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Abstract: Necrotizing enterocolitis (NEC) is the leading cause of intestinal morbidity and mortality in
neonates. A large body of work exists; however, the pathogenesis of NEC remains poorly understood.
Numerous predictors have been implicated in the development of NEC, with relatively less emphasis
on maternal factors. Utilizing human tissue plays a crucial role in enhancing our comprehension of the
underlying mechanisms accountable for this devastating disease. In this review, we will discuss how
maternal stress affects the pathogenesis of NEC and how changes in the intestinal microbiome can
influence the development of NEC. We will also discuss the results of transcriptomics-based studies
and analyze the gene expression changes in NEC tissues and other molecular targets associated with
the pathogenesis of NEC.

Keywords: necrotizing enterocolitis; prenatal stress; cortisol; inflammation; microbiome

1. Introduction

Necrotizing enterocolitis (NEC) is the leading cause of intestinal morbidity and mor-
tality among premature infants and is characterized by the acute onset of inflammation
and necrosis of the intestine [1,2]. Because the pathogenesis of NEC is not fully clear and
is thought to be multifactorial, it is difficult to predict which infant will develop NEC. In
contrast to the many suspected risk factors, there are only a few clearly associated risk
factors: prematurity, low birth weight, enteral feeding, and neonatal infection and inflam-
mation [3–5]. Most interventions for NEC in newborns are targeted after birth because of
the prevailing view that NEC develops in response to dietary and microbial factors during
the post-natal period [6]. Emerging evidence challenges this view and raises the possibility
that maternal and environmental factors in utero regulate maternal–fetal signals and can
modulate the development and pathogenesis of NEC [7,8]. In this review, we discuss
some of these factors based on data from our laboratory and others while underscoring
biomarkers and molecular targets that can be employed to decrease the incidence and
severity of the disease.

2. Maternal Stress and Birth Outcomes

Clinically, psychological stress is one of the underappreciated causes of reproductive
fragility in women. Stress during gestation decreases the offspring’s birth weight and
increases the likelihood of prematurity, a known predictor of NEC [9,10]. Further, maternal
stress or anxiety during pregnancy can have long-term effects on the development of
neurological and inflammatory diseases in the offspring [11,12].

Many psychological stressors (Table 1) impact a system’s biology during pregnancy.
The response to these stressors is influenced by the nature, timing, and duration of the
stressors, as well as a person’s inherent susceptibility to stress and personal character-
istics, all of which influence the way in which an individual copes with stress. The en-
docrine hypothalamic-pituitary-adrenal (HPA) axis and the locus ceruleus-norepinephrine

Microorganisms 2023, 11, 2206. https://doi.org/10.3390/microorganisms11092206 https://www.mdpi.com/journal/microorganisms

https://doi.org/10.3390/microorganisms11092206
https://doi.org/10.3390/microorganisms11092206
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com
https://orcid.org/0000-0002-0745-3630
https://doi.org/10.3390/microorganisms11092206
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com/article/10.3390/microorganisms11092206?type=check_update&version=1


Microorganisms 2023, 11, 2206 2 of 12

(LC/NE) nervous system are key mediators. In response to a stressor, norepinephrine
(NE), epinephrine (EPI), and catecholamines are released, followed by the activation of the
HPA axis [13]. Components of the central nervous system include LC/NE, parvicellular
corticotropin-releasing hormone (CRH), arginine-vasopressin (AVP), CRH neurons, and
other catecholaminergic cell groups. AVP and CRH activate the pituitary adrenocorti-
cotrophic hormone (ACTH), resulting in the production of glucocorticoids [14]. By means
of a negative feedback loop, glucocorticoids exert control on the hypothalamic-pituitary
axis and secretion of ACTH, CRH, and AVP [15].

Table 1. Psychological stressors.

