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Abstract
Objective. Spinal cord stimulation (SCS) is a common neurostimulation therapy to manage chronic
pain. Technological advances have produced new neurostimulation systems with expanded
capabilities in an attempt to improve the clinical outcomes associated with SCS. However, these
expanded capabilities have dramatically increased the number of possible stimulation parameters
and made it intractable to efficiently explore this large parameter space within the context of
standard clinical programming procedures. Therefore, in this study, we developed an optimization
approach to define the optimal current amplitudes or fractions across individual contacts in an
SCS electrode array(s). Approach. We developed an analytic method using the Lagrange multiplier
method along with smoothing approximations. To test our optimization framework, we used a
hybrid computational modeling approach that consisted of a finite element method model and
multi-compartment models of axons and cells within the spinal cord. Moreover, we extended our
approach to multi-objective optimization to explore the trade-off between activating regions of
interest (ROIs) and regions of avoidance (ROAs).Main results. For simple ROIs, our framework
suggested optimized configurations that resembled simple bipolar configurations. However, when
we considered multi-objective optimization, our framework suggested nontrivial stimulation
configurations that could be selected from Pareto fronts to target multiple ROIs or avoid ROAs.
Significance. We developed an optimization framework for targeted SCS. Our method is analytic,
which allows for the fast calculation of optimal solutions. For the first time, we provided a
multi-objective approach for selective SCS. Through this approach, we were able to show that novel
configurations can provide neural recruitment profiles that are not possible with conventional
stimulation configurations (e.g. bipolar stimulation). Most importantly, once integrated with
computational models that account for sources of interpatient variability (e.g. anatomy, electrode
placement), our optimization framework can be utilized to provide stimulation settings tailored to
the needs of individual patients.

1. Introduction

Spinal cord stimulation (SCS) is a neurostimulation
approach to manage chronic pain in patients who
do not respond to conventional treatments. More
than 50 000 units are implanted annually [1], and
the demand for SCS is only expected to increase as a
non-addictive alternative to opioids [2]. Yet, the clin-
ical success of SCS is limited and only about 58% of
patients receive adequate long-term pain relief [3].

To overcome these shortcomings, new techno-
logies have been developed to expand stimulation
paradigms not only to decrease the number of non-
responders but to also improve the benefits (max-
imum pain relief with minimum side effects) of SCS
[4]. However, more options have not readily trans-
lated to better clinical outcomes [5] because the
mechanisms of action for SCS remain elusive [6] and
finding optimal stimulation parameters continues to
be challenging [7].
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Figure 1. Targeted spinal cord stimulation (SCS) requires optimization of electrode current fractions. SCS affects each cell type
differently due to many factors including their intrinsic cellular properties, location relative to the electrodes, and their
morphology. The recruited cells can have beneficial effects if they are located in a region of interest (ROI), or they can have side
effects if they are located in a region of avoidance (ROA). Ideally, SCS would activate cells in the ROI (e.g. dorsal horn (DH)
neurons) without activating cells in the ROA (e.g. dorsal root (DR) axons). However, in most situations, cells in both the ROI and
ROA may be simultaneously activated. Hence, the challenge is to systematically find electrode configurations that allow for
controlling the trade-off between activating ROIs and ROAs.

The common practice for programming neur-
ostimulation devices is mostly a trial-and-error
process [8], which is time consuming, subject to
inter-operator variability, and prone to failure [9, 10].
Moreover, the available stimulation settings (>1016

permutations) are only expected to increase as sys-
tems with advanced waveform capabilities and high-
density electrode arrays continue to be researched and
commercialized [11]. Therefore, the current practice
of trial-and-error programming is becoming intract-
able. Hence, a systematic paradigm that can effi-
ciently explore the large parameter space and suggest
efficacious stimulation settings can improve clinical
decision support [12]. In this study, we developed
a novel optimization framework to facilitate SCS
programming.

Contrary to our optimization approach, previ-
ous studies assume a desired potential field and
derive electrode current fractions that produce the
best match to the desired field [12]. Instead, in our
approach, we choose the region of interest (ROI), and
the algorithm finds the current fractions that lead
to activation of neural tissue in the ROI by max-
imizing the field driving polarization of the targeted

neurons (figure 1). Hence, our approach allows us
to find novel potential fields that can selectively
target different types of cells based on their loca-
tion and morphology. Moreover, we extended our
optimization approach to a multi-objective optim-
ization framework, which allows activating neural
tissues in the ROI while minimizing activation in
a region of avoidance (ROA) that can be asso-
ciated with side effects (figure 1). Hence, in an
example application, we were able to investigate
the possibility of claims that novel fields can dir-
ectly target neurons in the dorsal horn (DH) (ROI)
without activating axons in the dorsal column (DC)
(ROA) [13].

Our results demonstrate that our optimization
approach can provide novel fields to target the desired
ROI and limit activation in the ROAs. In con-
junction with the power of patient-specific models
[14], our optimization framework can be utilized to
improve the selectivity and corresponding efficacy of
SCS. Finally, our optimization method is not lim-
ited to SCS and can be applied to other neurostim-
ulation techniques, such as deep brain stimulation
(DBS).
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2. Methods

2.1. Single-objective optimization
The single-objective optimization problem consists of
maximizing the maximum of the field (F) that leads
to the activation of neurons in the ROI:

maximize :max(F (X)) X ∈ ROI, (1)

where X represents the spatial points in the ROI.
The field (F) can be estimated as the first derivative
of the electric potential (F =−dV/dr) for terminal
excitation [15–17] or the secondderivative of the elec-
tric potential

(
F = d2V/dr2

)
for axonal excitation

[18] where (r) is the direction parallel to the target
structure. The second derivative of the potential field
is also known as the activating function and it has
been widely used in neurostimulation applications
[18, 19]. Regarding the rationale for equation (1), we
are assuming that an action potential is initiated at
a single site and propagates through the rest of the
cell. Therefore, it is sufficient to formulate the optim-
ization problem such that the maximum of the field
(regardless of its location) is maximized. However,
it is important to note that it is possible to consider
other ways to formulate objective functions for neur-
omodulation. For example, it is often desired to max-
imize the volume of activation within a ROI [20]. To
that end, instead of maximizing the maximal of the
field, the integral of the field that passes a threshold
would need to be maximized. While this approach
requires prior knowledge to specify the appropriate
threshold, this type of objective function could also
be implemented within our optimization framework
as described below.

To solve the optimization problem, we need to
evaluate F as a function of the current at each elec-
trode. Assuming quasi-static conditions [21], we can
use the superposition principle to evaluate F :

F (X,α) =
n∑

i=1

αi fi (X) , (2)

where αi is the current fraction at the ith contact,
n is the total number of contacts, and ( fi(X) is the
field obtained from the solution of the finite element
method (FEM) model when the current at the ith
contact is equal to a unit current of 1A while the cur-
rent at all other contacts are 0A.

