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Abstract: In this work we describe a straightforward approach for creating a nanocomposite
comprising multiwalled carbon nanotubes (MWCNTs) and titanium dioxide (TiO2) using the hy-
drothermal technique, which is then characterized by scanning electron microscope (SEM), energy-
dispersive X-ray spectrometer (EDS), X-ray diffraction analysis (XRD), Fourier transform infrared
spectroscopy (FTIR), and thermal gravimetric analysis (TGA) to assess its properties. Nafion is
employed as a reticular agent for the nanocomposite on the glassy carbon electrode (GCE), creating
the MWCNT/TiO2/Nafion/GCE system. The electrochemical behavior of the system was evaluated
using cyclic voltammetry, revealing its remarkable electrocatalytic activity for detecting hydrogen
peroxide in water. The developed sensor showcased a broad linear response range of 14.00 to
120.00 µM, with a low detection limit of 4.00 µM. This electrochemical sensor provides a simple and
highly sensitive method for detecting hydrogen peroxide in aqueous solutions and shows promising
potential for various real-world applications, particularly in H2O2 monitoring.

Keywords: hydrogen peroxide; electrochemical sensor; nanocomposite; cyclic voltammetry; TiO2;
MWCNTs

1. Introduction

Hydrogen peroxide (H2O2) is a simple but significant compound in various applica-
tions, such as pharmaceuticals, clinical, environmental, mining, textiles, and food manu-
facturing. H2O2 is a signaling molecule regulating essential biological processes, such as
immune cell activation, vascular remodeling, and apoptosis. H2O2 is a secondary prod-
uct of various enzymatic reactions [1–4]. Due to its importance as a regulating molecule,
hydrogen peroxide is an excellent model molecule for applications in developing new
electrochemical sensors.

Electrochemical methods are the most promising for detecting H2O2 because of their
advantages, such as easy miniaturization, rapid response, simple instrumentation, and high
specificity and sensitivity. The natural concentration of H2O2 varies from micromolar (µM)
to tens of millimolar (mM) [5]. While various techniques exist for H2O2 determination, such
as chromatography [6], chemiluminescence [7], colorimetry [8], and titrimetric analysis [8],
these methods are often complex, expensive, and time consuming. In recent years, many
electrochemical approaches have been developed to determine low concentrations of H2O2
in a high-throughput fashion in fast, simple, reliable, and inexpensive ways [8–10].

Electrochemical sensors are suitable for various matrices, require minimal sample
preparation, and exhibit high sensitivity and a wide concentration range with low limits of
detection [11,12]. Enzymatic and non-enzymatic sensors have been developed for detecting
H2O2 [13,14]. Enzymatic approaches exhibit excellent selectivity and sensitivity but lack sta-
bility, require complex and expensive immobilization processes, and are highly dependent
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on experimental conditions. Therefore, developing non-enzymatic electrochemical H2O2
sensors is very interesting for various biomedical, industrial, and academic applications.
Non-enzymatic electrochemical sensors have been developed by chemically modifying
electrodes with nanomaterials, such as nanoparticles of noble metals, transition metals,
metallic oxides/hydroxides, bimetallics/alloys, and carbon nanomaterials (CNT, graphene
and its compounds) [5,15,16].

Among the promising metals for developing nanomaterials, titanium dioxide stands
out. Titanium dioxide (TiO2) is a transition metal oxide belonging to the category of n-
type semiconductors, with its bandgap energy ranging from 2.9–3.2 eV [17], depending
on the crystal phase [18]. Due to its high electrochemical activity, excellent mechanical
and chemical stability, and exceptional capacity for organic molecule adsorption, TiO2 is
widely used in electrochemical sensors [19,20]. However, to further improve the sensing
performance of TiO2, researchers are working on forming a hybrid structure with different
materials with diverse functional properties. One such material extensively studied in
electrochemical applications is multi-walled carbon nanotubes (MWCNTs), which possess
remarkable physical and chemical properties, such as high electrical conductivity, large
surface area, and high energy storage capacity [21]. Previous investigations have shown
that modifying electrodes with MWCNTs substantially enhances the rates of electron and
proton transfer, resulting in superior peak separation and enhanced electrode sensitivity
compared to other types of modified electrodes [22,23]. Additionally, the anchoring of
semiconductors’ metal oxide particles onto MWCNTs with homogenous distribution has
exhibited improved electronic properties, making it a promising platform for selective
sensing and catalytic processes.

