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Abstract: Moderate red wine intake has been associated with lower cardiovascular mortality, due
in part to the intake of polyphenols and anthocyanins, whose content can vary from varietal and
year of harvest. This study assessed the vascular effects in response to a single intake of 2015 and
2018 Zweigelt red wines from Hokkaido, Japan. Healthy men were randomly assigned to consume
240 mL each of a red wine, or a sparkling white grape juice as a control in a randomized three-arm
cross-over design with a 7 day washout between arms. The augmentation index (AI; a measure of
arterial stiffness) and AI at 75 beats/min (AI75), reactive hyperemia index, systolic and diastolic
blood pressure (SBP and DBP, respectively), and platelet reactivity were assessed at baseline and two
and four hours after each beverage intake. Changes from the baseline were analyzed using a linear
mixed model. Significant treatment effects (p = 0.02) were observed, with AI 13% lower after the
intake of the 2015 or 2018 vintages compared to the control. Intake of the 2018 vintage reduced SBP
and DBP (−4.1 mmHg and −5.6 mmHg, respectively; p = 0.02) compared to the 2015 wine and the
control drink. The amount of hydroxytyrosol in the 2018 wine was almost twice the amount as in
the 2015 wine, which may help explain the variable blood pressure results. Future studies exploring
the vascular effects of the same red wine from different vintage years and different phenolic profiles
are warranted.

Keywords: red wine; vascular function; blood pressure; anthocyanins; polyphenols; arterial stiffness;
augmentation index; hydroxytyrosol

1. Introduction

Moderate intake of red wine has been associated with beneficial effects on cardiovas-
cular health [1,2]. The bioactivity of red wine is thought to be due in part to the intake
of polyphenols [3,4]. Anthocyanins, a group of polyphenols known for their beneficial
effects on cardiovascular health, strongly influence red wine color and hue [5–7]. Higher
anthocyanin intake has been associated with reduced arterial stiffness and blood pressure
in women aged 18–75 years [8]. However, major red wine anthocyanins, such as malvidin
glucoside (MG), can vary between the year of production, be higher in younger wines,
and is affected by vintage years [9–11]. The polyphenolic content of wine can also be
influenced by environmental factors such as temperature, humidity, light exposure, and
soil and growing conditions [12,13]. Similarly, yearly variations in yeast biodiversity may
contribute to differences in the polyphenolic profiles for different red wine vintages [14,15].
Changes in polyphenolic characteristics such as hue and color intensity have been noted
in the same wine produced in different vintage years [16–18]. Differences in anthocyanin
concentration and the color appearance were observed in the same cultivars planted in two
areas in China with contrasting geographies and climates [19].
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Given the above, the polyphenolic profile can vary substantially between red wines
produced from the same grape varietal in different years and location [20,21]. Whether
the variation in anthocyanin content, along with other polyphenols, can result in different
cardiovascular health outcomes is unknown. Therefore, this study explored the effects of
a single intake of the same red wine varietal produced in a similar geographic area, but
from different vintage years, on indices of vascular function, blood pressure, and platelet
aggregation in healthy adult men. A Zweigelt red wine grape varietal grown in Hokkaido,
Japan, was selected. In Hokkaido, vineyards are typically covered with heavy snow during
the winter (Figure 1), and grape production occurs during a short summer season with
fewer hours of daily sunlight compared to varietals from warmer climates and longer days
of summer sunlight that produce the majority of the world’s wine [22].
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2. Materials and Methods
2.1. Recruitment

Healthy men aged 50 to 70 years were recruited through flyers, newspapers, and
online resources at the University of California, Davis (UC Davis). Criteria for inclusion
were a body mass index (BMI) of 18.5–40 kg/m2, body weight ≥ 110 pounds (49.9 kg),
self-reported stable dose of prescription medication for the past six months (if taking any),
non-smoker, and regular consumer of alcoholic beverages (between two drinks/week to
two drinks/day). One standard drink of alcoholic beverage was defined as 355 mL (12 oz.)
of beer (5% alcohol), 237 mL (8 oz.) of malt liquor (7% alcohol), 148 mL (5 oz.) of wine
(12% alcohol), or 1.5 oz. of 80-proof distilled spirits or liquor (40+% alcohol). Exclusion
criteria were daily use of aspirin or non-steroidal anti-inflammatory drugs, dislike of wine,
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grapes, or alcohol, following a non-traditional diet (e.g., vegan or vegetarian), fruit con-
sumption ≥ 364 gm (2 cups)/day, vegetable intake ≥ 546 gm (3 cups)/day, consuming fatty
fish or coffee/tea ≥ three portions/week, or eating dark chocolate ≥ 85 gm (3 oz.)/day.
Self-reported restriction of physical activity or chronic/routine high-intensity exercise were
also exclusions, as were blood pressure ≥ 140/90 mm Hg, disorders that could affect
vascular function (e.g., diabetes mellitus, renal or liver diseases, and cardiovascular events
or stroke), or indications of substance or alcohol abuse. Volunteers were asked to refrain
from using multivitamin and mineral supplements other than a general formula that met
up to 100% of the United States recommended dietary allowance, and if applicable, were
required to discontinue the intake of supplements containing botanical ingredients or fish
oil for at least a month before study enrollment. Abnormal values from a comprehensive
metabolic panel (CMP) and complete blood count (CBC) were exclusions unless approved
by the study physician. The University of California Davis Medical Center’s Department
of Pathology and Laboratory Medicine performed the CMP and CBC analyses. The Institu-
tional Review Board of the University of California, Davis approved the study protocol,
with the study registered on ClinicalTrials.gov: NCT05138939.