Stressors

Life changes
Drug, alcohol, and substance abuse

Emotional stresses such as grief, anxiety, depression, or other mental illness
Socioeconomic status

Natural disasters
Nutritional stress (starvation and over-eating)

During gestational stress, placental CRH gradually increases in maternal circulation
during the third trimester, resulting in elevated cortisol levels that suppress maternal CRH
secretions [16]. By activating the embryonic HPA axis, placental CRH may initiate labor.
Elevated placental CRH concentrations have been linked to preterm labor [17,18]. Further-
more, preterm fetuses have higher plasma EPI concentrations than term fetuses [19]. This
is most likely mediated by elevated glucocorticoids which convert NE to EPI via the enzy-
matic activation of phenylethanoalamine-N-methyltransferase (PNMT) [15]. Additionally,
maternal stress during pregnancy is also associated with the secretion of catecholamines
by the sympathetic nervous system [20]. Depression and anxiety during the first trimester
of pregnancy are risk factors for the development of preeclampsia in the second and
third trimesters [21–23]. From 18 to 20 weeks of gestation, preeclamptic mothers have
elevated serum concentrations of placental CRH [24]. Evidence suggests that stress-induced
preeclampsia may be an important risk factor because the incidence and severity of NEC in
premature infants born to preeclamptic mothers are significantly higher [25]. In addition,
there is evidence that excessive glucocorticoids due to sustained endogenous embryonic
cortisol production or maternal administration of synthetic corticosteroids may lead to in-
trauterine growth restriction (IUGR) [26]. IUGR is more prevalent in preterm infants and is
associated with greater rates of NEC [25,27,28]. In conclusion, maternal stress disrupts the
embryonic glucocorticoid environment and is linked to negative birth outcomes. Potential
markers for identifying women at risk for preterm birth should include the assessment of
maternal cortisol and CRH concentrations and the quantification of psychological stress in
expectant women using validated questionnaires.

3. Paternal Stress and Birth Outcomes

The impact of paternal stress on neonatal gut health has received relatively less atten-
tion compared to maternal stress in the existing literature. Recent studies have highlighted
how parental stress can affect the offspring’s quality of life through stress-induced epige-
netic changes in sperm [29]. These changes can be influenced by environmental factors or
stressors and can have long-term effects on gene expression and cellular function, contribut-
ing to the development of complex chronic diseases [30]. We believe that the significance of
paternal epigenetic alterations is underestimated, and the lifestyle of the father, particularly
in high-stress environments, plays a crucial role in programming an infant’s epigenome.
This programming may contribute to the development of complex neonatal diseases like
NEC. Additionally, we hypothesize that this concept is also linked to an increased suscepti-
bility to neonatal microbiome dysbiosis and gut injury. Understanding how parental stress
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exposure is communicated to the developing offspring’s gut is crucial for unraveling the
causes of intestinal dysbiosis or injury.

Previously, it was believed that spermatozoa DNA was static and unaffected by
external influences [29]. However, recent research challenges this paradigm and shows that
mature spermatozoa are susceptible to various challenges during their maturation in the
epididymis, including stress, trauma, dietary disruptions, and drug abuse. Epidemiological
investigations have provided compelling evidence linking stress exposures in males with
disease risk in subsequent generations [31,32]. Studies on the Swedish Famine of 1836 and a
cohort of Holocaust survivors and their offspring have demonstrated associations between
early childhood food supply and adverse health outcomes in sons and grandsons, as well
as alterations in glucocorticoid receptors in the offspring of survivors [33–35]. Studies on
rodents have also shown that germ cells are susceptible to stressful environments across
the paternal lifespan. Manipulations such as increased stress exposure or administration of
stress hormones prior to mating have resulted in modified behavior and various cellular
and molecular changes in the offspring [36–38]. A recent study using the intruder–resident
method, electric shock, and food deprivation in male rats before mating revealed increased
expression of oxytocin and vasopressin genes in the offspring [39]. These results indicate
that paternal stress modulates the hypothalamic-pituitary-adrenal (HPA) axis and leads to
increased glucocorticoid signaling in the offspring, factors which are known to contribute
to microbiome dysbiosis [40].