Among various nanocomposites, the TiO2/MWCNTs nanostructures [24] and other no-
table composites, such as TiO2/MWCNTs/Pt [25–27], Au@TiO2/MWCNT [28], ZnS/Au10/f-
MWCNT [29], and PB-TiO2/CNT [30], have been reported to exhibit exceptional electro-
catalytic activity toward hydrogen peroxide (H2O2) and other analytes in biosensing
applications. However, it should be mentioned that the growth of complex nanostructures
and deposition of catalytic nanoparticles, as previously demonstrated in the literature,
typically requires sophisticated techniques such as electrochemical anodization, electro-
chemical deposition, or photo-induced deposition. Although these techniques have enabled
the creation of intricate nanostructures, they can be both time consuming and resource
intensive [31].

In this context, the sol–gel technique combined with hydrothermal synthesis has
emerged as a promising approach for the preparation of nanometer-sized particles and ma-
terials with high specific surface area [32]. TiO2/MWCNT nanocomposites can be prepared
using this technique, which shows potential for developing chemical and electrochemi-
cal sensors or promoting novel applications in biosensing [33] and photodetection [33]
thanks to its unique three-dimensional network texture, high surface area, and exceptional
electrocatalytic activity.

This study presents a novel sensor for detecting H2O2 that employs a TiO2/MWCNT/
Nafion nanocomposite as a surface modifier for a glassy carbon electrode (GCE) in conjunc-
tion with cyclic voltammetry (CV). The sensor exhibits high sensitivity and a low detection
potential for H2O2. Notably, this is the first report on the use of TiO2/MWCNT/Nafion on
GCE for electrochemical H2O2 detection in water using CV. Our findings indicate that the
TiO2/MWCNT/Nafion nanocomposite holds promise for developing high-performance
H2O2 sensors with a facile synthesis process, making it a viable candidate for creating
sensors for various clinical and environmental applications.

2. Materials and Methods
2.1. Materials

All chemical reagents used in this study were not subjected to additional purifica-
tion. Titanium (IV) isopropoxide (TiP, 97.00%) and hydrochloric acid (HCl, 36.00%) were
obtained from Sigma-Aldrich (St. Louis, MO, USA). Absolute ethanol (99.5%, CRQ Produ-
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tos Químicos, Diadema, Brazil), isopropanol (Sciavicco Comércio e Indústria Ltda, Belo
Horizonte, Brazil), and sodium hydroxide micropellets (NaOH, Cromoline Química Fina,
Diadema, Brazil). Multi-walled carbon nanotubes (MWCNTs) with an outer diameter of
8–25 nm and length ranging from 5.00 to 30.00 µm and a purity of ≥93% were provided
by the Nanomaterials Laboratory of the Department of Physics, UFMG. Nafion-117 was
purchased from Sigma-Aldrich (Oakville, ON, USA).

2.2. Synthesis of TiO2 Particles

The TiO2 particles were prepared with modifications by the sol–gel method proposed
by Ferreira-Neto, Elias et al. [20], represented in Figure 1. Initially, 750.00 µL of titanium
isopropoxide (TiP) was slowly added to 100.00 mL of a mixture composed of ethanol-
isopropanol [3:1 (v/v)] under magnetic stirring, which was maintained for three hours.
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Figure 1. Diagram of preparation of TiO2 nanoparticles by combined sol–gel and hydrothermal methods.

