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Abstract: Hazard detection is fundamental for a safe lunar landing. State-of-the-art autonomous
lunar hazard detection relies on 2D image-based and 3D Lidar systems. The lunar south pole is
challenging for vision-based methods. The low sun inclination and the terrain rich in topographic
features create large areas in shadow, hiding the terrain features. The proposed method utilizes a
vision transformer (ViT) model, which is a deep learning architecture based on the transformer blocks
used in natural language processing, to solve this problem. Our goal is to train the ViT model to
extract terrain features information from low-light RGB images. The results show good performances,
especially at high altitudes, beating the UNet, one of the most popular convolutional neural networks,
in every scenario.
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1. Introduction

As interest in returning to the Moon grows, the challenge of safely landing on the
lunar surface becomes increasingly essential. NASA’s ALHAT (Autonomous Precision
Landing and Hazard Detection and Avoidance Technology) [1–3] program is developing
new technologies for lunar landing guidance, navigation, and control to support both
manned and unmanned missions. The Apollo 11 mission highlighted the difficulty of the
landing task and the potential risks, as testified by the fact that Neil Armstrong had to
navigate the spacecraft to avoid a dangerous crater manually. To address these challenges,
NASA’s Vision for Space Exploration program emphasizes the need for increased autonomy
during landing maneuvers, particularly in hazard detection and avoidance [4]. These
functions are already being performed autonomously, as demonstrated by the Chinese
Chang’e 3 mission.

The Chang’e 3 was the first robotic spacecraft that adopted autonomous hazard
detection and avoidance technology. It represents the state of the art regarding autonomous
lunar landings as it has achieved the highest landing precision. The first Chang’e 3 hazard
detection design included only the visual-based hazard detector, but it failed to pass
validation tests. The final state of the system had a combination of two-dimensional
(2-D) optical gray-image-based coarse hazard avoidance and three-dimensional (3-D) laser-
elevation-image-based [5,6]. The vision-based hazard detection was used to perform a
coarse hazard detection from below 2 km to around 100 m. Coarse avoidance aimed to
exclude hazardous large-scale obstacles (craters and boulders larger than 1 m) and to
provide potential safe landing regions for the following precise avoidance. At around
100 m, the lander entered a hovering phase, during which it scanned the surrounding area
with a LiDAR (light detection and ranging). Next, the onboard guidance-navigation and
control (GNC) system detected craters larger than 20 cm and slopes steeper than 8 deg
(10 m baseline) and determined the nearest safe landing site. The following Chang’e 4 and
5 landers used a similar design to Chang’e 3 [7,8], confirming the robustness of the design.
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To the authors’ knowledge, machine learning-based hazard detection has yet to be
exploited for real planetary landing missions. Hazard detection has typically been carried
out using more traditional methods. Among these methods, there are the Canny [9,10]
and Sobel [11] algorithms, which detect the edges in an image, and the various corner
detection algorithms [12,13], which can provide good repeatability along with localiza-
tion [14]. However, these methods may not meet the accuracy and computational efficiency
requirements for real-time use on a spacecraft hazard detection system. Many machine
learning models have been studied to address these challenges as they can provide high
accuracy with relatively low computational time. For image-based hazard detection in
particular, some machine learning classifiers, such as perceptrons [15], have been explored.
Still, these approaches generally require the manual input of relevant features of the surface.
In contrast, the proposed approach aims to automate feature extraction by using deep
learning techniques such as semantic segmentation to classify safe and unsafe areas of the
lunar surface. In the past, the authors and other research groups explored the capabilities
of the UNet [16] architecture applied to the lunar landing hazard detection problem [17–19].
Based on a deep convolutional encoder/decoder (DCE) structure, this architecture is known
for its versatility and high accuracy in various applications [20–22].

In recent years, transformer architecture has been proven to be a breakthrough in the
natural language processing (NLP) field [23]. Based on that architecture, the vision trans-
former (ViT) encoder is born [24], achieving state-of-the-art results on various computer
vision tasks, such as image classification and object detection. At the same time, DCEs are
typically used for low-level vision tasks, such as image processing. The key advantages
of ViT architecture are its ability to handle high-resolution images, variable-size inputs,
and better generalization, maintaining a global receptive field throughout the encoder.
The authors tested this architecture in a monocular depth-estimation problem with good
results [25].

This paper presents an image-based hazard detection algorithm exploiting vision trans-
former for spacecraft 6-DOF models, as well as considering different lighting conditions. We
modified the architecture explored in [26] for a classification task. First, the encoder is de-
signed according to the architecture proposed and pre-trained on the ImageNet dataset. Sub-
sequently, we fine-tune the encoder on a custom lunar landing hazard detection dataset. The
dataset (https://data.cyverse.org/dav-anon/iplant/home/ghila/Dataset_Hazard.tar.gz,
accessed on 20 July 2023) used to train and test the network is created using the 3D model
software, Blender 3.2 (Blender is open-source software for modeling and physically based
rendering), and it considers a 6-DOF model of the spacecraft, which poses additional diffi-
culties in autonomous image-based hazard detection due to different lighting conditions
and the observed shapes of the craters.