Collectively, these findings from human and animal studies suggest a possible re-
lationship between paternal stress and neonatal intestinal injury. While human studies
exploring the molecular profiles of stress in the male germline are still incomplete, conduct-
ing such research could provide valuable insights into previously unexplored pathways of
intergenerational inheritance resulting from paternal stress exposures.

4. Microbial Dysbiosis in NEC

Even though the pathophysiology of NEC remains elusive, multiple lines of evidence
indicate that the disruption of host–microbiota interactions plays a crucial role in the devel-
opment of NEC [1]. In utero, when the intestine has not yet been colonized by commensals,
there is no incidence of neonatal enterocolitis [41]. In premature infants, antibiotic use and
substitution of breast milk with formula during the first week of life disrupt the coloniza-
tion of commensal bacteria and are strongly associated with the development of NEC [1].
Evidence from animal studies suggests that alterations in gut microbial communities and
intestinal immaturity are crucial factors in mediating tissue injury in the gastrointestinal
tract [42,43]. Bifidobacterium, Bacteroidota, Escherichia, and Parabacteroides dominate the gas-
trointestinal communities of newborn healthy babies [44,45]. Thereafter, the diversity of
the gut microbiota increases swiftly and is shaped by factors such as diet and antibiotic
exposure [44,45]. In contrast, Bacilli initially dominates the bacterial community in pre-
mature infants, followed by Gammaproteobacteria, such as Klebsiella, Escherichia, and other
Enterobacteriaceae [46]. At birth, the gut microbiota of preterm infants is compositionally
distinct and less diverse than that of full-term infants [47,48]. After hospital discharge,
however, the preterm gut microbiota swiftly diversifies and becomes indistinguishable
from those of full-term infants by 2 years of age [49,50].

More than two decades ago, Claud et al. proposed that the lack of bacterial diversity
could lead to the development of NEC [51]. Since then, several studies have documented the
absence of microbial diversity in premature and NEC infants [52–54]. The microbial signa-
ture of NEC is characterized by an increase in Pseudomonadota, especially Enterobacteriaceae,
and a decrease in Bacillota and Bacteroidota [55]. As the predominant Gram-negative bacte-
rial group in the intestine of preterm infants, it is believed that Pseudomonadota stimulate
proinflammatory immune responses via TLR4 signaling, and lead to the loss of barrier
function, ischemia, and tissue necrosis in preterm infants [55]. Recently, Ji et al. investigated
the effect of exogenous Autoinducer-2 (AI-2) on intestinal dysbiosis and inflammation in a
neonatal mouse model of necrotizing enterocolitis [56]. The addition of AI-2 to the formula
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milk of NEC mice reduced intestinal injury scores and the expression of proinflammatory
factors. The research shows that AI-2 partially reverses flora disorder in the NEC mouse
model, with increased the abundance of Pseudomonadota and decreased the abundance of
Bacteroidota at the phylum level [56]. At the genus level, the study reveals that Helicobacter
and Clostridium_sensu_stricto_1 have significantly greater abundance in the NEC group,
while Lactobacillus shows the opposite trend. Additionally, the abundances of Klebsiella,
Rodentibacter, and Enterococcus are significantly higher in the AI-2–treated group compared
to the NEC and control groups [56]. Thus, modifying the formula milk can be used as a
potential therapeutic approach to treat NEC.