Subsequently, 9.00 mL of a mixture of deionized water and solvent (3.00 mL H2O:6.00 mL
of the ethanol-isopropanol solvent) were added dropwise to form TiO2 particles through
hydrolysis and condensation of titanium alkoxide species. After 2 h of magnetic stirring,
the resulting colloidal suspension was centrifuged at 3500 rpm for 5 min and washed once
with the solvent used in the reaction.

To crystallize the amorphous TiO2, the obtained material was resuspended in 32.00 mL
of deionized water, then transferred to a 35.00 mL hermetic Teflon reactor and subjected
to hydrothermal treatment at 110 ◦C for 24 h inside a flanged stainless steel hydrothermal
reactor. After the hydrothermal treatment, the sample was centrifuged and washed twice with
deionized water. Finally, the resulting precipitates were dried at 80 ◦C in an oven for 12 h.

2.3. Synthesis of TiO2/MWCNT Nanocomposite

The nanocomposite synthesis was adapted from the method Patel B.R. et al. pro-
posed [34]. In this modified method, depicted in Figure 2, 100.00 mg of TiO2 particles
obtained in the previous step were combined with 50 mg of MWCNTs and added to
10.00 mL of 10 M NaOH solution in a microtube with a screw cap. The resulting mixture
was sonicated for 30 min at 60 ◦C to ensure proper dispersion of the particles. Next, the
mixture was transferred to an autoclave container made of stainless steel, lined with Teflon
material, and subjected to hydrothermal treatment at 130 ◦C for 24 h.

After cooling to room temperature, the nanocomposite was washed with 1 L of ultra-
pure water to remove impurities and unreacted species. The sample was then neutralized
to a pH of 7.00 using a 0.50 M HCl solution. To ensure the complete removal of impurities,
the nanocomposites were subjected to centrifugation at 5000 rpm with adding 0.50 L of
ultrapure water. This washing step was repeated three times.
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Finally, the nanocomposite was dried at 80 ◦C for 12 h to obtain a dry powder. The
obtained material was named TiO2/MWCNT and was used for further studies.

2.4. Materials Characterization

X-ray diffraction analysis (XRD) has been carried out on the Shimadzu diffractometer
(model 6100; Kyoto, Japan) using a Co Kα radiation source (λ = 1.788 Å, 40 kV/30 mA).
Customary conditions included a 2θ scan from 10◦ to 70◦, a 0.02◦ angular step, and a
1◦/min scan speed. Data were converted to the Cu Kα wavelength using PowDLL software
v 2.7 [35]. The crystallographic phase identification was carried out by comparing the
obtained patterns with JCPDS standards.

The samples’ chemical structure and surface functional groups were analyzed using a
Jasco FT/IR-4100 Fourier transform infrared spectrometer (FTIR) (Tokyo, Japan). The IR
spectrum was recorded within the wavelength range of 4000 to 400 cm−1.

The structure and surface morphology of the synthesized samples were analyzed
using a scanning electron microscope (SEM), model JEOL JSM-6380LV (Tokyo, Japan),
equipped with a Thermo Scientific Noran System SIX energy-dispersive X-ray spectrometer
(EDS) (Waltham, MA, USA) operated at 20 kV.

Thermogravimetric measurements were conducted using a simultaneous thermal
analyzer, the TGA-DSC Netzsch STA 449F3 Jupiter (Selb, Germany), in synthetic air from
30 ◦C to 900 ◦C at a heating rate of 10 ◦C/min.

2.5. Sensor Fabrication and Evaluation

A 3.00 mm diameter electrode was polished using 0.05 µm alumina slurry and thor-
oughly rinsed with distilled water to prepare the glassy carbon electrode for surface
modification. A 10.00 µL dispersion of either MWCNTs or TiO2/MWCNT nanocomposite
in ultrapure water, each at a concentration of 1.00 mg/mL, was then added to the GCE
surface. The active materials were immobilized with Nafion®–methanol (5.00% w/v) to
create the MWCNT/Nafion/GCE and TiO2/MWCNT/Nafion/GCE sensors. One of the
unique features of Nafion is its ability to facilitate proton transfer from its sulfonic groups
to the perfluorinated hydrophobic backbone, which results in the formation of a highly con-
ductive medium for protons [10,36] to provide greater reticulation of the nanocomposites
on the surface of the GCE.