Without any constraints, the solution of
equation (1) is not bounded because increasing α
leads to the increase in F . Therefore, we consider α
to represent current fractions rather than the actual
currents (i.e. α varies between −1 and +1). Indeed,
adjusting current fractions is an approach that is util-
ized in some commercial clinical neurostimulation
systems [11, 12, 22]. We also assume that the total

inward (α< 0) and outward (α> 0) currents are
balanced:

n∑
i

αi =+1 if αi > 0. (3)

n∑
i

αi =−1 if αi < 0. (4)

Therefore, the single-objective optimization
problem consists of solving equation (1) along with
equations (3) and (4) as constraints. Solving this
optimization problem can be challenging because
the maximum operator in equation (1) is not dif-
ferentiable, which prevents using analytical optimiz-
ation methods, as do the conditional statements in
equations (3) and (4). To overcome this challenge
with regards to the objective function, we can replace
the maximum operator with a smooth function that
approximates the maximum of the field:

maxS (F (X,α) ,β)

=

∑m
i=1F (Xi,α)exp(βF (Xi,α))∑m

i=1 exp(βF (Xi,α))
, (5)

where m is the number of spatial points in the ROI,
and β > 0 is a scaling parameter. For sufficiently large
β, equation (5) can approximate the maximum of the
field in the ROI. In fact, equation (5) recovers the
exact maximum for β →+∞:

lim
β→+∞

maxS (F (X,α) ,β)

=
F
(
Xj,α

)
exp

(
βF

(
Xj,α

))
exp

(
βF

(
Xj,α

)) = F
(
Xj,α

)
,

(6)

where j is the index of the spatial point in which
F is maximum. In practice, β does not need to go
to infinity, and as long as βF

(
Xj,α

)
is sufficiently

large (e.g. βF
(
Xj,α

)
≈ 10), then equation (5) can

provide a smooth approximation to the maximum
operator. Figure 2(A) demonstrates the validity of
using equation (5) to find the maximum value of a
function with multiple peaks when a large enough
β is chosen. Moreover, choosing β < 0 allows us
to find the largest negative value of the function.
As mentioned in the first paragraph of this section,
it could be desirable to choose a threshold-based
objective function to maximize activation within an
ROI. This threshold-based objective function would
require finding all the points in space that pass a cer-
tain threshold andmaximizing the integral of the field
that passes the specified threshold. This threshold-
based objective function would also not be differen-
tiable. However, a smooth approximation of regions
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Figure 2.Mathematical method overview. (A) The smooth maximum function (equation (5)) can accurately approximate the
largest positive value of a field (β > 0) or the largest negative value of a field (β < 0). (B) The smooth absolute value function
(equation (9)) can accurately approximate the absolute value of the current fractions (α) and is differentiable at α= 0 even for
large values of γ. (C) We use the ϵ-constraint method to construct the Pareto fronts of multi-objective optimization problems.
One objective is considered as the primary objective and the other objectives are considered as inequality constraints. Then, the
Pareto front is constructed by varying the value of the inequality constraints. (D) An example Pareto front for an optimization
with two objectives. The points that are not on the Pareto front are sub-optimal compared to the points on the Pareto front.
Multi-objective optimization for neurostimulation can consist of maximizing the objectives in all ROIs (Max–Max branch) or
maximizing the objective in an ROI while minimizing the objective in an ROA (Min–Max or Max–Min branches).

that the field is less or more than the threshold could
be achieved using a sigmoid function or similar. This
smooth approximation would return near unity for
regions that are larger than the threshold and near
zero for regions that are smaller than the threshold
and the transition between them could be controlled
using a scaling parameter.

To make the conditional statements for the con-
straints (equations (3) and (4)) differentiable, we sum
equations (3) and (4):

n∑
i

αi = 0. (7)

Equation (7) plainly represents the constraint that
the currents need to be balanced. The information
that the current fractions are between +1 and −1 is
lost when we sum equations (3) and (4). However, we
can first calculate the absolute values of equations (3)
and (4) and then sum them together:

n∑
i

|αi|= 2. (8)

Equation (7) is well-posed and allows the use of
analytic methods. However, equation (8) is problem-
atic because it is not differentiable at 0, but we can
replace the absolute value function with a smooth
approximation:

absS (α,γ) = α tanh(γα) , (9)

where γ > 0 is a scaling parameter. Figure 2(B)
demonstrates that the absolute value function can
be adequately approximated using equation (9) for
large enough γ values. Hence, we approximate
equation (8) as:

n∑
i

αi tanh(γαi) = 2. (10)

Replacing the maximum operator and the abso-
lute value functionwith their smooth approximations
(equations (5) and (10), respectively) allows us to use
the Lagrange multipliers method [23] to solve the
optimization problem. To that end, we formulate the
single-objective optimization problem as:

4
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maximize: maxS (F (X,α) ,β) X ∈ ROI

subject to: h1 (α) = 2−
n∑

i=1

αi tanh(γαi) = 0

and h2 (α) =
n∑

i=1

αi = 0, (11)

where h represents the equality constraints. Next, we
can write the Lagrangian function as:

L(α,λ) =maxS (F (X,α) ,β)−
2∑

i=1

λi hi (α) ,

(12)

where λ is the Lagrange multiplier for the equal-
ity constraints. We can find the critical points of the
Lagrangian function by taking its gradient and setting
it equal to 0:

∇α,λL(α,λ) = 0. (13)

Equation (13) yields a system of n+ 2 equations
(n current fractions and 2 equality constraints). We
solve this system of equations to find the critical
points of the Lagrangian function. Finally, we use the
sequence of minors of the bordered Hessian matrix
to determine if these critical points are maximums,
minimums, or none (saddle points) [24].

2.2. Multi-objective optimization
We can extend our single-optimization framework
to solve multi-objective optimization problems. The
most common method of solving multi-objective
optimization problems is to combine the objectives
into a single objective as a weighted sum. However,
this simplistic approach does not allow for explor-
ing the trade-off between different objectives, which
leads to construction of the Pareto front (figure 2(D)).
In our approach, we consider two types of multi-
objective optimizations: (a) maximizing the fields
that leads to excitation in more than one ROI (Max-
Max branch in figure 2(D)), and (b) maximizing the
fields that leads to excitation in the ROIs and min-
imizing the fields that leads to excitation in the ROAs
(Min–Max andMax–Min branches in figure 2(D)). It
is important to note that the field that leads to activ-
ation can be different in each ROI and ROA (e.g. first
or second derivatives of the electric potential, as well
as different directions).

In the case of maximizing different fields in the
ROIs, the objective function in each ROI is similar to
equation (1). However, the objective for minimizing
the excitation fields in ROAs is:

minimize :max (F (X)) X ∈ ROA. (14)

The weighted averagemethod can be expanded to
construct the Pareto front by varying the weight of

each objective. However, this crude approach is prone
to failure for multiple reasons (e.g. if the Pareto front
is nonconvex or the objectives are not properly scaled)
[25]. Instead, we use another approach known as the
∈-constraint method [25]. In this approach, a single
objective is considered as the primary objective and
all the other objectives are considered as inequality
constraints:

maximize: maxS (F1 (X,α) ,β) X ∈ ROI

subject to: gi =maxS (Fi (X,α) ,β)− ϵi ⩽ 0

X ∈ ROIi or ROAi

(15)

where i ⩾ 2 is the index of the ith ROI or ROA. Then,
we can vary ϵ (figure 2(C)) to construct the Pareto
fronts even if they are not convex [25].

We use the generalized Lagrange multipliers
method to solve the new single-objective optimiza-
tion problem, which includes inequality and equality
constraints (equations (7) and (10)). For a given ϵ, we
write the Lagrangian expression as:

L(α,λ,µ) =maxS (F1 (X,α) ,β)−
2∑

i=1

λi hi (α)

−
Q∑

i=2

µi gi
(
α, ϵq

)
, (16)

where λ and µ are the Karush–Kuhn–Tucker (KKT)
multipliers, and Q is the total number of ROIs
or ROAs. We can find the critical points of the
generalized Lagrangian function by using the KKT
conditions:

∇α,λ,µL(α,λ,µ) = 0 (17)

g(α∗, ϵ)⩽ 0 (18)

h(α∗)⩽ 0 (19)

µ∗ ⩾ 0 (20)

Q∑
i=2

µ∗
i gi

(
α∗, ϵq

)
= 0 (21)

where α∗ and µ∗ are solutions of the system of
equations obtained from equation (17). The solution
set is only valid if it satisfies the conditions shown
in equations (18)–(21). Next, we use the sequence of
minors of the bordered Hessian matrix to determine
if the valid critical points are maximums, minimums,
or none (saddle points) [24].
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2.3. Optimization implementation
Heuristic optimization approaches rely on evaluating
the objective functions and utilize different methods
(e.g. evolutionary algorithms and swarm intelligence)
to search for optimized solutions that also satisfy
the constraints if present. The results obtained from
such algorithms are not necessarily the true optimum
solution of the optimization problem and should
be regarded as approximate solutions. Furthermore,
these approximate solutions are not always the global
optimum, and the search algorithm might have only
found a local optimum solution.