2.2. Study Design and Procedures

Those eligible for enrollment were randomized into a three-arm, controlled cross-
over study. Twenty-four hours prior to the study day, participants were instructed to
refrain from soda, sports drinks, flavored water, and polyphenol-rich food, particularly
olives, berries, apples, beans, citrus, onions, nuts, herbs, coffee, tea, beer, wine, cocoa, and
chocolate products or beverages as these foods might confound the outcomes. Participants
fasted for at least 12 h, with the measurements of vascular function, blood pressure, and
blood sampling performed at baseline and two and four hours after beverage consumption.
After baseline measurements, the participants were provided in a single-blinded fashion
240 mL (8 oz.) of one of the two Zweigelt red wines from the 2015 or the 2018 vintages or a
sparkling white grape juice (Welch’s, Concord, MA, USA) as a control. The beverages were
provided along with a small snack consisting of low-moisture part-skim mozzarella string
cheese (Galbani-Dal 1882, USA; 160 kcals, 12 g fat, 14 g protein, and 0 g carbohydrate)
and 16 crackers (200 kcal; Carr’s table water crackers, UK; 4 g fat, 4 g protein, and 40 g
carbohydrate). Hokkaido Wine Co., Ltd. produced the wines from Zweigelt grapes (also
known as Rotburger [23]) grown in Hokkaido, Japan. The wine was dispensed using a
system that placed a probe through a cork in the neck of the wine bottle, and after each
pouring of wine, argon gas was injected into the headspace in order to preserve freshness
and chemical composition (Coravin, Bedford, MA, USA). The nutritional composition of the
sparkling white grape juice was 110 kcal containing 28 g of total sugar, with an additional
24 g (80 kcal) of granulated sugar added by the investigators in order to match the caloric
content of the red wines, which was approximately 190 kcal per serving [24].

2.3. Chemical Composition and Polyphenolic Profiles

The basic chemical characteristics of the wines were provided by the manufacturer.
Independent analyses of the polyphenolics (ETS Laboratories, St. Helena, CA, USA) for
the two red wines were conducted prior to the planned start of the intervention in 2019
and again at trial completion in 2022, which also included the sparkling white grape juice
control. In 2022, the total polyphenol content (TPC in mg gallic acid equivalents (mg
GAE)) of all three beverages was measured in triplicate according to the manufacturer’s
instructions (Zen-Bio, Durham, NC, USA). Briefly, the beverages were diluted in water at a
ratio of 1:10, then 10 µL of the diluted samples was incubated with a 10% Folin–Ciocalteu
reagent for two hours and absorbance was measured at 765 nm using a Synergy H1 plate
reader (BioTek, Winooski, VT, USA).

Tyrosol (Tyr) and hydroxytyrosol (HT) concentrations were measured from each of
the two Hokkaido red wines. Briefly, the wine was filtered through a 0.45 µM nylon filter
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and then analyzed in duplicate using a direct liquid chromatography method with a diode
array detector as previously described [25,26].

2.4. Assessment of Vascular Function

Prior to the vascular function measurement, participants rested in a seated position for
15 min, after which systolic blood pressure (SBP), diastolic blood pressure (DBP), and heart
rate were measured three times, five minutes apart, with a digital blood pressure device
(Welch Allyn, NY, USA). Data were calculated as the average of three readings.