The manuscript is organized as follows. First, the architecture of ViT is described
together with the simulation environment and the dataset creation. Afterward, some indices
are introduced to test the model’s performances. Finally, concluding remarks are given.

2. Method

The architecture and dataset creation are described in this section. In Figure 1, the
workflow diagram is presented.

2.1. Architecture

The goal of this section is to introduce ViT architecture. As previously mentioned,
one of the transformer encoder’s main advantages is maintaining a global receptive field
with high feature resolution throughout the encoder without loss of information. On the
other hand, in a typical convolutional neural network, increasing the receptive field in the
deepest layers of the encoder comes at the cost of the resolution of the image and thus a
loss of detail. The vision transformer layers were first introduced by Dosovitskiy et al. [24]
as a method based on the original transformer of Vaswani et al. [23] for image classification,
Figure 2. Here, we adopted the architecture created by Belkar et al. (https://github.com/

https://data.cyverse.org/dav-anon/iplant/home/ghila/Dataset_Hazard.tar.gz
https://github.com/antocad/FocusOnDepth
https://github.com/antocad/FocusOnDepth
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antocad/FocusOnDepth, accessed on 20 July 2023), which is more customizable and easier
to understand.

Figure 1. Workflow diagram for the dataset creation and network training and testing. The optical
images are simulated starting from a digital terrain model (DTM) of the south pole.

Figure 2. The network architecture of ViT [27].

https://github.com/antocad/FocusOnDepth
https://github.com/antocad/FocusOnDepth
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Before being input into the transformer encoder, the image X ∈ Rh×w×c is subdivided
into non-overlapping patches Xp ∈ RN×(p2·c) called tokens. h and w are the spatial image
resolution, c is the number of channels, (p, p) represents the patch size, and N = hw/p2 .
Since the transformer uses constant latent vector size and is position invariant, the tokens
are linearly embedded into a feature space D to identify the position and class of each
token. This allows the model to weigh each patch’s attention with respect to its position.

z0 =
[
xclass; x1

pE; x2
pE; ...; xN

p E
]
+ Epos where, E ∈ R(p2·c)×D, Epos ∈ R(N+1)×D (1)

Once embedded, the patches are passed into the transformer encoder, which returns a
value for each class token. As shown in Figure 2, the embedded patches become normalized
and are fed into the multi-head attention block. Before explaining how this block works,
we need to understand the self-attention mechanism [28].

The vectors derived from different inputs are packed in three matrices: queries Q ,
keys K , and values V . Each query is compared with the keys to obtain scores/weights for
the values. Each score/weight is, in short, the relevance between the query and each key.
One can reweight the values with the scores/weights and complete a summation of the
reweighted values. The attention function can be broken down into the following steps:

1 Compute scores S = Q ·KT , which measures the degree of attention of the surround-
ing image patches.

2 Normalize the scores for the stability of the gradient Sn = S/
√

D
3 Translate the scores into a probability with the softmax function P = so f tmax(Sn)
4 Compute weighted value matrix Z = P ·V

The function can be expressed as follows:

Attention(Q, K, V) = Softmax
(

Q ·KT
√

D

)
·V (2)

Multihead self-attention (MHSA) is an extension of self-attention to boost its perfor-
mance, where we run k self-attention operations in parallel.

MultiHead(Q′, K′, V′) = Concat(head1, head2, ..., headh)W0 W0 ∈ RD×D (3)

where, headi = Attention(Qi, Ki, Vi) (4)

Q′, K′, and V′ are the concatenation of Qm
i , Km

i , Vm
i , where m is the number of parallel

MHSA layers. At last, W0 is the projection weight. Following the design of the original
transformer [23], after the self-attention layer, a feed-forward network (FFN) is applied
to introduce non-linearities with activation functions. It is essential to model complex
relationships between the elements.

The encoder adopted is the ViT-Base [24] that has been pre-trained on ImageNet [29].
Most importantly, for MDE applications, the transformer encoder does not use down-
sampling operations, which preserve all the image details. Into the encoder, multiple
transformers layers are applied on the cascade. Once the encoder has processed the tokens,
they must be reassembled to complete the dense prediction.

As shown in Figure 3, the encoder has representation extractions. These representa-
tions are combined in the reassemble block, which transforms such representations into a
higher space that can be used in the fusion block. Each reassemble block is composed of
3 sub-blocks:

• Read block: this reads the input to be mapped into a representation size, by concate-
nating the readout token. The readout token is generally responsible for aggregating
information from other tokens [30]. However, in the case of vision transformers, their
performance is limited.

R(N+1)×D → R(N)×D (5)
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• Concatenate block: in this block, the representations are combined. The step consists
of concatenating each representation following the order of the patches. This yields an
image-like representation of this feature map.