However, the Lagrange multiplier method
provides a set of equations that by solving them
provides the critical solutions of the objective func-
tions. The type of critical point (minimum, max-
imum, or none) is determined using exact mathem-
atical techniques (bordered Hessian matrix [24]),
which does not require evaluating the objective
function itself. However, the objective functions
can be evaluated at these critical points to determ-
ine which one of them is the global optimum
solution.

In this study, we obtained the solutions to our
optimization problem by solving the set of equations
obtained from equation (13) for single-objective or
equation (17) for multi-objective optimization prob-
lems. These are large sets of nonlinear equations,
which cannot be solved analytically. Instead, we
solved these sets of nonlinear equations numerically
with the fsolve function in MATLAB (MathWorks,
MA) with the default parameters.

The fsolve function, like most other numerical
solvers, requires an initial guess to find a solution
to the system of equations. Using the same initial
guess leads to the same solution. Therefore, we used
Latin hypercube sampling to generate a series of dif-
ferent initial guesses to find a set of solutions for our
optimization problems. The bounds for these initial
guesses for current fractions were −1 and +1 and
−10 and +10 for Lagrange multipliers. It is import-
ant to note that the fsolve function does not always
return a converged solution or a solution with real
values. We disregarded the imaginary solutions or the
solutions that did not converge. Then, we checked
the valid solutions to determine if they are max-
imums, minimums, or none, and only stored the
optimal solutions for further evaluation (evaluating
the objective functions to find the global solution
or constructing Pareto fronts). It is also important
to consider that using the fsolve function naively to
find a solution can be time consuming and the com-
putational time accumulates because we used fsolve
for many different initial guesses. However, the fsolve
function can converge much faster if the Jacobian of
the system of equations is passed to it. Therefore, we
calculated the Jacobian of the system of equations
to increase the computational efficiency of our
optimization approach.

Even though solutions to this system of equations
can provide the exact solutions for the optimiza-
tion problem, the fact that we solve them numeric-
ally can introduce some errors. Moreover, approx-
imating equation (8) (the absolute value function)
with equation (10) leads to solutions that do not
perfectly satisfy the exact constraints (equations (3)
and (4)). Therefore, we performed one additional
step (equation (22)) after accepting a solution from
the fsolve function to make sure that the solution sat-
isfied the original constraints completely:

αcorrected =
2α∗∑n
i |α∗

i |
, (22)

whereα∗ is a valid set of optimized current fractions,
αcorrected is the corrected set of optimized current
fractions that perfectly satisfy the exact constraints
(equations (3) and (4)), and n is the total number
of contacts. We should note that the values of cor-
rected fractions (equation (22)) have full machine
accuracy, which are not feasible in practice with clin-
ical systems. Instead, the values of the optimized cur-
rent fractions are rounded. We rounded the optim-
ized current fractions with three significant digits for
the results presented in this paper and ensured that
these rounded current fractions still satisfied the exact
constraints (equations (3) and (4)).

2.4. Illustrative example
Here, we demonstrate the optimization procedure
using an ideal setup. Figure 3(A) shows eight current
sources placed symmetrically in space. We calculated
the potential field generated for each monopole cur-
rent source I (sources 1–8) located at (xs, ys, zs) in the
anisotropic volume as equation (23) [26]:

V(x,y,z) =
I

4π
√
σxxσyyσzz

1√
(x−xs)

2

σxx
+

(y−ys)
2

σyy
+

(z−zs)
2

σzz

(23)

where σxx, σyy, and σzz are the conductivities in the
x, y, and z directions, respectively. Assuming that
the axons were positioned parallel to the z-axis, we
used σzz = 0.6 S m−1 and σxx = σyy = 0.083 S m−1 to
account for higher conductivity of white matter in
the longitudinal direction compared to the transverse
direction [27–29].

The optimization problem for this example con-
sists of maximizing the second derivative of the elec-
tric potential (activating function) [18] in the z-
direction for ROIs of various dimensions. In this
example, we mainly used the various dimensions
for ROIs to explain the concept. However, in prac-
tice, it can be desirable to use lower dimensional
ROIs/ROAs because they are computationally less
expensive and can provide useful results if they are
properly selected. The table in figure 3(B) shows the
current fractions for the optimized configurations

6
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Figure 3. Optimization of the activating function in an ROI with various dimensions for an ideal setup. (A) The ROIs of various
dimensions are placed symmetrically between eight ideal current sources. (B) The current fractions for each ROI and the
maximum value of the activating function. (C)–(F) Normalized activating function in each ROI for the optimized configurations.
The activating function (second derivative of the electric potential in the z-direction) is normalized using the largest value of the
activating function across all ROIs.

shown in figures 3(C)–(F). We can see that the cur-
rent fractions for all ROIs satisfy the constraints of
the optimization problem (equations (3) and (4)).
Interestingly, the absolute values of the optimized
current fractions are either close to zero or close to
one. Therefore, all optimized configurations can be
considered as bipolar configurations (i.e. one source
acts as the cathode and the second source acts as the
anode).

The dimension and location of the ROI determ-
ines which source acts as the cathode and which
source acts as the anode. For the 0D ROI (single point
shown in figure 3(C)), Sources 2 and 8 can be con-
sidered as the cathode and anode, respectively. The
choice of these two sources to maximize the activat-
ing function for this 0D ROI is not intuitive but we
should note that this solution was not unique and
other combinations of cathodes and anodes provided
solutions with similar values of the objective func-
tion. In general, there could exist several optimized
solutions with the same objective function values for
ROIs of any dimension. However, the number of such
solutions decreases as the number of dimensions for
the ROI increases. Sources 6 and 8 can be considered
as cathode and anode, respectively, for the 1D ROI
(line shown in figure 3(D)). Again, this solution is not
unique, and any combination of cathodes and anodes
separated by a single source would result in equally
good objective functions.

We can observe that the maximum value of the
objective function for the 1D ROI is larger compared
to the maximum value for the 0D ROI. This result is
expected because the location of the 0D ROI is not
necessarily where the activating function can reach

its peak. However, the 1D ROI has the possibility
of including points where the activating function
reaches its peak. Hence, the optimization algorithm
finds a set of current fractions that produces a higher
maximum value of the objective function for the 1D
ROI compared to 0D ROI. In fact, a higher dimen-
sional ROI is guaranteed to have a larger or equal
objective function value compared to a lower dimen-
sional ROI if the lower dimensional ROI is a sub-
set of the higher dimensional ROI. The results for
the 2D ROI (plane shown in figure 3(E)) and the
3D ROI (figure 3(F)) clearly demonstrate this rule.
The 2D ROI has a larger objective function compared
to the 0D ROI (the 0D ROI is a subset of the 2D
ROI). However, there is no guarantee that the 2D ROI
should have a larger objective function compared to
the 1D ROI because not all points of the 1D ROI are
included in the 2D ROI. In fact, the objective func-
tion for the 1DROI is larger compared to the 2DROI.
The 2D ROI plane is not placed where the activat-
ing function can reach its peak compared to the 1D
ROI. Hence, the 1D ROI can reach larger activating
function values even though the 2D ROI has points
closer to the sources. The 3D ROI encompasses all of
the lower dimensional ROIs. Hence, it achieves the
largest objective function because it has the freedom
to include points that are closer to the sources (sim-
ilar to the 2DROI), but it also has the freedom to have
these points at the proper z location.