Peripheral arterial tonometry (PAT; Endo-PAT2000; Itamar Medical, Israel) was used
to monitor changes in digital pulsatile arterial volume [27]. Participants rested in a supine
position for 10 min prior to a supine blood pressure measurement required for the system
settings. After baseline collection for six minutes, a five-minute occlusion was performed by
inflating a lower-arm blood pressure cuff 60 mmHg above the supine SBP. Reactive hyper-
emia is the phenomenon of reperfusion of blood to the ischemic area following pressure cuff
release [28,29]. The system software automatically calculated the reactive hyperemia index
(RHI) as the ratio of the average pulse wave amplitude (PWA) during a one-minute period
following 90 s of reactive hyperemia to the average PWA during a three-to-five-minute
baseline period, with the same ratio in the non-occluded arm serving as a control [30]. The
RHI measures peripheral microvascular function in the digital vasculature that reflects, in
part, nitric oxide-dependent vasodilation [31–33]. Relationships between the RHI response
and circulating nitrate and epoxyeicosatrienoic acid levels have been reported [34,35]. The
natural logarithmic transformation of the RHI ratio during data collection from 90 to 120 s
after the release of the occlusion was calculated along with the Framingham reactive hy-
peremia index (fRHI), which has been correlated with cardiovascular risk factors [36]. An
RHI value of less than 1.67 has been correlated with endothelial dysfunction and an index
higher than this number represents normal endothelial function [27].

The Augmentation Index (AI), a measure of peripheral arterial stiffness, was calculated
from the baseline PAT waveform as the difference between the first (P1) and second (P2)
peaks of the central arterial waveform (i.e., [P2 − P1]/P1 × 100%). The AI was also
standardized to a heart rate of 75 beats per minute (AI75). A lower AI value represents
greater elasticity in the arteries (i.e., less stiffness).

2.5. Platelet Aggregometry

Optical platelet aggregometry was performed in citrated blood using a two-channel
Chrono-Log 700 device (Havertown, PA, USA). Fifteen minutes after blood collection,
platelet-rich plasma (PRP) was separated from whole blood by centrifugation (200× g for
10 min at 25 ◦C). The upper 75% of the PRP layer was aliquoted into a separate tube, and
then platelet-poor plasma (PPP) was obtained by further centrifugation of the whole blood
tubes at 1500× g for 10 min at 25 ◦C. After resting the PRP for a minimum of 15 min, the
platelet aggregation testing commenced. Aliquots of 500 µL of PRP were incubated at
37 ◦C for a minimum of three minutes prior to stimulation with three agonists: collagen
at a concentration of either one or three µg/mL or 10 µM adenosine diphosphate (ADP).
The aggregation tests were performed in duplicate at a stirring speed of 1200 rpm and
showed intra-assay mean and standard error of 10 ± 2%. After 10 min of data collection, the
software generated values for area-under-the-curve (AUC), maximal aggregation (maxA),
and slope from the response of activated samples.

2.6. Twenty-Four-Hour Dietary Recall

Dietary intake data for 24-h recalls were collected and analyzed using the Automated
Self-Administered 24-h (ASA24) Dietary Assessment Tool, version (2020), developed by
the National Cancer Institute, Bethesda, MD, USA. A recall was taken during each study
visit, representing the days participants were asked to restrict polyphenol-rich foods, to
check for compliance. The other two dietary recalls were completed by the participants at
their convenience, which represented their usual intake.
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2.7. Statistical Analyses

A linear mixed model was used to assess changes from baseline in vascular outcomes,
blood pressure, and range-scaled platelet function using time and intervention groups as
the main effects and individual participants as the random effect (JMP, version 16; Cary, NC,
USA). Post hoc analyses were conducted using significant effects of time, treatment, or their
interactions with Tukey’s test. A one-way ANOVA assessed reported differences in food
intake using the intervention group as the main factor. Similarly, a one-way ANOVA was
used to assess differences in baseline values of each parameter among different interven-
tions. Data not normally distributed were adjusted using Johnson’s transformation prior to
analysis. Unless indicated otherwise, data are reported as mean ± standard deviation (SD).
The least-squares mean (LSM) of the observed values that showed significant differences
between intervention groups was used to illustrate the data in bar graphs.

3. Results
3.1. Chemical Composition and Polyphenolic Profiles

Table 1 presents the basic chemical characteristics of the two red wines. Both wines
had similar specific gravity, alcohol content, acidity, and pH, with the Zweigelt 2015 34%
lower in total sulfur dioxide (SO2), the sum of molecular, free, and bound SO2 (2015: 98 and
2018: 149 ppm) and 38% higher in sugar (2015: 5.6 and 2018: 3.5 g/L) than Zweigelt 2018.

Table 1. Basic characteristics of the Hokkaido 2015 and 2018 Zweigelt red wines.

Item Zweigelt 2015 Zweigelt 2018

Vineyard Tsurunuma Kitajima

Specific gravity 0.994 0.993

Alcohol (%) 12.34 12.54

Total acidity (g/L as tartaric acid) 5.23 5.73

pH 3.67 3.56

Total sulfur dioxide (SO2) (ppm) 98 149

Sugar (g/L) 5.6 3.5
Total SO2 is the sum of molecular, free, and bound SO2; ppm, part per million.

