non-selective cation channel that is structurally linked to members of
the TRP family of ion channels. The latter encodes integral membrane proteins that function
as ion channels and are broadly expressed in diverse tissues and cell types, where they are
involved in different physiological processes, including sensation of different stimuli or
ion homeostasis [115]. As a result, accumulative research has explored the potential role of
capsaicin in stimulating painful sensations, particularly its chemical modulation of sensory
neurons through the vanilloid receptor subtype 1 [116–118]. Other studies show that mice
lacking TRPV1 exhibit no vanilloid-induced pain behavior, which is related to a reduced
capacity to feel pain [117].

5. Potential Toxic Effects of Pepper

An increasing body of evidence shows that pepper has toxicological effects when
used at very high doses. In fact, although considered beneficial to human health, even
black pepper is a culprit for such toxic effects. For instance, the administration of its active
ingredient, piperine, at doses as high as 60 mg/kg could be lethal in female rats, while
a dose of 35.5 mg/kg could be toxic in weaning male rats, although this could also be
dependent on prolonged exposure to the compound [119]. It appears that doses of piperine
ranging from 35.7 mg/kg–140 mg/kg administered orally could cause liver damage, with
140 mg/kg also affecting kidneys and lungs in mice [120]. Also, high doses of piperine
could affect sperm quality in rats [121]. Several authors have also reported that piperine
can negatively influence maternal reproduction in association with embryonic toxicity
in various preclinical models [122–124]. However, more work is required to determine
the role of dose dependence, as well as intervention period, in driving the toxic effects
of piperine or black pepper. Although piperine has also been studied in humans, it is
noteworthy that there is lack of information on its toxicity profile. On the other hand, it
has been shown that red pepper constituents (capsaicinoids) could induce skin irritation
and inflammation in the mucus and eyes [125]. It has been previously reported that high
quantity of capsaicinoids have severe effects on the gastrointestinal tract [126,127]. Since the
identification of capsaicinoid toxicity, studies have elucidated the lethal dose of capsaicin
in mice, which could be about 122–294 mg/kg, whereas a lethal intravenously injected
dose was predicted to be 0.36–0.87 mg/kg [128]. In rats, capsaicin was found to damage
the liver mitochondria [129,130]. Apart from being fatal, capsaicin was also reported
to suppress stimulus response and induce neurotoxicity, mainly when administered in
neonates [130–132]. In humans, capsaicin at 0.006% is routinely used to induce a burning
stimulus [133]. The intolerable effects of capsaicin could include coughing, diarrhea, and
vomiting [134]. Also, capsaicin plasters containing 345.8 mg and 34.58 mg tinctures were
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shown to induce pain and nausea [135]. There is a large body of knowledge on capsaicin
toxicity that has been reported elsewhere [71,74,136].

6. Available Clinical Evidence of the Potential Benefits of Pepper
6.1. Characteristic Features of Clinical Studies

To identify relevant clinical studies, a systematic search was conducted using major
electronic databases including PubMed, Scopus, and Google Scholar. The search strategy
was compiled using the following keywords or Medical Subject Headings (MeSH): “pepper”
and “metabolic diseases”, including most relevant synonyms as well as keywords related to
the search topic. The literature search was performed from inception until June 2023, while
a manual search was performed to identify additional relevant studies. The final search
results yielded 14 relevant studies reporting on black pepper or its main active ingredient,
piperine, and its potential therapeutic effects against diverse metabolic complications
(Table 1), whereas 16 records were identified for clinical studies on red pepper, including its
active ingredients, capsinoids, against diverse metabolic complications. Besides those from
Argentina, Australia, Brazil, China, India, and Japan, which were outliers, most included
studies were from Iran, Europe, and the United States, predominantly focusing on adults
over the age of 18 years (Table 1). Summarized literature mainly included overweight and
obese subjects and those with metabolic syndrome (Tables 1 and 2). However, evidence
involving healthy subjects was also included, provided it was reporting on the therapeutic
effects of pepper or its active ingredients on metabolic parameters in individuals with
chronic or metabolic conditions.
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Table 1. An overview of human studies on the effects of black pepper (Piper nigrum) and its active ingredient, piperine, against diverse metabolic complications.