Electrochemical sensing was conducted at room temperature using a three-electrode
electrochemical cell (30.00 mL) consisting of the MWCNT/Nafion/GCE or TiO2/MWCNT/
Nafion/GCE as the working electrode, a Pt plate as the counter electrode, and Ag|AgCl
as the reference electrode. The measurements were carried out using a portable bi-
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potentiostat/galvanostat µ-Autolab Type III (Metrohm Autolab, Utrecht, The Netherlands)
controlled by Nova 2.1 software.

The electrochemical sensing was performed in different H2O2 concentrations in a
0.10 M Britton–Robinson (B-R) buffer at pH 7.00 under constant magnetic stirring. After
each triplicate, the solutions were homogenized by stirring for 30 s, and any electrogen-
erated products were removed from the electrode surface. For the addition–recovery
experiments, standard solutions of H2O2 were prepared using 0.01 M (mol·L−1) stock
solutions in ultrapure water (R ≥ 18.2 MΩ cm).

3. Results
3.1. Characterization of MWCNT and TiO2/MWCNTs Nanocomposite

Figure 3 shows the XRD diffraction patterns of both pristine MWCNT and TiO2/MWCNT
nanocomposite. Although some peaks present low intensity, smoothing has been applied
to distinguish them better.
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The XRD patterns of pristine MWCNTs show diffraction peaks of graphite structures at
2θ = 25.8◦ and 43.5◦ (JCPDS card 41-1487) corresponding to reflections from crystallographic
planes (002), the spacing between adjacent graphite layers, and ordering within the plane
(100), respectively.

In addition to the diffraction peaks related to pristine MWCNTs, the MWCNT/TiO2
nanocomposite exhibits a diffraction peak at 2θ = 48.2◦ related to the (200) plane, indicating
the formation of the anatase phase of TiO2 (JCPDS card no. 21-1272). The significant
broadening of the peak indicates the nanometric characteristic of the TiO2 particles. Thus,
the hydrothermal treatment employed was effective, as it promoted the crystallization of
amorphous titania into the anatase phase.

An approximate measure of the crystallite size of the TiO2 phase in the sample was
determined using the well-known Scherrer equation [37], which is based on the full width
at half maximum (FWHM) Å obtained by a Gaussian function, diffraction angle θ and the
wavelength λ associated with Cu Kα radiation. The average crystallite size of anatase (200)
was found to be 5.50 nm based on the broadening of its diffraction peak, where the FWHM
is 1.63 Å.
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The FTIR spectra of pristine MWCNTs, bare TiO2 particles, and TiO2/MWCNT
nanocomposite are shown in Figure 4.
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The FTIR spectra of all samples showed a broad absorption band in the range of
3000 to 3500 cm−1, centered at 3219 cm−1, attributed to the O-H stretching vibration and
the surface adsorbed water [38]. In the MWCNTs’ FTIR spectrum, distinct peaks were
observed at 1539, 1728, and 3219 cm−1. The peak at 1539 cm−1 confirmed the presence of
graphitic carbon bonds (C=C stretching vibration), while the peak at 1728 cm−1 indicated
the presence of carbonyl (C=O) functional groups [39,40].