While it might be tempting to use a large 3D
volume to find the largest objective function, in prac-
tice this is not always a good approach because the
largest objective function can occur somewhere away
from the true ROI. For example, if the true ROI was

7
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Table 1. Electrical conductivities for the FEM model tissues.

Tissue
Conductivity
(S m−1) References

Gray matter 0.23 [32]
White matter (longitudinal) 0.60 [32]
White matter (transverse) 0.083 [32]
Cerebrospinal fluid (CSF) 1.70 [32]
Dura mater 0.60 [33]
Epidural fat 0.25 [34]
Vertebral bone 0.02 [35]
Intervertebral disc 0.65 [32]
Electrode encapsulation 0.11 [36]
Thorax 0.25 [32]

somewhere between sources 2 and 3, then the optim-
ization solution shown in figure 3(F) would be amin-
imum for the actual ROI instead of a maximum.

2.5. Finite element analysis
Previous studies have shown the importance of
detailed modeling for SCS [14, 30]. Hence, we
used a lower thoracic spinal cord FEM model as
shown in figure 4(A) to examine the strength of
our optimization algorithm for targeted SCS. This
volume conductor model has been described in
detail [31], which includes gray matter, white mat-
ter, cerebrospinal fluid (CSF), dura mater, epidural
fat, vertebral bone, intervertebral discs, an electrode
encapsulation domain, and thorax. Table 1 provides
the electrical conductivity of each region. The SCS
leads were two cylindrical percutaneous electrode
arrays with eight contacts. The diameter of each SCS
lead was 1.3 mm and the center-to-center distance
between them was 4 mm. Each electrode was 3 mm
long with an edge-to-edge spacing of 1 mm between
each electrode.

We created and meshed the volume conductor
geometry using 3-matic (Materialize, Belgium). We
used a higher mesh density near the electrode con-
tacts to achieve a more accurate solution of the
electric potential field. We imported the volume
mesh into COMSOL Multiphysics (COMSOL, MA)
to solve the Laplace equation (equation (24)) to
obtain the electrostatic potential fields generated dur-
ing stimulation:

∇·σ∇V= 0, (24)

where σ is the electrical conductivity andV is the elec-
tric potential. We grounded (V= 0) the outer surface
of the volume conductormodel and treated each con-
tact as floating potentials with the desired net current.
To evaluate the fields ( f(X) in equation (2) used in the
optimization problem, we applied +1 A to a single
electrode while the rest of the electrodes were inact-
ive (0 A). Figure 4(A) shows an example isopotential
field around the stimulating electrodes as the result of
superposition for unit currents at the anode (+1 A)
and the cathode (−1 A).

It is important to recognize that f(X) can be dif-
ferent from the potential field (V) itself and depends
on the type of field that can predict the excitation
of cells (e.g. first derivative of the potential field for
terminal excitation and the second derivative of the
potential field for axonal excitation, as discussed in
section 2.1). We calculated the derivatives directly in
COMSOL to take full advantage of the second-order
shape functions used in our FEM model.

2.6. Cell models
In this study, we tested the results of our optimiza-
tion framework on axons located in the DCs and cells
located in the DH (figure 4(B)).

2.6.1. DC axons
Weused amodified version of awell-established com-
partmental model of a myelinated mammalian axon
to investigate the response of axons located in theDCs
[26, 37]. This axon model (figure 4(B)) includes act-
ive nodes of Ranvier and passive internode regions.
The nodes of Ranvier included fast sodium, persist-
ent sodium, slow potassium, leakage, and capacitive
currents. Themodified version [26] of themodel fixes
issues with the original model [37] in which both the
backward and forward rates for the slow potassium
channel increased with the membrane voltage. We
used the same morphology as the original double-
cable model, which included myelin attachment seg-
ment, paranode main segment, and internode seg-
ment regions of the fiber. In this study, we modeled
axons with a diameter of 8.7 µm.

2.6.2. DH cells
We utilized a local cell model without change as
described in detail in the original publication [38],
but we briefly summarize the model design here. To
maximize biological realism, we used the cell mor-
phology of a previously published reconstruction
of a large lamina I interneuron (Neuromorpho ID
NMO_34018 [39]). The axon was myelinated follow-
ing the algorithm described by Aberra and colleagues
[40], and given a specific membrane capacitance of
0.02 µF cm−2 and specific membrane resistance of
1.125 MΩcm2. Nodal compartments contained fast
sodium (3.45 S cm−2) [41] and delayed rectifier
potassium (0.076 S cm−2) [42], in addition to a spe-
cific membrane resistivity of 91 kΩcm2 [43] and spe-
cific membrane capacitance of 0.85 µF cm−2 [44].
Model neurons were validated based on comparison
to relevant frequency-intensity relationships during
injected current clamp experiments [45] as well as the
response to extracellular microstimulation [46].

2.6.3. Model implementation
To assess neural recruitment during SCS, we used
the NEURON simulation software (v7.4) with the
Python programming language [47, 48]. We used
the FEM model and the superposition principle
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Figure 4. Computational model overview. (A) Exploded views of the three-dimensional canonical anatomy used in the finite
element method (FEM) model. The iso-potentials generated around the stimulating electrodes as the result of unit currents
applied at the anode (+1 A) and the cathode (−1 A). (B) We populated the dorsal columns with axons and dorsal horns with
local cells. We integrated the FEM model with biophysical simulations to find the activation thresholds of all cells in response to
spinal cord stimulation.

(equation (2)) to calculate the overall electric poten-
tial field for a desired set of current fractions. Then,
we interpolated the overall electric potential onto
multi-compartment cellmodels to find theminimum
stimulation amplitude that resulted in an action
potential (supra-threshold responses in figure 4(B)).
We applied these voltages to the cell models using
NEURON’s extracellular mechanism. We calculated
the time-dependent membrane voltage for each com-
partment in the cell models using NEURON’s back-
ward Euler implicit integration method with a fixed
time step of 5 µs. To find the activation thresholds, we
used a binary search with a relative error of 0.1%. We
performed this analysis for DC fibers and local cells
within the DH in response to a monophasic cathodic
stimulus with a pulse width of 300 µs (figure 4(B)).

3. Results

We used our optimization framework to find stimu-
lation configurations for single- and multi-objective
optimizations for one- and three-dimensional

ROIs and ROAs. For each case, we evaluated the
neural recruitment for the optimized stimulation
configurations.

3.1. Single-objective optimization
3.1.1. One-dimensional ROI
The simplest ROI we used in this paper to test our
proposed optimization framework for SCS was an
axon located symmetrically between the two SCS
electrode arrays (figure 5(A)). The objective of this
optimization was to find stimulation configurations
that result in the smallest activation threshold of the
ROI. To that end, we maximized the activating func-
tion along the axon.