Author, Year Country Study Population Intervention Comparator (If Any) Main Findings

Gregerse et al.,
2013 [137] Denmark

Individuals subjected to
diet-induced thermogenesis

(n = 22), with an average age of
25 years

Brunch meal with black pepper at 1.3 g,
ginger (20 g), horseradish (8.3 g), and

mustard (21 g) for 4 h
Placebo

Did not affect diet-induced thermogenesis;
measurements of appetite and energy

balance were also not affected

O’Connor
et al., 2013

[138]
United States

Overweight women (n = 17), with
an average age between

52–69 years
Black pepper at 1.5 g for 24 h Placebo

Did not affect energy expenditure or
respiratory quotient, including levels of

glucose, insulin, catecholamines, and gut
peptides

Rondanelli
et al., 2013 [91] Italy

Overweight individuals (n = 41),
with an average age between 25

and 45 years

Two capsules per day, mainly containing
Camellia sinensis decaffeinated dried

extract (150 mg/cpr), microencapsulated
oleoresin of Capsicum annum

(7.5 mg/cpr), and piper nigrum dry
extract, (3 mg/cpr) for 8 weeks

Placebo

Reduced obesity-related inflammatory
metabolic dysfunction by ameliorating

insulin resistance, improving the
leptin/adiponectin ratio, respiratory

quotient, and low-density lipoprotein
(LDL) cholesterol levels

Hobbs et al.,
2014 [139] United States

Individuals with
hypercholesterolemia (n = 19), with

an average age between 18 and
80 years

Softgel that contained different active
ingredients (such as bioflavonoids,

vitamins, omega-3 fatty acids, and black
pepper) for 30 days

Placebo Reduced total cholesterol, low-density
lipopolysaccharide, and triglyceride levels

Rofes et al.,
2014 [140] Spain

Individuals with oropharyngeal
dysphagia (n = 40), with an
average age between 74 and

78 years

Piperine at 1 mM or 150 µM during
oropharyngeal swallow response None

Alleviated oropharyngeal dysphagia by
improving swallowing, with the time of
laryngeal vestibule closure shortened at

both concentrations

McCrea et al.,
2015 [141] United States

Overweight individuals given a
high-fat meal (1000 kcal, 45 g fat)

(n = 20), with an average age
between 30 and 36 years

Capsule with a combination of spices
(black pepper, cinnamon, cloves, garlic,
ginger, oregano, paprika, rosemary, and

turmeric) at 14.5 g for up to 210 min

Placebo Reduced triglyceride levels, but did not
have effects on glucose or insulin levels

Panahi et al.,
2015 [142] Iran

Individuals with metabolic
syndrome (n = 50), with an average

age between 36 and 53 years

Curcuminoids at 1 g, co-administered
with piperine at 10 mg daily for 8 weeks Placebo

Improved oxidative and inflammatory
status by enhancing serum levels of
superoxide dismutase (SOD) while

reducing that of malonaldehyde (MDA),
together with C-reactive protein
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Table 1. Cont.

Author, Year Country Study Population Intervention Comparator (If Any) Main Findings

Gilardini et al.,
2016 [143] Italy

Obese females (n = 20), with an
average age between 40 and

60 years

Formulation containing Camellia sinensis,
titrated as > 60% polyphenols and > 40%
in epigallocatechin-O-gallate, complexed
with soy distearoylphosphatidylcholine

and pure piperine (15 mg/dose) for
3 months

Placebo Reduced body weight and fat mass

Zanzer et al.,
2018 [144] Sweden

Individuals receiving a meal rich in
carbohydrates (n = 16), with an

average age between 25 and
27 years

Black pepper-based beverage at 220 mL
(20 mg gallic acid equivalent) up to

180 min
Placebo

Did not affect metabolic status. Also, the
was no observed effects in the

gastrointestinal well-being. However,
there was suppression of hunger and

improved satiety.