The FTIR spectrum of bare TiO2 particles shows a broad band of 1000 to 400 cm−1,
which can be attributed to various stretching vibrations, including Ti–O and O–Ti–O
bonds [41]. However, in the FTIR spectrum of the TiO2/MWCNT nanocomposite, in ad-
dition to the Ti–O and O–Ti–O bonds, the presence of Ti–O–C and Ti–O–C=O bonds is
observed, indicating an interaction between TiO2 particles and the MWCNTs [42]. Further-
more, the anatase titania phase, as revealed by XRD analysis, contributes to the observed
band [43,44]. Both the nanocomposite and bare TiO2 particles exhibit a distinct band
~1395 cm−1 corresponding to TiO2 lattice vibrations [45,46]. In addition, the FTIR spectrum
of the TiO2/MWCNT nanocomposite also displays a peak at 1633 cm−1, representing the
deformative vibration of the Ti–OH stretching mode and the OH stretch of adsorbed water.
Moreover, a band at 1100 cm−1 has been attributed to alkoxy C-O stretching vibrations
within the nanocomposite [47].

Thermogravimetric analysis was used to investigate the thermal stability of the studied
materials. According to Figure 5, it can be observed that the MWCNT shows a mass loss
caused by the oxidation of the nanotubes with a peak temperature at 575 ◦C, which agrees
with values reported in the literature ranging from 550–650 ◦C [48]. The stability was
achieved with a residue of 3.50%, resulting from the remaining catalysts from the synthesis
of the nanotubes (MWCNT), as reported by the supplier of this material.
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Figure 5. TG and DTG curves for pristine MWCNT and TiO2/MWCNT nanocomposite.

The MWCNT/TiO2 nanocomposite exhibited a mass loss of 5.00% up to 100 ◦C, which
can be attributed to adsorbed water on the material’s surface—this mass loss results from
the desorption of the water molecules from the nanocomposite. Between the temperature
range of 100 and 450 ◦C, a further mass loss of approximately 8.00% was observed. This
additional mass loss is believed to be caused by the decomposition of oxygenated groups
that were incorporated into the MWCNTs during the synthesis process of the nanocom-
posite [49]. The presence of these oxygenated groups provides evidence for the bonding
mechanism between TiO2 and MWCNT, suggesting that the bonding occurs through the in-
volvement of these functional groups. This bonding interaction between TiO2 and MWCNT
is further supported by the presence of Ti–O–C and Ti–O–C=O bonds, as observed in
FTIR analysis.

Furthermore, it was observed that the temperature range at which significant mass
loss occurs because of the oxidation of nanotubes is between 500–690 ◦C. This can be easily
seen in the DTG curve. The constant levels observed in the TGA curve after 690 ◦C indicate
that the nanotubes underwent complete oxidation. The residue reflects the percentage of
TiO2 present in the nanocomposite: approximately 41.50%.

The morphology of pristine MWCNT and MWCNT/TiO2 nanocomposite samples
were evaluated using SEM. Figure 6a shows that the pristine MWCNT has a smooth surface
with entangled tube bundles. In Figure 6b–d, it can be observed that the MWCNT/TiO2
has morphology like the undecorated MWCNTs, i.e., no particles that could be attributed
to TiO2 were marked.

The results from the EDS analysis, as shown in Figure 7, support the presence of
titanium in the nanocomposite and its successful integration into the carbon nanotube
matrix. These findings are consistent with the XRD and FTIR analysis results.

The EDX analysis of the TiO2/MWCNT nanocomposite demonstrated its atomic percent
(at.%) and weight percent (w.%) composition. The analysis results are as follows: carbon (C)—
73.50% (at.%) and 86.72% (w.%), titanium (Ti)—9.22% (at.%) and 8.17% (w.%), and oxygen
(O)—17.28% (at.%) and 5.11% (w.%). These findings validate its chemical composition.
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3.2. Electrochemical Behavior of GCE, MWCNT/Nafion, and TiO2/MWCNT/Nafion-Modified GCEs

The electrocatalytic activity of modified working electrodes was examined by mea-
suring the cyclic voltammograms (CVs) in 0.50 M H2SO4 within the potential range of
−0.5 to 1.5 V vs. Ag|AgCl at a scan rate of 50 mVs−1. As depicted in Figure 8a, the
unmodified GCE was determined to be electrochemically inactive under these conditions,
which aligns with the earlier observations reported by Benck et al. [50]. The CV of the
bare CGE displayed no redox pair, resulting in a narrow and almost flat line in the graph.
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This implies that no electrochemical reactions were taking place on the surface of the CGE
electrode under the specified conditions.
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0.5 V to 1.5 V vs. Ag|AgCl at a scan rate of 50 mVs−1 using bare GCE, MWCNT/Nafion-
modified GCE (a), and TiO2/MWCNT/Nafion-modified GCE (b).