Butyrate, a short-chain fatty acid produced by the gut microbiota, has been shown
to have anti-inflammatory and protective effects on the intestinal mucosa [57]. Butyrate
has been implicated in the pathogenesis of NEC. Wang et al. showed that butyrate in-
duces development-dependent necrotizing enterocolitis-like intestinal epithelial injury via
necroptosis [58]. In contrast, Lie et al. reported beneficial effects of butyrate in intestinal
injury [59]. The authors showed that high-dose butyrate upregulated inflammatory marker
IL-6, while low-dose butyrate protected cells from injury by reducing IL-6 expression. Fur-
ther, administration of butyrate in NEC mice reduced intestinal damage, reduced IL-6 and
NF-κB expression, and improved barrier function [59]. While these results are promising,
the specific role of butyrate in the development and progression of NEC is still under
investigation and requires further research.

A greater taxonomic and genomic resolution is required to further enhance the predic-
tive value of microbial signatures in NEC. To analyze microbial communities, 16s ribosomal
RNA sequencing has been utilized in most investigations to date. Utilizing more advanced
technologies, such as whole genome shotgun sequencing, will lead to the identification of
additional principal microorganism candidates involved in the pathogenesis of NEC [60].

5. Maternal Stress-Induced Changes in Microbiota Composition

In addition to environmental factors that influence the interactions between host and
microbiome in preterm neonates, maternal stress can contribute to the development of
necrotizing enterocolitis by disrupting the microbial communities of both mother and child.
We and other labs have demonstrated that psychological stress in pregnant rodents causes
imbalances in their offspring’s intestinal microbiota [42,61,62]. In addition, prenatal stress
alters the composition of the maternal gastrointestinal and vaginal microbiota, suggesting
that the dysbiotic microbiota in the offspring are likely inherited from the mothers [63].
Similar associations between maternal psychological stress during pregnancy and gut dys-
biosis have been observed in humans as well [64]. Furthermore, studies indicate prenatal
stress also impacts the expression of genes involved in inflammation and immune cell
recruitment in the fetal intestine [61]. Interestingly, dysbiotic maternal vaginal microbiota
induced by stress have been found to contribute in part to changes in gene expression
in the hypothalamus of male progeny, particularly in response to stress exposure as an
adult [61]. In addition, adult male progeny of mothers who experienced prenatal stress
produce higher levels of corticosterone in response to stressful situations compared to
adult male offspring of mothers who did not experience prenatal stress [62]. These results
indicate that the transmission of stress-induced dysbiotic maternal microbiota to newborns
disrupts the HPA axis, thereby influencing the stress responses of the offspring throughout
their lifetimes. In adults, non-pregnant mice chronic stress exposure led to a significant
alteration in the microbial composition, a decrease in the abundance of lactobacilli, and an
increase in Proteobacteria and Escherichia coli [65–68]. In experimental animals, anxiety-like
behavior, an increase in pro-inflammatory cytokines, and recruitment of monocytes to
the colon was observed following the transplantation of fecal microbiota from stressed
to non-stressed mice [65]. These effects were not observed in recipients of non-stressed
mice’s fecal microbiota. Mechanism-wise, it could likely be that stress hormones may
directly affect microbial proliferation and thereby influence composition and diversity in
the gut [69]. Additionally, the microbial communities could be impacted by stress-induced
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changes in gastrointestinal physiology, including alterations in the profiles and levels of
secretory IgA and short-chain fatty acids, and a decrease in the production of bile and
gastric acid [42,70–73].

6. Gene Expression Profiling in NEC

The major risk factors for NEC’s development are preterm birth, aberrant bacterial
colonization, and enteral feeding [1]. Of these, prematurity is considered the established
risk factor. One of the serious challenges neonatologists’ faces is determining accurate or
early clinical signs and symptoms of NEC. Due to its abrupt onset, NEC is often detected
only at the advanced stages [74]. Therefore, an early diagnosing method for recognizing
at risk preterm babies is needed. Several attempts have been made to identify key genes
expressed in NEC tissues or distinguish them from related pathologies. Despite these
efforts, no suitable biomarkers have been identified so far. In this section, we review some
of the recent “omics” approaches that have been undertaken to identify key genes and
pathways associated with NEC (Table 2). We will also discuss how some of these genes
modulate microbiome and stress signals that could impact NEC.