Mahmoudpour
et al., 2019

[145]
Iran

Individuals with functional
bloating (n = 36), with an average

age between 20 and 50 years

Formulation containing Trachyspermum
ammi (L.) Sprague seed, Zingiber

officinale Roscoe. Rhizome, and Piper
nigrum L. berry at 500 mg three times a

day for 2 weeks

Placebo
Improved bloating status, including

eructation, defecation, and borborygmus,
better than dimethicone

Heidari-Beni
et al., 2020

[146]
Iran

Individuals with chronic knee
osteoarthritis (n = 30), with an
average age between 35 and

75 years

Herbal formulation containing curcumin
(300 mg), gingerols (7.5 mg), and

piperine (3.75 mg), taken twice a day for
4 weeks

Naproxen at 250 mg
Potentially protected against chronic knee

osteoporosis by reducing levels of
prostaglandin E2

Oh et al., 2020
[147] United States

Overweight or obese subjects
(n = 12) given a high-fat meal
(1000 kcal) (n = 20), with an
average age between 40 and

65 years

Combination of spices (basil, bay leaf,
black pepper, cinnamon, coriander,
cumin, ginger, oregano, parsley, red

pepper, rosemary, thyme, and turmeric)
at 2 g for up to 4 h

Placebo Alleviated high-fat-meal-induced
postprandial interleukin (IL)-1β secretion

Pastor et al.,
2020 [148] Argentina

Individuals with metabolic
syndrome (n = 22), with an average

age between 63 and 73 years

Formulation containing resveratrol at
50 mg, piperine at 5 mg, and alpha
tocopherol a 25 mg, with habitual

treatment for 3 months

Placebo
Ameliorated inflammation by reducing

levels of ferritin, ultrasensitive C-reactive
protein, and oxygen consumption

Lindheimer
et al., 2023

[149]
United States

Young adults with low energy
(n = 40), with an average age

between 18 and 34 years

Black pepper capsules twice a day at
0.504 g for 2 days Rosemary at 0.425 g

Did not affect energy levels or fatigue
feelings; however, rosemary induced a

reduction in false alarm errors and mental
fatigue at different time periods
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Table 2. Clinical evidence of the effects of red pepper (Capsicum annum) and its active ingredient, capsaicin, against diverse metabolic complications.

Author, Year Country Study Population Intervention Comparator Main Findings

Yoshioka et al.,
1999 [150] Canada

Healthy individuals given high-fat
and high-carbohydrate meals
(n = 23), with an average age

between 23 and 41 years

Breakfast with red pepper at 10 g None Reduced appetite and subsequent protein and fat
intake while also limiting energy intake

Lutgendorf
et al., 2000

[151]
Denmark

Healthy individuals subjected to
stressful conditions, with an
average age between 21 and

33 years

Capsaicin at 510 mg for 10 days Placebo

Ameliorated stressful related inflammation by
enhancing relaxation; this was related to

amendments in norepinephrine, heart rate, and
systolic blood pressure during the experimental

task

Belza and
Jessen, 2005

[152]
Denmark

Overweight and obese individuals
(n = 19), with an average age

between 28 and 54 years

A tablet containing green tea extract at
250 mg, tyrosine at 203 mg, anhydrous

caffeine at 25.4 mg, and capsaicin at
0.2 mg for 7 days

Placebo Promoted a thermogenic effect through enhanced
energy expenditure without raising the heart rate

Ahuja et al.,
2006 [153] Australia

Overweight individuals (n = 36),
with an average age between 22

and 70 years

Chili blend (30 g/d; 55% cayenne chili)
diet supplement for 4 weeks None Attenuated postprandial hyperinsulinemia

Inoue et al.,
2007 [154] Japan

Overweight individuals (n = 29),
with an average age between 30

and 65 years
Capsinoids at 3 or 10 mg/kg for 4 weeks Placebo

Promoted fat oxidation, and this positively
correlated with the body mass index; further

analysis showed that treatment enhanced energy
expenditure and oxygen consumption