Figure 5(B) demonstrates some example config-
urations found by our optimization framework. We
normalized all the activating functions using the peak
of the configuration with the largest amplitude (con-
figuration (i)). As we described in the section 2,
the Lagrange multiplier method finds all the crit-
ical points of the Lagrangian function. These critical
points can be maximums (configurations (i)–(iii)) or
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Figure 5. Single-objective optimization of a one-dimensional ROI. (A) The ROI is an axon in the dorsal columns that is located
symmetrically between two electrode arrays. (B) Example electrode configurations obtained by our optimization algorithm. The
activating function (second derivative of the potential field) is shown along the axon for each configuration. The activating
functions are normalized using the peak activating function value for the configuration with the largest amplitude (configuration
(i)). (C) The distribution of the normalized objective function (maximum of the activating function along the axon) for random
stimulating configurations compared to the normalized objective functions obtained from our optimization algorithm. (D) The
relationship between the normalized objective function (activating function) and the normalized activation threshold for the
axons. Here, we only show a subset of random configurations compared to the distribution in (C) to make the figure more
readable. In C and D, the objective function and activation threshold of configuration (i) are used for normalization.

minimums (configuration (iv)), which can also be
ranked to determine global optimum solutions. The
results in figure 5(B) suggests that the largest activat-
ing functions can be achieved using only a single elec-
trode array (configuration (i)) (i.e. array 1 includes
electrodes with large current fractions, while array 2
only includes small current fractions) and only two

electrodes (one cathode and one anode) are suffi-
cient to obtain large activating functions (configura-
tion (i)–(iii)) (i.e. the current fractions are large at two
electrodes and small at all other electrodes), which is
similar to the results shown in the illustrative example
(figure 3). However, both electrode arrays are needed
to obtain an activating function close to zero in the
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ROI (configuration (iv)). This configuration ismean-
ingless for the ROI because it is equivalent to no stim-
ulation. Yet, we provided it as a prelude for multi-
objective optimizationwhere no activation in anROA
is desirable.

Figure 5(C) illustrates why a systematic approach
is necessary for selecting stimulation configurations.
We generated 10 000 random configurations that
satisfied the constraints for the current fractions
(equations (3) and (4)). It is evident that these ran-
dom configurations were not close to the optimum
solutions that our optimization framework was able
to find. Indeed, the objective functions of ran-
dom configurations were on average 66% less than
the global maximum found by our optimization
algorithm. Therefore, a random search algorithm that
simply evaluates objective functions and sorts them
is unlikely to obtain optimal solutions. Alternatively,
it is possible to perform an exhaustive grid search
and loop through all possible configurations (with
some degree of precision). However, this approach is
impractical for a large number of electrodes.

We used NEURON to calculate the activation
thresholds for the stimulating configurations from
our optimization algorithm and the random con-
figurations (similar to figure 4(B)). Figure 5(D)
confirms that the activating function is a great
predictor of activation for the ROI (the axon in
figure 5(A)). Indeed, the largest/smallest (configura-
tion (i)/configuration (iv)) activating functions led to
the smallest/largest activation threshold. These results
are consistent with previous studies [18, 49]. Hence,
we used the activating function as our objective func-
tion for axonal activation for the rest of this study.

3.1.2. Three-dimensional ROI
Next, we used our optimization algorithm to find
stimulation configurations when the DCs were con-
sidered as the ROI (figure 6(A)). The objective of the
optimization was to find stimulation configurations
that resulted in the smallest activation threshold for
activating an axon anywhere within the ROI (DCs).
The field to be optimized was the activating function
since we were considering axonal activation.

Figure 6(B) shows that randomly finding
optimum configurations is unlikely. Hence, using
our optimization algorithm is beneficial even when
the ROI is a large three-dimensional entity. However,
considering the results shown in figure 5, we have the
prior knowledge that the optimal solution is a bipolar
configuration. Therefore, we can randomly evaluate
the objective function for all 240 possible bipolar
configurations. Indeed, the distribution mean for
the bipolar configurations is larger compared to the
distribution mean for the completely random config-
urations and some of the bipolar configurations have
objective functions close to the optimized solution.
In fact, a bipolar configuration (−C9, +C11) has a
larger objective function compared to our optimized

solution. This result is expected because the optim-
ized configuration found by our algorithm ((i) in
figure 6(C)) is equivalent to the bipolar configuration
but has some small nonzero currents on other con-
tacts due approximations and numerical issues (see
section 2.3). Also, configuration (i) in figure 5(B)
had a slightly smaller objective function compared
to the ideal (−C1, +C4) bipolar configuration but
it was still better than the objective function for the
(−C1, +C3) bipolar configuration. This result high-
lights the importance of choosing proper cathodes
and anodes even when a bipolar configuration seems
to be sufficient because it is not possible to test all of
the possible bipolar configurations.

The optimization algorithm for the 3D ROI can
achieve a near zero objective function throughout all
of the DCs (figure 6(D) (ii)), which leads to large
activation thresholds for this configuration that are
beyond the clinical range (e.g. 0–25 mA) [50]. Even
though finding this type of configuration is mean-
ingless for single-objective optimization, the ability to
find this type of stimulation configuration is import-
ant formulti-objective optimization. For example, we
can explore the possibility of recruiting cells in the
DHwithout exciting the axons in the DCs. Moreover,
figure 6(D)(i) shows that a near zero objective func-
tion is achieved when the current fraction on an elec-
trode opposes the current fraction on the contralat-
eral electrode at the same rostrocaudal level. It is also
important to recognize that none of the random or
bipolar configurations achieved a near-zero objective
function.

3.2. Multi-objective optimization
3.2.1. One-dimensional ROI and ROA
We used a one-dimensional ROI and a one-
dimensional ROA to test our optimization framework
for multi-objective optimization. The ROI and ROA
are single axons that are located symmetrically in the
DCs between two SCS electrode arrays (figure 7(A)).
The choice of the ROI and ROA is arbitrary here, but
it can have clinical justifications. For example, the
programmer might want to investigate if recruiting
axons on one side of the DCs versus the other side
provides better targeting and subsequent pain relief
for a patient. Moreover, we can consider both axons
as ROIs to find configurations that provide bilateral
stimulation.

Figure 7(B) shows the Pareto front for this optim-
ization problem. The objective functions (activat-
ing function) for the ROI and ROA were normal-
ized using the largest objective function detected.
Each point on the Pareto front presents a unique
stimulation configuration. We used each configur-
ation to find the activation threshold of the ROI
and ROA axons. A larger objective function (activat-
ing function) leads to a smaller activation threshold
(see figure 5(D)). Hence, we calculated and plot-
ted the Pareto front for 1/(activation threshold)
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Figure 6. Single-objective optimization of a three-dimensional ROI. (A) The ROI is the entire dorsal columns. The goal is to
maximize the activating function as the objective function. (B) The distribution of the normalized objective function (maximum
of the activating function in the dorsal column) for random and bipolar stimulating configurations compared to the normalized
objective functions obtained from our optimization routine. Note, the lines highlighting the normalized objective function values
for the configuration shown in C and the bipolar configuration (−C9,+C11) are nearly superimposed on one another.
(C) Optimization solution for the maximum objective function. (i) Stimulation configuration obtained by our optimization
algorithm. The contours show the normalized activation function in the coronal plane shown by the dashed line in A. The largest
value of the activating function in the ROI was used for normalization. (ii) Contours of the normalized activating function in the
axial plane at the axial level shown by the dashed line in (i). (iii) Contours of the activation thresholds for axons throughout the
dorsal columns (see figure 4(B)) for the stimulation configuration shown in (i). (D) Optimization solution for the minimum
objective function. (i) Stimulation configuration obtained by our optimization algorithm. The contours show the normalized
activation function for the coronal plane shown by the dashed line in A. (ii) Contours of the normalized activating function in the
axial plane at the axial level shown by the dashed line in (i). (iii) Contours of the activation thresholds for axons throughout the
dorsal columns for the stimulation configuration shown in (i).