Table 2 presents the polyphenolic profiles from an initial analysis conducted in 2019
and a subsequent analysis conducted in 2022 following a 17-month clinical laboratory
closure due to the COVID-19 pandemic. While the 2018 Zweigelt wine was substan-
tially higher in total anthocyanin content in 2019, it declined 76% by 2022. A decrease in
monomeric anthocyanin content primarily influenced this observation, which was approx-
imately 64 mg in 2019 but had reduced to 8.4 mg in 2022. Even with these reductions,
the total and monomeric anthocyanin content for the 2018 wine was still 34 and 45%,
respectively, higher than the 2015 Zweigelt, with the later wine showing a decrease in
total anthocyanin and monomeric anthocyanin content by 49% and 71%, respectively. In
contrast, the TPC content of the 2015 Zweigelt was 16% greater in 2022 compared to the
2018 wine (674 vs. 583 mg GAE, respectively), with both wines having a substantially
higher TPC content compared to the sparkling white grape juice (104 mg GAE).

The amount of Tyr and HT in the 2015 and 2018 Zweigelt red wines is shown in Table 3.
The amount of HT was almost twice as large in the 2018 Zweigelt red wine compared to
the 2015 vintage, while the amount of Tyr was approximately 45% greater in the 2015 wine
compared to its 2018 counterpart.
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Table 2. Polyphenolic profile of a single serving of Hokkaido 2015 and 2018 Zweigelt red wine from
the analyses conducted in 2019 and 2022 (prior to and at completion of the intervention, respectively)
and white grape juice from the 2022 analysis.

Polyphenols
(mg/240 mL)

Zweigelt 2015 Zweigelt 2018 White Grape Juice

2019
Analysis

2022
Analysis

2019
Analysis

2022
Analysis 2022 Analysis

Gallic acid 9.12 8.64 4.80 5.52 0.17

Catechin 3.84 5.52 3.12 4.08 <0.05

Epicatechin 5.76 7.20 4.08 5.04 n.d.

Tannin 75.6 81.60 86.40 96.48 0.77

Caftaric acid 3.84 3.36 9.12 7.92 0.77

Caffeic acid 3.36 4.08 1.68 2.40 <0.05

Quercetin glycosides 2.64 2.64 2.64 1.68 <0.05

Quercetin 0.24 0.48 0.48 0.72 n.d.

Malvidin glucoside 4.80 0.72 31.92 2.64 n.d.

Polymeric anthocyanins 5.76 6.48 6.96 8.40 n.d.

Total anthocyanins 21.60 11.04 70.56 16.80 n.d.

Monomeric anthocyanins 15.84 4.56 63.60 8.40 n.d.

Resveratrol (cis + trans) (HPLC) 0.31 0.48 0.48 0.60 n.d.

Total polyphenol content
(mg GAE) 455.28 674.00 NA 582.88 104.07

n.d.: not detected; NA: not available; HPLC: high-performance liquid chromatography; GAE: gallic acid equivalent.

Table 3. Tyrosol and hydroxytyrosol concentrations in the 2015 and 2018 Zweigelt red wines.

Wine Sample Hydroxytyrosol (mg/L) Tyrosol (mg/L)

2015 Zweigelt
Sample 1 8.81 84.57

Sample 2 8.97 85.14

Average (Mean ± SD) 8.89 ± 0.11 85.86 ± 0.40

2018 Zweigelt
Sample 1 15.24 49.42

Sample 2 15.31 49.63

Average (Mean ± SD) 15.28 ± 0.05 49.53 ± 0.15

3.2. Demographics and Baseline Characteristics

Ten men completed the study, which spanned from September 2021 to June 2022
(Figure 2). Their baseline demographic, glucose, platelet count, and vascular function
characteristics are shown in Table 4. Their baseline dietary characteristics are shown
in Table S1. Eight participants self-reported their race as Caucasian or White, one as
African-American or Black with European ethnicity (French, Spanish, and Greece), and
one self-reported as Spanish-American or Latino. On average, the participants were
58.6 years of age, in the overweight range for BMI, with their CBC and CMP values
within the normal reference ranges. At baseline, participants’ glucose levels and platelet
counts were within the normal range of 98.60 ± 10.81 mg/dL and 234.05 ± 87.60 K/MM3,
respectively. On average, the participants were considered pre-hypertensive with a SBP
of 124.47 ± 2.70 mmHg, while DBP and heart rate (HR) were 82.20 ± 1.23 mmHg and
63.5 ± 2.68 bpm, respectively (mean ± SEM). The AI and AI75 values were 17.62 ± 6.46 (%
pulse pressure) and 7.70 ± 5.99 (% pulse pressure), respectively, with a normal RHI and
fRHI at 2.25 ± 0.10 and 0.78 ± 0.11 (mean ± SEM).
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Table 4. Baseline characteristics of participants.