Snitker et al.,
2008 [70] United States

Overweight subjects (n = 41), with
an average age between 30 and 60

years
Capsinoids at 6 mg for 12 weeks Placebo Safe and promoted fat oxidation

Chaiyasit et al.,
2009 [155] Thailand

Individuals subjected to oral
glucose tolerance tests (n = 12),

with an average age of 20–23 years
Capsaicin at 5 g for up to 120 min None Reduced plasma glucose levels and maintained

insulin levels

Josse et al.,
2010 [156] Canada

Healthy subjects cycling at 55%
VO2 peak, and for 30 min into
recovery (n = 12), with an age

between 21 and 27 years

Capsules of purified capsinoids at 10 mg,
30 min prior to exercise None

Enhanced adrenergic activity, and energy
expenditure, leading to a shift in substrate

utilization toward lipid at rest but had little effect
during exercise or recovery
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Table 2. Cont.

Author, Year Country Study Population Intervention Comparator Main Findings

Nieman et al.,
2012 [157] United States

Overweight and obese females
(n = 31), with an average age

between 40 and 75 years

A combination of red pepper spice at 1 g
daily for 4 weeks

Received turmeric
at 2.8 g Did not affect inflammation and oxidative stress

Janssens et al.,
2013 [158] Netherlands

Healthy individuals subjected to
25% negative energy balance
(n = 15), with an average age

between 18 and 50 years

Capsaicin at 2.56 mg (1.03 g of red chili
pepper, 39,050 SHU) with every meal for

36 h
Placebo

Supported negative energy balance by
counteracting the unfavorable negative energy
balance concomitant with a reduction in energy

expenditure

Janssens et al.,
2014 [159] Netherlands

Healthy individuals (n = 15), with
an average age between 18 and

50 years

Red chili pepper (containing capsaicin
2484µ/g, nordihydrocapsaicin 278µ/g,

and dihydrocapsaicin 1440µ/g) at
2.56 mg with every meal, mounting to

daily total dose of 7.68 mg

None

Increased satiety and fullness, and partially
prevented overeating when food intake was ad
libitum; after dinner, treatment prevented the

negative energy balance and desire to eat

Galgani et al.,
2015 [160] United States

Healthy subjects (n = 13), with an
average age between 27 and

30 years

Gel capsules (containing capsinoids at 1,
3, 6 and 12 mg) up to 72 h Placebo

Did not affect metabolic rate, non-protein
respiratory quotient, blood pressure, or axillary

temperature

Yuan et al.,
2016 [161] China

Women with gestational diabetes
(n = 20), with an average age

between 27 and 34 years
Capsaicin at 5 mg daily for 4 weeks Placebo

Improved postprandial hyperglycemia and
hyperinsulinemia, as well as fasting lipid

metabolic disorders; in addition, the fasting serum
levels of apolipoprotein B and calcitonin

gene-related peptide increased compared to
changes in glucose and insulin in the plasma

Joseph et al.,
2021 [162] India

Overweight subjects (n = 12), with
an average age between 35 and

41 years

Capsifen (with 4 mg capsaicinoids/day)
at 200 mg for 28 days Placebo

Reduced body weight, body mass index, and
appetite; results also affirmed the safety and
tolerability of capsifen at the investigational

dosage

Giuriato et al.,
2022 [163] Italy

Healthy males subjected to
constant-load cycling exercise

time-to-exhaustion trials (n = 10),
with an average age between 19

and 26 years

Two capsules of capsaicin at 390 mg,
during 72 h between sessions Placebo

Alleviated neuromuscular fatigue through
alterations in afferent signaling or neuromuscular

relaxation kinetics

Silva-Santana
et al., 2022

[164]
Brazil

Patients undergoing hemodialysis
(n = 24), with an average age

between 20 and 75 years

A combination of turmeric at 3 g and
piperine at 2 mg daily for 12 weeks Turmeric at 3 g/day

Combination treatment was superior in effectively
modulating the status of oxidation and

inflammation by reducing malonaldehyde and
ferritin levels
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6.2. Evidence of the Effects of Pepper on Overweight and Obese Individuals