(figure 7(C)), which is similar in shape to the Pareto
front for the objective functions. We used the smal-
lest activation threshold to normalize the results in
figure 7(C).

Next, we selected four different configurations
to demonstrate how the multi-objective optimiza-
tion can be used in practice. These configurations are
shown on the Pareto front of figure 7(B) (and their
corresponding activation threshold in figure 7(C)).
Configuration (i) represents a case where the object-
ive function for both the ROI and ROA are small.
Therefore, we found a large activation threshold

(small 1/activation threshold) for them as expected
(point (i) in figure 7(C)). This configuration is not
useful on its own and is similar to the near zero
objective function example shown for the single-
objective optimization example shown in figure 6(D).
However, this configuration would be meaningful if
both axons were considered as ROAs and there was
another location that was considered as the ROI (e.g.
cells in the DH).

Configuration (ii) represents themost logical case
for a two-objective optimizationwhen there is an ROI
and ROA. This point on the Pareto front was chosen
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Figure 7.Multi-objective optimization of a one-dimensional ROI and a one-dimensional ROA. (A) The ROI is a single axon near
electrode array 1 and the ROA is a single axon near electrode array 2. (B) The Pareto front of the multi-objective optimization.
The objective functions (activating function) are normalized using the largest objective function detected in either the ROI or
ROA. Each point on the Pareto front represents a unique stimulation configuration. We selected four points on the Pareto front
for further demonstration: configuration (i) represents a case in which the objective function is small for both the ROI and ROA.
Configuration (ii) represents a case in which the objective function is as large as it can get in the ROI while the objective function
in the ROA is still close to zero. Configuration (iii) represents the case in which the objective function in the ROI has its largest
value and greater than the objective function in the ROA. Configuration (iv) represents a case in which the objective functions in
the ROI and ROA are almost equal. (C) The Pareto front for activation thresholds. The activation thresholds are normalized using
the smallest activation threshold detected in either the ROI or ROA. (D) Electrode configurations and the objective function
(activating function) along the ROI and ROA for the points selected in B. The objective function is normalized using the largest
objective function detected in either the ROI or ROA. (E) Contours of the activation thresholds for axons throughout the dorsal
columns (see figure 4(B)) for each stimulation configuration.

because the objective function for the ROI is as large
as it can get while the objective function for the ROA
is still close to zero. Figure 7(D)(ii) shows that elec-
trode arrays 1 and 2 work in opposite so that the sum
of their fields is close to zero for the ROA. However,
even though they are still working against each other
at the ROI, they do not cancel out each other and the
activating function is nonzero for the ROI. Moreover,

we can see the current fractions for this configuration
is not something that can be trivially selected. This
result shows why it is important to have a systematic
approach with parameter selection. Figure 7(E)(ii)
shows that the activation threshold for the ROI and
its surrounding tissue is within clinical range while
the activation threshold for the ROA is beyond clin-
ical range.
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When moving from configuration (ii) to (iii) in
figure 7(B), we get larger objective functions at the
ROI at the expense of getting larger objective func-
tions at the ROA. This change translates into getting
lower activation thresholds at the ROI but also get-
ting lower activation thresholds at the ROA (moving
from (ii) to (iii) in figure 7(C)). In fact, configura-
tion (iii) shows the point beyond which the objective
function for the ROA starts to get larger compared to
the objective function for the ROI. Hence, the Pareto
front for multi-objective optimization provides a
powerful tool for programmers to control the trade-
off between activating ROIs at lower thresholds at the
cost of activating ROAs. Figure 7(D)(iii) shows that
the current fractions for this configuration are con-
centrated on electrode array 1. This result was expec-
ted because the ROI is closer to this electrode array,
and point (iii) represents the point on the Pareto front
that prioritizes activation in the ROI above anything
else. Comparing (ii) and (iii) in figure 7(E) clearly
shows that the consequence of activating the ROI
at lower thresholds is concomitant activation of the
ROA.

The red and purple branches of the Pareto fronts
in figures 7(B) and (C) are not useful because they
represent configurations in which ROA is activated
at lower thresholds compared to the ROI. However,
given the arbitrary selection of the ROI and ROA in
this example, we could consider that ROA as another
ROI. We could consider another example situation
in which we want equal activation at both locations.
Configuration (iv) provides such a non-trivial solu-
tion. We can see in figures 7(D) and (E)(iv) that
the electrode arrays work together to create almost
equal objective functions and corresponding activa-
tion thresholds at both locations. This configuration
would be a good candidate for bilateral stimulation.

3.2.2. Three-dimensional ROI and ROA
Finally, we considered a multi-objective optimiza-
tion in which both the ROI and ROA were three-
dimensional.We considered bothDHs as the ROI and
the entire DC as the ROA (figure 8(A)). This case
also shows that optimization domains do not need
to be connected in our optimization framework. The
motivation for this multi-objective optimization was
reports that cells in theDH can be activatedwithmin-
imal activation of axons in the DCs [51–53]. If pos-
sible, such neurostimulation can provide therapeutic
results without the often unwanted paresthesias asso-
ciated with direct activation of DC axons (figure 1).

Figure 8(B) shows the Pareto front for this multi-
objective optimization. The objective function for the
ROA is again the activating function. However, the
objective function for the ROI was the electric field in
the rostral-caudal direction because the electric field
is known to be predictive of the activation of axon ter-
minals of local cells in the DH [13, 38]. Therefore,
this optimization problem also serves as an example

in which the fields that are optimized in the ROI
and ROA are different. Hence, we normalized each
objective function with their own maximum values
in figure 7(B).

For this optimization, we did not calculate the
activation thresholds for all the configurations (each
point on the Pareto front shown in figure 8(B)).
Instead, we found the thresholds for a limited num-
ber of points which could characterize the Pareto
branches clearly. The results for the Pareto front
of activation thresholds are shown in figure 8(C).
Again, we plotted 1/thresholds to obtain a shape sim-
ilar to the Pareto front of the objective functions
(figure 8(B)). We also used the smallest activation
threshold in the ROI or ROA to perform the normal-
ization, which happened to be in the ROA. Hence, the
x-axis values (ROA thresholds) in figure 8(C) range
between 0–1 while the y-axis values (ROI thresholds)
range approximately between 0–0.1. This result shows
that the axons in the ROA are activated before the
local cells in the ROI.

Next, we picked four different configurations
to investigate activation of local cells in the ROI
(DHs) against activation of axons in the ROA (DCs).
These configurations are shown on the Pareto front
of figure 7(B) (and their corresponding activation
thresholds in figure 7(C)).

Previously, we showed that our optimization
framework can find configurations that avoid activa-
tion in the DCs altogether (figure 6(D) or 7(D) and
(E)(i)). This ability would be an attractive option
here because we considered the DCs as an ROA.
Configuration (i) represents one of the cases in which
the objective function for the ROA is close to zero
(figure 8(D)).However, figure 8(B) shows that config-
uration (i) also leads to a small objective function and
consequently large activation thresholds in the ROI
(figure 8(C)). This result shows that it is insufficient
to perform a single-objective optimization to minim-
ize activation in the ROA with the expectation that it
would then allow for selective activation in the ROI.
Note that for the single-objective example, a near-
zero objective function (figure 6(D)) was achieved by
a different set of current fractions compared to con-
figuration (i) in figure 8(D). Yet, the current fractions
for both solutions are similar in the sense that the
fractions are small and contacts that face each other
on the adjacent electrode have opposite polarities.