Using a microarray approach, Kathy et al. published the first comprehensive database
on differential gene expression profiles in NEC tissues compared to surgical controls with
a non-inflammatory intestinal condition [75]. They observed significant changes in the
expression of genes involved in multiple pathways of angiogenesis, arginine metabolism,
cell adhesion, chemotaxis, extracellular matrix remodeling, hypoxia, oxidative stress, and
inflammation. The key dysregulated genes were TLR2, TLR4, and TREM1 which are
mediated via NF-kB, AP-1, and HIF1A transcription factor pathways [75]. These findings
indicate predominant microbial and inflammatory involvement in NEC. Building on these
observations, Chen et al. used a similar microarray approach to identify a set of key
genes that could provide insights into the molecular mechanisms of the development
and progression of NEC [76]. Using q-PCR, the authors found the expression of IL-8
was upregulated in NEC compared to controls. IL-8 is known to regulate inflammatory
responses through the recruitment of neutrophils to tissues [77]. Consistent with the
microarray and qPCR data, Weitkamp et al. showed that IL-8 mRNA and protein were
overexpressed in the intestinal tissue and serum, respectively, in NEC babies compared
to healthy controls [78]. These findings suggest IL-8 can be used as a potential biomarker.
Besides IL-8, ATG, KNG, ACAB, and CAT expressions in NEC, small intestine tissues
were lower than controls [76]. Notably, ACAB and CAT are associated with propionate
and tryptophan metabolic pathways and oxidative stress [79–81]. The encoding catalase
in CAT converts reactive oxygen species to water and oxygen and eventually plays a
role in oxidative stress pathways [82]. Thus, the reduced expression of CAT in NEC
may trigger the development of NEC through the weakening of the antioxidant stress
pathway [76]. Further studies on the genes identified in this study are needed to understand
their role in NEC. We performed a similar pilot microarray analysis using RNA isolated
from paraffin banked specimens from babies with NEC and aged matched controls from
infants with jejunal and ileal atresia. We identified several genes that exhibited ≥ two-fold
changes in NEC compared to controls (Table 2). Pathway analysis identified the signal
transducer and activator of transcription 3 (STAT3), Prolactin (PRL), interleukin-1 beta
(IL-1β), signal transducer and activator of transcription 1(STAT1), and Interferon-gamma
(IFNγ) as the top canonical factors. These findings are consistent with the predicted
involvement of an inflammatory cascade in regulating NEC. Patients with STAT1/STAT3
signaling defects exhibit an imbalance in the microbiome [83]. Further, the diversity of
gut microbiota at weaning is altered in PRL receptor-null mice [84], suggesting some of
these NEC-induced genes also modulate the microbiome, which could indirectly lead to an
inflammatory environment.