Overweight and obesity remain the major contributors to the development of diverse
metabolic complications [7,165]. Overnutrition consistent with reduced physical activity is
considered the underlying factor driving the development and progression of obesity [166].
In fact, there is an increasing need to investigate the therapeutic effects of pepper against
obesity and its associated complications in human subjects. Evidence summarized in this
review indicates that several clinical studies have been completed to test the beneficial
effects of pepper, including its active ingredients, piperine and capsaicin, on obesity and its
related metabolic complications (Table 1). Starting with evidence on black pepper, 3 months
of administration of a formulation containing its main ingredient, pure piperine (at 15 mg),
together with Camellia sinensis soy distearoylphosphatidylcholine was shown to reduce
body weight and fat mass in obese subjects [143]. Captivatingly, reviewed evidence already
supports the notion that epigallocatechin, which is one of the major active ingredients
of Camellia sinensis, could potentially neutralize oxidative stress and inflammation to
amend complications of metabolic syndrome [165]. The 8-week administration of two
capsules containing a combination of piper nigrum dry extract (3 mg), capsicum annum
(7.5 mg), and decaffeinated dried Camellia sinensis extract (150 mg) could ameliorate obesity-
related complications, including insulin resistance, leptin/adiponectin ratio, and low-
density lipoprotein (LDL) cholesterol levels, while blocking inflammation in overweight
individuals [91]. Similarly, a four-hour administration of a capsule containing a combination
of spices (at 2 or 14.5 g) consisting of black pepper, cinnamon, cloves, garlic, ginger, oregano,
paprika, rosemary, and turmeric could reduce the levels of triglycerides while alleviating
high-fat-meal-induced postprandial interleukin (IL)-1β secretion in overweight and obese
subjects [141,147]. Interestingly, an additional study also showed that the beneficial effects
of pepper-containing formulations were associated with improved lipid profiles, as seen
with reductions in total cholesterol, low-density lipopolysaccharide, and triglyceride levels
when individuals with hypercholesterolemia were given capsules comprising different
active ingredients such as bioflavonoids, vitamins, omega-3 fatty acids, and black pepper
for 30 days [139]. Summarized evidence on the potential therapeutic effects of black pepper
against obesity and its associated complications appeared to be more pronounced when
used in combination with other active ingredients, with enhanced effects on improving
lipid profiles through the reduction of total cholesterol and triglyceride levels, while also
lowering pro-inflammatory markers in overweight and obese subjects (Table 1; Figure 4).

Summarized evidence also reported the therapeutic potential of red pepper against
obesity and its related complications (Table 2). Here, it was shown that the 7-day admin-
istration of a tablet containing an active ingredient of red pepper, capsaicin (at 0.2 mg),
together with green tea extract (at 250 mg), tyrosine (at 203 mg), and anhydrous caffeine
(at 25.4 mg) could promote a thermogenic effect and enhance energy expenditure in over-
weight and obese individuals [152]. This is of great importance since it has been estimated
that both common therapies like metformin and prominent bioactive compounds can
improve metabolic function by promoting thermogenesis and increasing energy expen-
diture [167,168]. Interestingly, a 4-week administration of capsinoids (at 3 or 10 mg/kg)
could also promote fat oxidation, which was positively correlated with enhanced energy
expenditure in overweight subjects [154]. Other studies supported the beneficial effects of
capsinoids against obesity-related complications, indicating that consuming these bioactive
compounds (at doses between 4–6 mg) for 1 to 3 months could promote fat oxidation
while reducing body weight, body mass index, and appetite in overweight subjects [70,162].
Moreover, overweight individuals receiving a 4-week chili blend (at 30 g/d; 55%) inter-
vention displayed reduced postprandial hyperinsulinemia [153]. However, administration
of a combination of red pepper spices (at 1 g daily for 4 weeks) did not have a significant
effect in improving markers of oxidative stress and inflammation in overweight and obese
subjects [157]. Individuals subjected to high-fat and high-carbohydrate meals rich in red
pepper (at 10 g) exhibited reduced appetite and subsequently reduced protein and fat
intakes, while also limiting energy intake [150]. This may indicate that the therapeutic
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properties of red pepper and its active ingredients, capsinoids, mainly include promoting
energy expenditure, including limiting energy intake in overweight and obese individuals.
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Figure 4. A general overview of the potential beneficial effects of black pepper against obesity and its
associated complications, with evidence indicating that black pepper, including its active ingredient
piperine, shows enhanced potential to improve blood lipid profiles, including reducing circulating
levels of low-density lipoprotein cholesterol (LDL) while increasing those of high-density lipoprotein
(HDL). The strong antioxidant properties of black pepper are attributed to its potential beneficial
effects on overweight and obese individuals.