Configuration (ii) represents a logical choice for
activating the ROI while not activating the ROA,
because as seen in figure 8(B), the objective func-
tion of this configuration for the ROI is near its
largest value while the objective function for the ROA
is still close to zero. However, figures 8(C) and (F)
show that even for this configuration, the axons in
the ROA activate before the local cells in the ROI.
Figure 8(D)(ii) shows the current fractions for this
configuration and the location where the objective
functions are maximum for the ROI and ROA. The
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Figure 8.Multi-objective optimization of a three-dimensional ROI and a three-dimensional ROA. (A) The ROI is the
combination of both dorsal horns. The ROA is the dorsal columns. (B) The Pareto front for multi-objective optimization. The
objective function for the ROI is the negative of the derivative of the electric potential (the electric field) and the objective
function for the ROA is the activating function. Each objective function was normalized using their own largest objective
function. Note that large negative values are desired for the objective function in the ROI. Each point on the Pareto front
represents a unique stimulation configuration. We picked several points on the Pareto front that could characterize the branches
properly. We used these points to calculate the activation threshold to construct the Pareto front for the activation thresholds. We
also picked four of these points on the Pareto front for further demonstration: configuration (i) represents a case in which the
objective function is small for both the ROI and ROA. Configuration (ii) represents a case in which the objective function is as
large as it can get in the ROI while the objective function in the ROA is still small. Configuration (iii) represents the case in which
the objective function in the ROI has its largest value. Configuration (iv) represents a case in which the objective function in the
ROA is close to its largest value while the objective function for the ROI is close to zero. (C) The Pareto front for activation
thresholds for the selected points that characterize different branches of the Pareto front shown in (B). The activation thresholds
are normalized using the smallest activation threshold detected in either the ROI or ROA. (D) Electrode configurations and the
objective functions in the ROI and ROA for the points selected in B. The dashed lines show the location of the largest objective
function values for the ROI (dorsal horns). (E) Contours of the objective functions in the dorsal horns and dorsal columns for the
dashed lines shown in D. (F) Contours of the activation thresholds for each stimulation configuration for cells within the dorsal
horn and axons within the dorsal columns (see figure 4(B)).
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current fractions for this configuration show that
using a single electrode array (array 2 here) was
enough to obtain the optimized results. However,
figure 8(E)(ii) shows that the large objective functions
are only occurring in the right DH near the electrode
array 2. Therefore, the other electrode can still be use-
ful if we wanted to formulate an optimization prob-
lem that allowed for selective stimulation between the
DHs (each DH would need to be considered as a sep-
arate objective). Figure 8(F)(ii) shows that even for
this optimized configuration, the axons in the deep-
est parts of the DC are activated before the local cells
in the DH.

Configuration (iii) represents a case in which the
objective function for the ROI is larger compared to
configuration (ii) but at the expense of a larger object-
ive function in the ROA. Figure 8(D)(iii) shows that
only a single electrode is again necessary to achieve
this result. Figure 8(F)(iii) shows that although the
activation thresholds are lower in the DH, they are
now also lower in the DCs. Therefore, this configura-
tion does not really achieve the goal of activating the
ROI before the ROA. This result is also evident when
we compare points (ii) and (iii) on the threshold
Pareto front in figure 8(C).

Finally, configuration (iv) represents a situation in
which the ROA is activated before the ROI and would
only be a logical choice if we switched the ROI and
ROA. Figure 8(B) shows that this configuration is at
a point on the Pareto front where the objective func-
tion for the ROA is at its largest when the objective
function for the ROI is close to zero. In fact, this con-
figuration is similar to single-objective optimization
when the DCs were a three-dimensional ROI. For this
configuration, Figure 8(F)(iv) shows that the activa-
tion thresholds are low for the DC but the local cells
in the DH are activated at much larger amplitudes.

4. Discussion

In recent years, we have seen several technological
developments in SCS [54], which includes the intro-
duction of new waveforms, closed-loop systems, and
high-density electrode arrays. The goal of all these
efforts is to overcome the shortcomings of SCS.While
these advances increase the potential of improving
patient care, they also introduce a challenge: search-
ing the large parameter space of stimulation set-
tings is no longer possible during a clinical visit
[11]. Moreover, the traditional method of program-
ming, which relies on picking stimulation parameters
that generate maximal overlap between stimulation-
induced parasthesia and a patient’s primary pain
areas, is becoming obsolete because many of the new
SCS paradigms are either paresthesia-free or the onset
of pain relief is not immediate [55, 56]. Hence, the
need for a systematic approach to efficiently select

programming settings is crucial in order to harness
technological advances to improve patient care.

In this study, we presented an optimization
framework that enables an efficient paradigm to
choose current fractions across electrode arrays to
achieve targeted SCS. In general, the utilization of
optimization routines for programming SCS and
other neurostimulation approaches is limited. Many
optimization studies in the neurostimulation field
focus on DBS [57–60] with some of them focusing on
retinal prostheses [61–65]. These studies use analytic
methods [57] or heuristic approaches [58].

Analytic methods have the advantage of finding
an optimized solution faster, but they can be lim-
ited because of how they need to be formulated. For
example, one optimization approach for SCS for-
mulates the optimization as maximizing a field in a
volume while minimizing the same field everywhere
else and enables the use of eigenvectors to find the
optimized solution [66]. However, this sophisticated
approach has at least two limitations that should be
stated. First, this approach essentially assumes that
all the tissue outside of the ROI is an ROA. This
assumption is not completely valid in practice and
it can affect the optimized solutions that are found.
Second, the field that governs activation within the
ROI (e.g. the electric field) might be different from
the field that governs excitation within the ROA (e.g.
the electric field in another direction or the activat-
ing function). Because of these two limitations, this
approach cannot be used for multi-objective optim-
ization for SCS, which can be regarded as another
limitation.

To avoid potential challenges associated with ana-
lytic methods, optimization algorithms can utilize
heuristic approaches that allow for more freedom
regarding how the optimization problem is formu-
lated. For example, directly relevant to neural activ-
ation, heuristic approaches can allow for optimizing
the maximum of the activating function (i.e. second
order spatial derivative of the applied potential field)
in a volume [58]. The possibility to optimize themax-
imum of a field is important because a tissue can
be regarded as activated even if a small portion of
the targeted area passes a threshold. Normally, find-
ing the maximum of the activating function would
not be possible using analytic methods because the
maximum operator is not a differentiable function,
and many analytic methods rely upon derivatives
of functions. However, potential drawbacks of heur-
istic approaches are that they can be slow and do
not necessarily converge to the true global optimum
solution.

Our optimization framework is an analytic
method that uses the Lagrange multipliers method.
Hence, compared to heuristic algorithms, our
algorithm is fast and finds all of the optimized
solutions, including the global solution, provided
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that they exist. Yet, we are not restricted to some
of the limitations of analytic methods described
above. Namely, we were able to optimize the max-
imum of any field because we used a smooth max-
imum function instead of the exact maximum oper-
ator. Moreover, we are not limited in the types
of fields (order of derivatives or their directions),
or the dimension of the fields that are considered
for optimization. Hence, we were able to extend
our optimization framework to multi-objective
optimization.