The development of high-throughput sequencing of RNA transcripts (RNA-Seq) has
become a method of choice for transcriptional profiling of differentially expressed genes.
Eric et al. reported the first RNA-Seq–based gene expression profiling in NEC [85]. The
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genes identified (Table 2) showed a remarkable similarity to those implicated in Crohn’s
disease. Notably, the increased expression of CXCL8, CCL10, and IL-8 in NEC agrees with
previous reports [76,85,86]. Elevated levels of these cytokines were also reported in preterm
babies diagnosed with NEC [87]. In line with the role of abnormal bacterial colonization in
NEC, the researchers also noted the upregulation of TLR4 and TLR10 [88]. Similar findings
were reported by Chan et al., who performed mRNA sequencing on intestinal tissues from
surgically treated NEC cases, and by Ng et al., who investigated microRNAs (miR) in
NEC [75,89]. Both studies identified TLRs as a crucial pathway in NEC’s development. In
addition, a more recent RNA-Seq investigation identified significant enrichment of differ-
entially expressed genes in the TLR signaling pathway and cytokine–cytokine receptor
interactions [90]. In the past decade, several human and animal studies have shed light
on the association of TLR4 with NEC [91,92]. In addition to TLRs, Rabiul et al.’s findings
further supported the involvement of the immune system and complement cascade as
key mechanisms in the pathogenesis of NEC [93]. Previous studies have indicated that
premature infants have lower amounts of C3 and C9 proteins [94,95]. It is believed that
increased levels of C5a in the serum of babies with NEC contribute to the initiation of
inflammation [96]. In our study, we observed heightened levels of C3 in the small intes-
tine using a mouse model that mimics NEC-like injury [43]. Taken together, these results
highlight the importance of TLR and inflammation in NEC and provide evidence that
“omics”-based approaches can identify potential genetic pathways in NEC. There is also
evidence linking TLR and stress reactivity. TLRs can stimulate the release of steroids,
including cortisol, from the adrenal glands [97]. Another study found that cortisol exposure
influenced the gene expression of TLR-5 in rainbow trout embryos [98]. In a more recent
study, early and recent life exposure to stress is associated with greater ex-vivo inflamma-
tory responsivity to stimulation by TLR-2 and TLR-4 ligands [99,100], indicating that stress
and TLR signaling could reciprocally modulate development of NEC. The “omics” data
also suggest that inflammatory cytokines and chemokines highlighted in several studies
could serve as potential biomarkers for NEC. With the advances in microfluidics and the
development of bead-based multiplex arrays, performing a longitudinal high throughput
cytokine and chemokine profiling of serum from a cohort of preterm babies could lead to
the identification of diagnostic and predictive biomarkers to understand the progression
of NEC.

While gene profiling studies have been useful in the identification of many promising
molecular targets associated with NEC, many of these studies so far have been limited by a
small sample size as well as a lack of validation and functional studies (Table 2). Therefore,
the discoveries made so far must be interpreted with caution. Adequate sample size is key to
achieving sufficient power for statistical analysis. Given that NEC afflicts only about 5–10%
of infants born preterm [101], obtaining sufficient fresh tissues for analysis is challenging.
To circumvent this obstacle, as proof of principle, we successfully isolated high-quality
RNA from paraffin-embedded tissue blocks to perform transcriptomic analysis. Similarly,
Steward et al. utilized existing banks of paraffin-embedded tissues from NEC babies. The
authors isolated DNA from tissue blocks and performed 16S rRNA analysis to characterize
the microbiome at the site of the disease [102]. We suggest that obtaining formalin-fixed
NEC samples from several archival tissue specimens could be one way to increase the
sample size for future genetic studies. Further, all gene profiling studies so far are limited
to the analysis of NEC and adjacent healthy tissues. As technology advances and allows
for a more detailed exploration of the genome, it is expected that whole exome/genome
sequencing will uncover novel genes, biomarkers, and pathways in NEC [103]. Until then,
increasing sample size and performing in-depth validation studies are required to better
interpret and understand the molecular targets that have been identified so far.
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Table 2. Gene expression analysis in NEC.

Reference Technology Tissue Sample Size DEGs Key Genes Key Pathways

Kathy Yuen Yee
Chan et al. [71] Microarray Intestinal tissue from

NEC preterm infants
NEC n = 5
Ctrl n = 4

↑ 857
↓ 1285 TLR2, TLR4, TREM1, NFkb, AP-1,H1F1A

Angiogenesis,
Arginine metabolism, cell adhesion,

chemotaxis, extracellular matrix remodeling,
hypoxia and oxidative stress, inflammation

and muscle contraction.