Demographics Mean (SD), Range (min–max)

Age (years) 58.6 (6.10), (51–69)

Weight (kg) 87.5 (13.85), (71–114)

Height (cm) 178.32 (6.84), (167–189.5)

BMI (kg/m2) 27.46 (4.02), (22.7–34.0)

Waist circumference (cm) 100.45 (14.02), (86–129)

Selected CMP and CBC parameters Mean (SD), reference range

Glucose (mg/dL) 98.60 (10.81), (74–109)

Platelet count (K/MM3) 234.05 (87.60), (130–400)

Vascular function parameters Mean ± SEM

RHI 2.25 ± 0.10

fRHI 0.78 ± 0.11

AI (% pulse pressure) 17.62 ± 6.46

AI75 (% pulse pressure) 7.70 ± 5.99

SBP (mmHg) 124.47 ± 2.70

DBP (mmHg) 82.20 ± 1.23

HR (bpm) 63.5 ± 2.68
RHI, reactive hyperemia index; fRHI, Framingham reactive hyperemia index; AI, augmentation index; AI75,
augmentation index adjusted to 75 bpm; SBP, systolic blood pressure; DBP, diastolic blood pressure; HR, heart
rate; bpm, beats per minute; SEM, standard error of mean; CMP, comprehensive metabolic panel; CBC, complete
blood count.

3.3. Arterial Stiffness

The changes from baseline at two and four hours after beverage intake for vascular
outcomes, including the AI and AI75 values (measures of arterial stiffness), are shown in
Table 5. No significant interactive effects were observed. A significant effect for the red
wine (0.002) was observed, with the overall change in AI lower after the intake of the 2015
and 2018 vintages compared to the control values (−12.98 ± 3.20% and −13.34 ± 3.20%,
respectively, vs. control −5.38 ± 3.20%; p < 0.05; Figure 3a). Significant time effects included
a lower two-hour change in AI with the intake of the 2018 vintage (−18.27 ± 3.58%)
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compared to the control (−7.97 ± 2.67%; p < 0.05). Similarly, significant time (p = 0.01)
and intervention group (p = 0.04) effects for AI75 were noted, with intervention group
trends for lower AI75 with the intake of the Zweigelt 2015 (−10.92 ± 3.13; p = 0.09) and
2018 (−11.28 ± 3.13; p = 0.06) wines compared to the sparkling white grape juice control
(−5.41 ± 3.13; Figure 3b).
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Table 5. Changes in vascular outcomes from the baseline (T0) to two (T2) and four (T4) hours after
each beverage consumption.

Outcomes
(Change from

Baseline)

Intervention Group p-Value

Zweigelt 2015 Zweigelt 2018 White Grape Juice

Time TreatmentT2-T0 T4-T0 T2-T0 T4-T0 T2-T0 T4-T0

Mean ± SEM Mean ± SEM Mean ± SEM Mean ± SEM Mean ± SEM Mean ± SEM

AI −16.32 ± 1.64 −9.64 ± 3.61 −18.27 ± 3.58 † −8.40 ± 3.85 −7.97 ± 2.67 −2.79 ± 5.30 0.001 0.002

AI75 −13.20 ± 1.37 −8.64 ± 3.29 −15.27 ± 3.82 −7.28 ± 3.74 −7.35 ± 2.65 −3.47 ± 5.46 0.01 0.04

SBP 0.13 ± 3.37 6.77 ± 3.08 −5.13 ± 3.67 † −3.13 ± 3.21 3.37 ± 2.33 2.33 ± 1.35 0.28 0.02

DBP −3.63 ± 2.84 1.70 ± 1.83 −8.10 ± 1.60 −3.13 ± 1.75 −0.13 ± 1.12 −2.33 ± 1.39 0.07 0.02

HR 6.33 ± 2.06 1.50 ± 2.41 10.17 ± 1.67 3.57 ± 1.08 4.40 ± 1.64 1.57 ± 1.31 0.001 0.051

RHI −0.04 ± 0.13 0.74 ± 0.24 ‡ 0.09 ± 0.10 0.33 ± 0.21 0.07 ± 0.13 0.35 ± 0.14 0.003 0.62

fRHI −0.08 ± 0.07 0.27 ± 0.10 −0.03 ± 0.06 0.14 ± 0.15 0.00 ± 0.07 0.18 ± 0.08 0.003 0.88

MaxA 1 µg collagen * −0.45 ± 0.25 −0.10 ± 0.30 0.59 ± 0.33 −0.30 ± 0.34 0.35 ± 0.28 −0.10 ± 0.29 0.24 0.37