Many of the results produced by our algorithm
resemble bipolar configurations (i.e. a cathode and
anode pair). However, our results are not exact
bipolar configurations because of numerical inac-
curacies and approximations of exact functions in
our methods (see section 2.3 for details). In fact,
exact bipolar configuration can result in larger
objective functions compared to the values found
by our algorithm (figure 6(B)). Indeed, a simple
bipolar configuration is commonly selected by exper-
ienced programmers to target axons within the DCs.
However, even if we assume that a bipolar configur-
ation can always produce adequate results, selecting
proper anodes and cathodes is crucial. For example,
figure 5(C) shows that our optimized configuration
(that resembles a bipole) has a larger objective func-
tion in the deep DCs compared to a bipolar config-
uration, which is separated by one contact (similar
to the configuration shown in figure 6(B)). Hence,
we can argue that increased spacing between cath-
odes and anodes can result in higher objective func-
tions (lower activation thresholds) in deeper regions
of the DCs. Then, this argument can be used to
provide general guidelines for programming based
on the location of the ROIs (e.g. ROIs deeper within
the DCs require increased spacing between the act-
ive electrodes). However, trying to provide general
guidelines is prone to failure because patients’ needs,
their unique anatomy, or the surgical outcomes can-
not be generalized.

While it is true that our algorithm suggests a
bipolar stimulation configuration in simple scen-
arios, this result is expected because a bipolar con-
figuration was largely derived from first principles
using idealized canonical models. We believe that the
true utility of our optimization framework will be
achieved when it is implemented in a patient-specific
manner. For example, the electrodes might have
non-ideal placement relative to the spinal cord (e.g.
due to natural migration of electrodes over time).
Factors, such as interpatient variability in anatomy
and lead placement, do not affect the ability of our
optimization framework to suggest proper electrode
configurations for the desired targets. These factors
can be accounted for by performing simulations
with canonical models over a range of different
anatomical parameters (e.g. dorsal CSF thickness)

and/or lead placements (e.g. placement relative to
the spinal cord midline) and utilizing lookup tables
of optimized parameters for the situation that best
matches the conditions for the individual patient.
Furthermore, these sources of intrapatient variabil-
ity can be accounted for in patient-specific compu-
tational models [14, 34, 67, 68] in which we can
then apply our optimization framework to determ-
ine optimal patient-specific stimulation parameters.
It is also important to recognize that the application of
our optimization framework is not limited to chronic
pain management using SCS. SCS has recently been
shown to improve rehabilitation of patients after
spinal cord injury [69, 70]. Patient-specific modeling
has proven to be an important part of this application
[71] and it can benefit from optimization for better
clinical results.

Moreover, targeting multiple ROIs while avoid-
ing ROAs can hinder the ability of even an experi-
enced programmer to find proper stimulation config-
urations because simple configurations (e.g. bipole,
guarded cathode) may prove inadequate for such
scenarios. This common situation is where our
framework can provide a solution for these challenges
by formulating them as multi-objective optimization
problems. Our results in figures 7 and 8 demonstrate
the ability of our optimization framework to achieve
these goals.

In figure 7, we considered two axons (each near an
electrode array) as targets. One of the results sugges-
ted by our algorithm (configuration (iii)) resembles
a bipolar configuration. This configuration on the
Pareto fronts corresponds to a point on which tar-
geting the axon near the electrode array 1 is the
only goal. Hence, not surprisingly but correctly, our
algorithm suggested a bipolar configuration on the
electrode array near the target as a human program-
mer would have done. However, we can consider a
case in which we want to target both axons equally
(e.g. to relieve bilateral pain). A bipolar configuration
cannot achieve this goal, but a configuration sugges-
ted by our algorithm (configuration (iv)) is capable
of this task (compare figures 7(iii) and (iv)). Similarly,
we can consider a case in which we want to only target
one of the axons and avoid activating the other axon
altogether. Again, a bipolar configuration is incapable
of this task while our optimization framework can
provide a configuration (configuration (ii)) for this
task (compare figures 7(ii) and (iii)).

TargetingROIswhile avoidingROAs is a topic that
has not received as much attention in SCS as it has in
other applications, such as DBS [59]. However, some
recent studies [51, 72] have suggested that directly
targeting cells in the DH can create pain relief while
avoiding concomitant paresthesias associated with
the activation of large-diameter fibers in the DCs that
can be experienced as excessive or uncomfortable.
Hence, the DHs can be regarded as ROIs and the DCs
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as a ROA. We used our optimization framework to
investigate the trade-off between activation of theROI
and ROA (figure 8). For our model geometry, our
results suggest that direct activation of cells in the
DH is not possible before activation of cells in the
DCs. However, our optimization algorithm was able
to suggest a nontrivial configuration (configuration
(ii)) that leads to lower activation thresholds for cells
in theDHcompared to a configuration that resembles
a bipolar configuration (configuration (iv)). As intro-
duced in figure 1, this same multi-objective approach
could be implemented for a ROI for activating DC
fibers to provide pain relief with a ROA correspond-
ing to dorsal root fibers whose activation is associated
with unwanted side effects [5, 73].

With regards to clinical implementation of our
optimization framework, the novel configurations
obtained from our optimization framework require
selecting current fractions across multiple electrodes.
In practice, manual adjustment of the current levels
across individual electrodes would lead to long pro-
gramming sessions with current commercial sys-
tems. Therefore, our optimization framework would
ideally be integrated with a stimulation system to
allow a programmer to directly choose ROIs and
the current fractions would be applied automatic-
ally across the electrode arrays. Also, in the case
of multi-objective optimization, the programmer
would be presented with a Pareto front from which
they could choose specific points to try and the
current fractions corresponding to the individual
point on the Pareto front would be implemented
automatically.

Our optimization framework has some poten-
tial limitations that should be considered. First, our
framework is based on the principle of superposi-
tion. Hence, our optimization framework can only
be applied to current-controlled stimulation systems
and is not applicable to voltage-controlled stimu-
lators. However, most clinical neurostimulation sys-
tems utilize current-controlled stimulation. Second,
the input to our optimization framework are the FEM
solutions for the volume conductormodel, which can
be computationally expensive. However, this is a step
that is conducted once in advance and before the
optimization step. Therefore, it does not affect the
optimization process itself. Moreover, if it is neces-
sary to reduce the computational demands, the FEM
model can be reduced in complexity and/or replaced
by less accurate simplified approximations, such as
the model used in our illustrative example (figure 3).
Third, we have only focused on the spatial optim-
ization in this study and neglected temporal fea-
tures of neurostimulation. However, with fields being
optimized, a logical next step would be to optim-
ize the temporal features of the stimulation (e.g.
pulse width, pulse frequency). Finally, this manu-
script only describes our optimization methodology
and future research will be critical to confirm the

translatability of this approach for providing targeted
SCS in patients.

5. Conclusion

In an attempt to improve the clinical outcomes asso-
ciated with SCS to treat chronic pain, clinical neur-
ostimulation systems have advanced to include a
wide range of stimulation parameters, high electrode
counts, and systems that can fractionate stimulus
amplitudes across individual electrodes. These innov-
ations correspond to a dramatic increase in the num-
ber of possible stimulations settings that cannot be
explored within the context of standard clinical pro-
gramming procedures. Furthermore, evidence sug-
gests that emerging SCS paradigms may have distinct
sites of action and there is corresponding interest in
the ability to selectively target specific neural struc-
tures. To facilitate efficient exploration of the stimu-
lation parameter space, we described a novel optim-
ization framework for targeted stimulation. Our
approach has the advantage that it utilizes the speed of
analytic methods and the ability to find global optim-
ums for both single- and multi-objective optimiza-
tions. Furthermore, our optimization framework can
be implemented in a patient-specific approach to
account for sources of interpatient variability (e.g.
anatomy, lead placement) and expanded to additional
neuromodulation technologies (e.g. DBS). As clin-
ical neurostimulation systems continue to increase in
complexity, grow in popularity, and expand to new
indications, we believe that optimization frameworks
like ours will be a critical component to maintain the
tractability and efficacy of these systems.
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