This was also verified independently in healthy individuals, where the short-term (at
least 30 min) administration of capsinoids (at 10 mg) could enhance adrenergic activity
and energy expenditure, leading to a shift in substrate utilization toward lipids at rest, but
with little effect during exercise or recovery [156]. Also, individuals receiving capsaicin at a
dose of 2.56 mg (1.03 g of red chili pepper) with every meal for 36 h displayed a negative
energy balance that was concomitant with a reduction in energy expenditure [158]. Similar
results were seen for individuals taking red chili pepper containing capsaicin at 2484 µ/g,
nordihydrocapsaicin at 278 µ/g, and dihydrocapsaicin at 1440 µ/g (2.56 mg) in terms of
enhancing satiety and fullness while preventing a negative energy balance and desire to
eat [159]. Interestingly, the positive effects of black pepper on energy expenditure were very
minimal [137,138,144]. In fact, very limited information [160] showed that pepper or its
active ingredients could affect or improve the metabolic status of individuals with diverse
metabolic complications. The potential beneficial effects of red pepper are summarized in
Figure 5.
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promote energy expenditure and limit energy intake, which is likely to contribute to reduced fat mass
in overweight and obese individuals.

6.3. Evidence of the Effects of Pepper on Individuals with Metabolic Syndrome

Overweight and obesity are currently acknowledged to be the leading factors that
favor the development of metabolic syndrome. This is a chronic medical condition that
describes a cluster of metabolic abnormalities that drive the development of type 2 diabetes
and cardiovascular complications. Well beyond assessing the therapeutic effects of pepper
against overweight or obesity, it is also important to uncover whether administration of
this dietary compound can alleviate the pathological features associated with metabolic
syndrome. In fact, some of the evidence included within this review did report the potential
benefits of pepper or its active ingredients in complications of metabolic syndrome. (Tables 1
and 2). For instance, an 8-week co-administration of piperine (at 10 mg) with curcuminoids
(at 1 g) could improve oxidative and inflammatory status by enhancing serum levels of SOD
while reducing those of malonaldehyde (MDA) and C-reactive protein in individuals with
metabolic syndrome [142]. Of course, lipid peroxidation through enhanced levels of MDA
is one of the predominant features driving the complications of metabolic disease [169].
It was also shown that a 3-month administration of a formulation containing piperine (at
5 mg) together with resveratrol (at 50 mg) and alpha tocopherol (at 25 mg) could alleviate
inflammation by reducing levels of ferritin and C-reactive protein in individuals with
metabolic syndrome [148]. The short-term (2 h) administration of capsaicin (at 5 mg) could
also reduce plasma glucose levels and maintain insulin levels in individuals subjected to
oral glucose tolerance tests [155]. A 4-week administration of a similar dose of capsaicin
was also shown to improve plasma postprandial hyperglycemia and hyperinsulinemia in
women with gestational diabetes [161]. Notably, limited evidence has directly evaluated
the beneficial effects of pepper against the complications linked with metabolic syndrome,
while active ingredients such as piperine and capsaicin show the therapeutic potential to
improve oxidative stress and inflammation within such pathological conditions.