MaxA 3 µg collagen −0.05 ± 0.13 −0.21 ± 0.08 0.23 ± 0.10 −0.10 ± 0.08 0.13 ± 0.11 −0.02 ± 0.14 0.02 0.17

MaxA 10 µM ADP * 0.08 ± 0.35 −0.04 ± 0.29 −0.11 ± 0.26 −0.53 ± 0.28 0.48 ± 0.34 −0.22 ± 0.22 0.12 0.36

* Data transformed by Johnson’s transformation to achieve normal distribution prior to the linear mixed model
analysis. † Significantly different from control at the same time point, p < 0.05 upon post hoc analysis of treatment
effect. ‡ Significantly different compared to T2-T0 value in the same group, p < 0.05 upon post hoc analysis of
time effect. All data are reported as mean ± SEM; SEM, standard error of mean; RHI, reactive hyperemia index;
fRHI, Framingham reactive hyperemia index; AI, augmentation index; AI75, augmentation index adjusted to
75 bpm; SBP, systolic blood pressure; DBP, diastolic blood pressure; HR, heart rate; bpm, beats per minute; MaxA,
Maximal aggregation; ADP, adenosine diphosphate.

3.4. Reactive Hyperemia Index

No significant interactive or intervention group effects for RHI or fRHI were observed.
A significant change (p = 0.003) in RHI for time was noted with the intake of the Zweigelt
2015 wine over the entire four-hour period (0.74 ± 0.24) compared to the first two hours
(−0.04 ± 0.13), with similar trends observed for fRHI (Table 5).

3.5. Blood Pressure

Significant treatment effects were observed for both SBP and DBP, with the overall
changes lower following intake of the 2018 vintage compared to the 2015 vintage or the
control beverage (−4.1 SBP and −5.6 DBP mmHg; p = 0.02) (Figure 4a,b). No significant
interactive or time effects for SBP and DBP were noted. A strong time effect was observed
for the HR, with the two-hour change greater after consumption of the 2018 wine compared
to the other groups (p= 0.051; Figure 5). No other significant changes in HR were observed.

3.6. Platelet Aggregation

Significant time effects were observed for the overall changes in MaxA, slope, and
AUC following stimulation with the 3 µg/mL collagen agonist, with the two-hour change
in platelet reactivity significantly higher than the four-hour change after consumption of
each beverage (Supplementary Table S2). No significant interactive or intervention group
effects were noted for other platelet function parameters (Supplementary Table S3).

3.7. Dietary Intake

No significant differences were noted in reported dietary intake between the three
interventions. However, when comparing dietary intake among study visits, the consump-
tion of fats (saturated, total, and solid fats), iron, and folate was significantly reduced in the
second and third visits compared to the first study day (Supplementary Tables S4 and S5).
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Figure 4. Least-squares mean (LSM) plot of the intervention group effects for the overall change
from baseline for (a) systolic; and (b) diastolic blood pressure. A linear mixed model was used to
assess changes from baseline using time and intervention groups as the main effects and individual
participants as the random effect. Data are the LSM ± SEM; * significantly different at the p < 0.05
level after Tukey’s post hoc testing. SBP, systolic blood pressure; DBP, diastolic blood pressure.
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Figure 5. Least-squares mean plot of overall change from baseline of heart rate. A linear mixed model
was used to assess changes from baseline using time and intervention groups as the main effects and
individual participants as the random effect. Data are the LSM ± SEM; HR, heart rate; bpm, beats
per minute.

4. Discussion

The objective of this study was to assess the influence of the intake of two red wines
of the same varietal and region, but from different vintage years, on vascular and platelet
function. The main finding was that intake of either the 2015 or 2018 Zweigelt red wines,
along with a small snack providing 360 kcal (40% of calories from fat), lowered AI compared
to the intake of a sparkling white grape juice control. In addition, SBP and DBP were
significantly reduced in the postprandial period with the 2018 wine compared to the 2015
wine or the control beverage.

With frequent consumption of excessive calories, fats, and refined sugars in the modern
Western diet, a postprandial state that typically lasts 6–12 h can extend to more than
16 h [37,38]. The prolonged postprandial state can increase cardiovascular risk through
increased exposure to elevated plasma glucose, triglyceride-rich VLDLs, chylomicrons and
their remnants, which induce inflammation, oxidative stress, immune imbalances, and
endothelial dysfunction to promote atherosclerosis [37,39]. Atherosclerosis, along with
vascular aging, endothelial dysfunction, and structural remodeling, results in increased
arterial stiffness, which can be measured by pulse wave velocity (PWV) and AI [40,41].