However, in Figure 8a, the modification of the CGE electrode with MWCNT altered
the electrochemical profile of the surface, broadening the area of the voltammogram, as the
carbon nanotubes provided a surface and electroactive increment. In addition, two peaks,
A1 and C1, are observed, which correlate with the redox reactions of metallic iron resulting
from the catalyst used to synthesize MWCNTs [51,52]. Notably, the potential scan toward
more negative values for the GCE/MWCNT/TiO2 electrode gives rise to redox current
peaks in the potential region between −0.5 and 0.0 V, which may be associated with the
oxidation/reduction in Ti ions [53–56].

Moreover, the presence of oxygenated functional groups, such as hydroxyls (OH)
and carbonyls (C=O), in the TiO2/MWCNT nanocomposite plays a significant role in
its electrochemical behavior. These functional groups contribute to increased adsorption
capacity for species and provide additional active sites for the adsorption of molecules
and ions. Consequently, electrochemical reactions, including the oxidation of H2O2, can
take place more efficiently. This makes the modified GCE electrode an up-and-coming
candidate for H2O2-sensing applications where accurate and sensitive detection of H2O2 is
required [57–59].

3.3. Evaluation of TiO2/MWCNT/Nafion/GCE Electrode as an Electrochemical Sensor for
H2O2 Determination

The electrocatalytic activity of the TiO2/MWCNT/Nafion/GCE sensor toward the
oxidation of H2O2 was investigated by CV. Figure 9a shows the cyclic voltammograms
of the electrode in a Britton–Robinson (B-R) buffer solution at pH 7, under a potential
scan range of −0.2 V to 1.0 V, in the absence of and after successive additions of hydrogen
peroxide (from 0 up to 120 µM) to the cell solution, and the corresponding calibration plot.

The cyclic voltammograms demonstrated the direct proportionality of the peak current
to H2O2 concentration within 14.00–120.00 µM. The linear regression equation illustrated
Ip (µA) = 1.0145x − 0.0346, (R2 = 0.9985) (Figure 9b). The detection limits (LD) and
quantification limits (LQ) were calculated according to the recommendations of the IUPAC
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as three times the standard deviation of the blank signal—Britton–Robinson buffer—(σB)
divided by the slope of the calibration curve (m): LD = 3 σB/m. The LQs were calculated
similarly, with 10 replacing 3 in each equation, i.e., LQ = 10 σB/m. Therefore, the LD and
LQ limits obtained were 4.00 µM and 14.00 µM, respectively.
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The fabricated sensor’s accuracy was evaluated using the standard addition method,
in distilled deionized water, at three different concentration levels of H2O2 (20.00, 40.00,
and 60.00 µM) Britton–Robinson buffer solution at a pH of 7.00, using cyclic voltammetry.

The results are presented in Table 1, demonstrating a range of variation between
67.30% and 101.90%. Our findings indicate that this analytical method is only sufficiently
accurate for concentrations greater than 20.00 µM.

Table 1. Results for the recovery study in distilled-deionized water at three concentration levels for
H2O2 in Britton–Robinson buffer solution at pH 7.00.

Added (µM) Found (µM) Recovery (%)

20.00 13.20 ± 0.11 67.30
40.00 36.02 ± 0.25 92.30
60.00 59.50 ± 0.12 101.90

A comparison between the TiO2/MWCNT/Nafion/GCE electrode and other GCE-
modified electrodes reported in the literature is presented in Table 2. Our results align
with those of other studies, indicating that this electrode coating is suitable for detecting
H2O2. Furthermore, it is worth noting that the TiO2/MWCNT/Nafion/GCE electrode can
be produced with fewer laborious steps than in some of the previous works.