Guanglin
Chen et al. [72] Microarray

Small bowel specimens
from NEC preterm

infants

NEC n = 5
Ctrl n = 4

↑ 367
↓ 2262 AGT, IL-8, KNG1, ACACB and CAT Tryptophan, fatty acid, and arachidonic

acid metabolism

Colin Martin Microarray
Paraffin embedded

tissue blocks of
NEC samples

NEC n = 6
Ctrl n = 6

↑ 47
↓ 37

PLA2G2A, H19, AGR2, S100A8, B2M,
LOC100132488, CEBPB, LOC643358, LOC100130980,

GUCA2A, RARRES1, LOC400963, RPS29,
LOC647361, RPS15A, S100A10, LOC100129902,

XAF1, TIMP1, SCTR, SERPINA3, LOC389342, EVPL,
IFITM2, LOC728937, IFITM3, CEBPD, CLDN15,
PPP1R14A, AQP10, REG3G, TUBA1B, REG1B,

LOC392437, CREB3L3, C10orf116, ENO1

Signal transducer and activator of
transcription 3 (STAT3), prolactin (PRL),

interlukin-1 beta (IL-1β), signal transducer and
activator of transcription 1(STAT1), and

interferon gamma (IFNγ)

Eric Tremblay et al.
[79] RNASeq Intestinal tissue from

NEC preterm infants
NEC n = 9
Ctrl n = 6

↑ 383
↓ 421

CXCL10, TLR4, TLR10, REG3A, DEF5A, DEF6A,
LCN2, TFF1, CXCL8, TFF3, BHA2, HBG2

Altered T and B cell signaling, B cell
development, pattern recognition receptors for

bacteria and viruses.

Md. Rabiul
Auwul et al. [87] RNASeq NEC tissues from

preterm infants
NEC n = 9
Ctrl n = 5

↑ 398
↓ 568

HBB, HBM, HBZ, ALAS2, HBA1, HBG1, HBA2,
ASHP, HBQ1, HBD, IGJ, REG3A, POU2AF1, DEFA5,

NEB, TNNT3, TNN11, TNNT1, MYL1

Metabolic processes, regulation of immune
response, cell communication, and

complement cascade.

Zhuojun Xie et al.
[84] RNASeq

NEC tissues,
NEC-SC-diagnosed
NEC with clinical

resection, NOR derived
from normal part of

ileum in
NEC-SC patients

NEC n = 4
NEC-SC n = 3

Ctrl NOR n = 5

NEC vs. NEC-SC
↑ 37
↓ 7

NEC vs. NOR
↑ 3465
↓ 2499

NEC-SC vs. NOR
↑ 846
↓ 613

HBG2, CCN4, IGF2, SOX11, CYP3A4, TEME54,
SCIN, PTK6, XIRP1, MMP12, GSTM1, BOLA2B,
KDM5D, UTY, AOPB, RPS4Y1, CEMIP, SLC4A1,

KRT19, PIGR, and FAM3D

Toll-like receptor signaling pathways, Th17 cell
differentiation and cytokine–cytokine

receptor interactions.

DEGs = differentially expressed genes, ↑ = upregulated, ↓ = downregulated.
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7. Conclusions

NEC, a common gastrointestinal disease in premature infants, is associated with high
morbidity and mortality. Prematurity, microbial dysbiosis, and enteral feeding are widely
accepted risk factors. In recent years, substantial efforts have been made to understand
the factors that affect the pathogenesis of NEC. Evidence suggests that maternal prenatal
stress and stress-induced microbial dysbiosis can predispose an infant to NEC. Gene ex-
pression profile analysis reveals a predominantly altered immune response in the intestine
of NEC neonates. Several “omics”-based studies highlight involvement of TLRs and pro-
inflammatory cytokines and chemokines in the intestinal tissues of babies with NEC. We
conclude that early life exposure to pre- and post-natal stress in babies alters the micro-
biome, and induces a pro-inflammatory environment that is mediated by dysregulated TLR
signaling. Further experiments are needed to investigate the link between stress-induced
cortisol and TLR expression and function in the intestinal tissues. With advancements in
technology, future genetic studies on NEC hold the potential to improve and lead to the
development of biomarkers and novel molecular targets to understand the pathogenesis
of NEC.
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