In the postprandial state, vascular function responses, including PWV, AI, and BP, may
vary depending on food composition. Imbalanced macronutrients such as high calories,
saturated fat, and simple carbohydrates can induce unfavorable postprandial responses,
including inflammation, oxidative stress, and endothelial dysfunction [42,43]. In the current
study, a reduction in blood pressure and AI and a trend toward increased HR following
beverage and food intake are consistent with the aforementioned postprandial studies that
report a decrease in AI two [28] and four hours after a high fat meal [44] or a standardized
breakfast [45]. The significantly greater reduction in AI with the intake of the 2015 or 2018
red wines compared to sparkling white grape juice, all consumed with a snack, could be
due to the presence of additional bioactive compounds in the meal, including alcohol and
certain polyphenols such as anthocyanins that were not present in the control. Light-to-
moderate alcohol consumption (15 g for women and 30 g for men) has been associated
with lower arterial stiffness [40], while polyphenols in red wine, including anthocyanins,
flavan-3-ols, phenolic acids, ellagitannins, and resveratrol, have been reported to have
anti-inflammatory, anti-oxidative, and vasodilating properties [4,46]. The individual and
interactive effects of alcohol and polyphenols may help explain the more favorable vascular
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response in red wine compared to other beverages. In two separate studies, the intake
of red wine with a meal (a slice of white bread (30 g) and 30 g of cottage cheese (4% fat);
107 kcal, 6 g protein, 2 g fat, 15 g carbohydrate) significantly improved flow-mediated
dilation (FMD) and AI [47,48]. Interestingly, the increase in FMD response was greater
when red wine was combined with the intake of green olive oil [47]. A similar response
was not observed with white wine intake, suggesting that the phenolic content in the red
wine was a key to an improved vascular response [48]. The results from our study of an
improved vascular response with red wine in contrast to a sparkling low phenolic white
grape juice control are in agreement with these results.

The significant reduction in SBP and DBP following intake of the 2018 vintage com-
pared to the 2015 red wine or the white grape juice control suggests differences in bioactive
constituents between the two vintages. For the most part, the 2015 and 2018 red wines
were similar in alcohol content and polyphenolic profiles (Table 2). However, the 2018
red wine contained almost twice as much HT compared to the 2015 wine, which is of
interest since hydroxytyrosol has been shown to be better absorbed than Tyr in in vitro
models [49], as well as more bioavailable than Tyr in human studies [50]. Hydroxytyrosol
supplementation has been shown to reduce blood pressure in a diabetic rat model [51] and
counteract endothelin-1 expression, a hypertensive agent [52].

Apart from red wine, HT is a major olive oil phenolic [53]. A sub-analysis of the
Prevención por Dieta Mediterránea (PREDIMED) study showed a positive association
between participants’ urinary HT and alcohol consumption that was primarily from red
wine [54]. Additionally, metabolites of phenolic compounds found in wine, including
resveratrol [55,56] and HT [54] have been associated with alcohol intake. Hydroxyty-
rosol can also be produced endogenously as a metabolite of tyramine from dopamine
metabolism [57]. Researchers from the PREDIMED study subsequently conducted two
randomized, cross-over, controlled clinical trials to understand the disposition of HT by
comparing the 24 h pharmacokinetics from one study following a single intake of red
wine (250 mL; 0.35 mg HT) and another study with extra virgin olive oil (EVOO: 25 mL;
1.7 mg) [57]. The results showed that urinary HT levels after red wine intake were signifi-
cantly higher than those from EVOO [57], suggesting the unique properties in red wine that
might promote endogenous production of HT. In another study, urinary HT concentration
was assessed over a six-hour period after intake of a single serving (147 mL) of vodka, red
wine, dealcoholized red wine, or water in 28 healthy male adults (average age of 26.6 years).
Urinary levels were significantly greater for those consuming red wine, dealcoholized
red wine, or vodka than from the water group, suggesting that alcohol and/or phenolic
compounds aid in de novo HT generation [58]. Another sub-analysis from the PRED-
IMED study reported a significant association between the higher concentration of the HT
metabolite, homovanillyl alcohol, and the lower mortality rate and less CVD burden [59].
Since HT can be absorbed and metabolized within four to six hours, as observed in the
studies utilizing red wine [58] and olive oil [60], its presence in higher amounts in the 2018
Hokkaido red wine than in the 2015 vintage might help explain the discrepancies in blood
pressure observed in the present study.

In addition to HT, anthocyanins, and ellagitannins, the primary polyphenols in red
wines may also influence vascular outcomes. Since the current study assessed the effects
of red wines on vascular outcomes over four hours, the absorption and metabolism of
anthocyanins and ellagitannins would likely be minimal [61,62]. Future studies of longer
duration should also consider a more precise differentiation of compounds within these
two categories, since previous studies have reported favorable cardiovascular outcomes
depending on the major subtypes of anthocyanins [63,64] or different ellagitannin profiles
of red wine from different vintage years [65].