Considering that hydrogen peroxide concentrations typically range from micromolar
for in vivo conditions and residual levels in foodstuffs and drinking water to tens of
millimolar for bleaching applications and molar for waste treatment applications [67], the
TiO2/MWCNT/Nafion/GCE has the potential to determine H2O2 levels in water.
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Table 2. Comparison of the proposed sensor with the recently reported H2O2 sensors.

Modifier Material Method LD (µM) References

MWCNT-POMAF Amp 0.33 [60]
Co/MWCNT DPV 1.84 [61]

AuNPs/PSi/Nafion LSV 14.84 [62]
AuNPs/PSi/Nafion SWV 15.16 [62]

Hb/MoS CV 6.70 [63]
Ag/MWCNT DPV 3.30 [61]

MoS2 CV 1.13 [64]
Au@TiO2/MWCNT DPV 1.40 [28]

PB–TiO2/fCN CA 0.088 [30]
TiO2/MWCNT Amp 0.40 [28]

Ni(OH)2/ERGO–MWNT Amp 4.00 [65]
Ag@TiO2 CV 0.83 [66]

MWCNT/TiO2 CV 4.00 This work
Abbreviations used: Amp (amperometry), DPV (differential pulse voltammetry), LSV (linear sweep voltamme-
try), SWV (square wave voltammetry), CV (cyclic voltammetry), CA (chronoamperometry), MWCNT-POMAF
(multi-walled carbon nanotubes functionalized with polyoxometalate), Co/MWCNT (cobalt/multi-walled carbon
nanotubes), AuNPs/PSi/Nafion (gold nanoparticles/porous silicon/Nafion), AuNPs/PSi/Nafion (gold nanopar-
ticles/porous silicon/Nafion), Hb/MoS (hemoglobin/molybdenum sulfide), Ag/MWCNT (silver/multi-walled
carbon nanotubes), MoS2 (molybdenum disulfide), Au@TiO2/MWCNT (gold@titanium dioxide/multi-walled car-
bon nanotubes), PB-TiO2/fCN (phosphate buffer-titanium dioxide/functionalized carbon nitride), TiO2/MWCNT
(titanium dioxide/multi-walled carbon nanotubes), Ni(OH)2/ERGO-MWNT (nickel hydroxide/electrochemically
reduced graphene oxide–multi-walled carbon nanotubes), Ag@TiO2 (silver@titanium dioxide), MWCNT/TiO2
(multi-walled carbon nanotubes/titanium dioxide).

4. Conclusions

In summary, a novel H2O2 voltammetric sensor has been developed by modifying a
glassy carbon electrode (GCE) with a TiO2/MWCNT/Nafion nanocomposite synthesized
using a facile hydrothermal route. Incorporating semiconducting TiO2 nanoparticles and
highly conducting MWCNTs synergistically enhanced the sensor’s performance toward
H2O2 detection, surpassing the performance of both bare GCE and MWCNT/Nafion-
modified GCE electrodes. The proposed modified electrode successfully detected and
determined H2O2 concentrations in water ranging from 14.00–120.00 µM, with a detection
limit of 4.00 µM.

These findings represent a significant advancement in the design and fabrication of
highly efficient H2O2-based sensor devices and have important implications for various
applications such as water treatment, food safety, and biomedical diagnostics. Using
the TiO2/MWCNT/Nafion nanocomposite as a sensing material holds great promise
for developing cost-effective, reliable, and sensitive H2O2 sensors with a wide range of
detection capabilities.

Further research could explore the potential of this novel sensor platform for other
analytes and environmental conditions, paving the way for the development of next-
generation sensing technologies. However, it is essential to note that extensive testing
and validation of the sensor’s performance under different conditions will be necessary to
ensure its practical applicability before commercialization.
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