6.4. Evidence of the Effects of Pepper on Individuals with Metabolic Syndrome

Many other chronic conditions contribute to the development and progression of
noncommunicable diseases. The current study also evaluated the therapeutic effects of
pepper against diverse chronic conditions, including those involving osteoarthritis, oropha-
ryngeal dysphagia, digestion, hemodialysis, and neuromuscular fatigue (Tables 1 and 2).
For instance, a 4-week administration of a formulation containing piperine (at 3.75 mg)
together with curcumin (at 300 mg) and gingerols (at 7.5 mg) could potentially protect
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against chronic knee osteoporosis by reducing levels of prostaglandin E2 [146]. The ad-
ministration of piperine (at 1 mM or 150 µM) could improve swallowing in individuals
with oropharyngeal dysphagia [140]. Those receiving a 2-week intervention with a formu-
lation containing Trachyspermum ammi (L.) Sprague seed, Zingiber officinale Roscoe. rhizome
and Piper nigrum L. berry (at 500 mg) presented with improved bloating status, including
eructation, defecation, and borborygmus, compared to that seen in individuals treated
with dimethicone [145]. Patients undergoing hemodialysis could benefit from receiving a
combination of piperine (at 2 mg) and turmeric (at 3 g) for 12 weeks through an effective
reduction in biomarkers of oxidative stress and inflammation, including malonaldehyde
and ferritin [164]. On the other hand, a reduction in false alarm errors and mental fatigue
at different time periods was also reported in young adults with low energy after receiving
black pepper capsules twice a day at 0.504 g for 2 days [149]. Individuals receiving two
capsules of capsaicin at 390 mg, with 72 h between sessions, displayed improvements in
neuromuscular fatigue through alterations in afferent signaling or neuromuscular relax-
ation kinetics [163]. The blockage of systematic inflammation, leading to amendments in
norepinephrine, heart rate, and systolic blood pressure during the experimental task, is
the likely mechanism associated with improvements in stressful conditions in individuals
receiving capsaicin at 510 mg for 10 days [151].

7. Summary and Future Perspectives

For centuries now, spices have been an important part of the human diet. This ex-
plains the significant interest directed at understanding the therapeutic benefits of species
against many diseases, including the use of pepper and its active ingredients [170]. Clini-
cal evidence covered within the current review supports the beneficial effects of pepper
against obesity and its associated complications (Tables 1 and 2). In fact, summarized
literature supports the beneficial effects of black pepper (Piper Nigrum L.), including its
active ingredient piperine, on lipid profiles, including reducing circulating levels of total
cholesterol, low-density lipoprotein cholesterol, and triglycerides in overweight and obese
individuals (Table 1). Moreover, the potential therapeutic effects of black pepper and
piperine also supposedly include enhanced reduction effects on markers of oxidative stress
and inflammation. Interestingly, the literature that has already been reviewed indicates that
beyond the strong antioxidant effects, black pepper, with its active ingredient, piperine,
contains a rich phytochemistry that includes volatile oil, oleoresins, and alkaloids, giv-
ing it the biological properties to protect against the toxic effects of oxidative stress and
inflammation [15].

Evidence summarized in the current review also indicates that red pepper, together
with its active ingredients, capsinoids, displays enhanced benefits in promoting energy
expenditure, including limiting energy intake, which is likely to reduce fat mass in over-
weight and obese individuals. Although red pepper can potentially improve the oxidative
and inflammatory status of individuals with metabolic syndrome, very limited information
currently affirms the beneficial effects of both black and red pepper on these individuals.
However, preclinical evidence supports the beneficial effects of dietary capsaicin in improv-
ing glucose homeostasis and lipid metabolism through the modulation of bile acid/gut
microbiota in conditions of metabolic disease [171–176]. This is in line with the emerging
literature highlighting the potential benefits of pepper in improving chronic conditions,
including those involving osteoarthritis, oropharyngeal dysphagia, digestion, hemodialy-
sis, and neuromuscular fatigue (Tables 1 and 2). However, the current literature supports
the common use of pepper (including its active ingredients) in combination with other
bioactive compounds, which could explain the synergistic effects in protecting against
obesity-associated complications. Anyhow, current literature provides an important back-
ground for the clinical trials required to better investigate the therapeutic effects of black
and red pepper, especially those involving individuals with metabolic syndrome.
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