A strength of this study is the assessment of clinical responses from the same type
of wine, vinted from the same grape cultivar, grown in a similar geographic region, but
from two different years. This novel study design has not been employed previously, to
our knowledge. Numerous studies have reported significant differences in the content and
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type of polyphenols in red grapes or red wines produced under different environmental
stresses [15,20,66,67], and it is reasonable to hypothesize that these chemical differences may
produce differences in vascular outcomes. Another strength is the detailed polyphenolic
profiles of the red wines and sparkling white grape juice. Many previous studies provide
little or no compositional information about the red wines tested [68–72]. Future studies
should provide a detailed chemical profile of the test wine(s) to better enable interpretation
of results and make more accurate comparisons between studies.

The red wine in the current study was produced in Hokkaido, Japan, where grapevines
are covered by snow during the winter and experience a short, cool summer season [22].
A higher concentration of phenolic compounds has been reported in cultivars grown in
climates of long winters, low temperatures, and possible snowfall [73]. However, the total
polyphenolic content of the wines tested here is similar to the vast majority of studies on
vascular function that have assessed wines from warmer climates with longer growing
seasons [74]. Unfortunately, the influence of any particular polyphenol on vascular or other
physiologic responses cannot be evaluated from most other studies, which report little
detailed analysis of the test wines. Chemical profiling is also of interest when comparing
the same red wine across different vintage years. Such detail is important since results
from the present study demonstrate that the 2018 red wine, relatively rich in HT, produced
a significant reduction in blood pressure, while the 2015 vintage (with approximately
half of the HT concentration), did not. Overall, the cool climate Hokkaido Zweigelt red
wines produced vascular responses comparable to the existing body of research to date
regarding the vasculoprotective effects from wines produced in warm climate regions
across the world.

The data presented here have some limitations. The relatively small sample size is
noted, but for a pilot study using a novel study design, it is reasonable. Interpersonal vari-
ability is another limitation, since substantial variability in postprandial responses to food
consumption was also observed in the Personalised REsponses to DIetary Composition
Trial (PREDICT) study that included 1,002 adult participants. The results of the PREDICT
study showed highly variable postprandial responses in interleukin-6, glycoprotein acety-
lation, blood triglyceride, glucose, and insulin following a breakfast (86 g carbohydrate,
54 g fat, 16 g protein) and a lunch (71 g carbohydrate, 22 g fat, 10 g protein; consumed at
the four-hour point) over six hours [75,76]. Individual profiles, including gut microbiome
and genetic variants, greatly contributed to the variable postprandial outcomes [76]. Vari-
ations in personal genetic and gut microbiome profiles may influence personal ability to
absorb and metabolize polyphenols such as hydroytyrosol [59,77], anthocyanins [78–80],
and ellagitannins [81], and no gut microbiome profiles were assessed in the present study.
The participants in this study were healthy adult males aged 50–70 years, and females or
males of different age ranges, or those with elevated blood pressure or other vascular dys-
regulations were not assessed. The experimental design tested a single intake of red wine,
and the results may not be generalizable to a longer duration of consumption. Sparkling
white grape juice with added sugar was used as the control beverage in an attempt to
mirror caloric and simple sugar content of the red wines. Although the sparkling white
grape juice did not contain anthocyanins, other bioactive compounds such as gallic acid,
tannins, and caftaric acid were present, albeit in very small amounts, which may have
slightly impacted the outcome measures. Finally, inaccurate reporting of food intake is
common in nutrition research [82] and the dietary changes noted in the second and third
study visits may have influenced vascular function measures. However, the initial red
wine group assignment was randomized, and when the treatment order was assessed as a
factor that might influence the outcome measures, no evidence was found that the reported
changes in diet were significant (Supplementary Tables S4 and S5).

5. Conclusions

A single intake of Hokkaido Zweigelt red wine produced in 2015 or 2018 resulted
in a significant reduction in arterial stiffness in healthy adult males, while a sparkling
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white grape juice control beverage showed no effect. Consumption of the 2018 vintage
significantly lowered SBP and DBP compared to the 2015 vintage or the control. Future
studies with a larger sample size, detailing the red wine polyphenolic profiles including
hydroxytyrosol and comparing different vintage years, are warranted.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/nu15184054/s1. Table S1: Reported baseline dietary intake assessed
by a health habit questionnaire at the screening visit; Table S2: Changes in platelet aggregation
assessed by Light Transmission Aggregometry (LTA) using 1 and 3 ug collagen and 10 mM ADP
as the agonists from baseline to 2 h and from baseline to 4 h after beverage consumption; Table S3:
Changes in platelet aggregation for each intervention group; Table S4: Participants’ 24 h recall dietary
intake categorized by intervention; Table S5: Participants’ 24 h recall dietary intake categorized by
study visit.
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