R(N)×D → R
h
p×

w
p ×c (6)

• Resample block: This block consists of applying a 1 × 1 convolution to project the
input image-like representation into a space D̂ of dimension 256. This convolutional
block is followed by another 3 × 3 convolution to implement spatial downsampling
and upsampling operations.

R
h
p×

w
p ×c → R

h
s×

w
s ×D̂ (7)

where s is the chosen scale size of the representation.

The fusion block takes the representations from the reassemble and the previous fusion
block to sum them. When they are summed, we apply two successive convolutional units
and upsample the predicted representations. A more detailed description of the decoder
can be found in [26].

Figure 3. Vision transformer network architecture. This picture is a modified version of the architec-
ture overview presented in [26].

2.2. Dataset

The dataset comprises 125,000 images of the lunar south pole, specifically in an area of
90× 90 km around the southern point. The images have been created using open-source
3D modeling software called Blender. Within Blender, we load a digital terrain model
(DTM) of the area of interest provided by NASA (https://pgda.gsfc.nasa.gov/products/81,
10 October 2022) [31].

The model has been reduced in size to accommodate the memory specifics of our
machine. To simulate the terrain, we create a plane of the same size as the DTM. Then,
thanks to Blender’s function “displacement map”, the terrain features are made. Once we
assign a texture of the color of the regolith as a material and a light source, Blender uses
a bidirectional scattering distribution function (BSDF) model to compute how each light
ray interacts with the terrain and the surrounding objects, Figure 4. This allows Blender
to render photo-realistic images and recreate some photometric functions. The scene’s
illumination is provided by a “sun lamp” with an inclination of 1.5 deg, with the terrain
rotated randomly around the azimuth axis [32]. It is worth noticing that our model does not
consider the Moon curvature, i.e., the terrain elevation of the DTM is with respect to a flat
plane. Once the scene has been set up, we create a list of positions and inclinations for the
camera. Specifically, the position components are taken in a plane grid of 10× 10 km and
from a maximum altitude of 10 km to a minimum of 500 m above the terrain. The camera’s

https://pgda.gsfc.nasa.gov/products/81
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inclination is set up randomly up to a maximum value that depends on the respective
position altitude. This has been done to prevent the camera’s frame from seeing the border
of the DTM. Up to 4 km, the inclination to the nadir is up to a maximum of 45 deg. From 4
to 9 km, the maximum value is 30 deg, and above 9 km, the maximum value is 20 deg. At
each position, an image is rendered from the camera frame. No noise effects [33] have been
considered during the dataset created for this work.

Figure 4. Image of the surface 3D model.

Since we are doing supervised training, we also need the corresponding ground truth
associated with each image. To facilitate the process, Blender allows one to superimpose an
image texture to the terrain. Therefore, we render the respective ground truth in addition to
the image, modifying the illumination conditions to avoid unwanted shadows. The ground
truth texture image is created by combining the requirements of maximum terrain slope
and roughness for a safe landing site. The terrain slope is computed pixel-wise with the
local gradient of the DTM, while the local roughness has been computed with a standard
deviation filter. In the ground truth, a pixel is considered safe if the slope of that pixel is less
than 8 deg and the roughness is less than 10% . Figure 5 shows a few examples of rendered
images with the respective labels. For the labels, the pixels in “black” are the hazardous
pixels, and the ones in “white” are safe.

The images are rendered with a resolution of 384× 384 in RGB with a camera with a
focal length of 50 mm. The dataset has been augmented using random rotations between
−10 and +10 degrees, random image crops with a minimum resolution of 256× 256 , and
by flipping the images.

Then, 60% of the dataset is randomly selected for the training, 20% is selected for the
validation, and the last 20% is used for testing.

It is worth mentioning that the camera model in Blender works differently from a real
CMOS sensor. This gap can be mitigated, as shown in [34]. However, this method requires
real measurements or very accurate lab data to create a realistic photometric model [35],
which the authors do not have access to at this time. This reason, combined with the lack
of noise in the images, does not allow the authors to make any claim on how the dataset
compares with real data.
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Figure 5. Samples of the dataset. In the first row, the input images are shown; in the second, the labels.

3. Parameters

The training has been performed using the ADAM optimizer with a learning rate
set to be 1 × 10−5 applied to the cross-entropy loss function. We used a batch size of 5
and the ViT-base backbone. The encoder weights are initialized on the ImageNet trained
checkpoint. Then, the decoder is trained from scratch. The model has been trained for
100 Epochs. The parameters selected are the ones that gave the best validation loss and
overall loss behavior on multiple training runs with a reduced number of epochs.

4. Metrics

The following methods and terminology are employed to evaluate the test data:

• TP = true positive, data points predicted as hazardous that are hazardous.
• TN = true negative, data points predicted as safe that are safe.
• FP = false positive, data points predicted as hazardous that are safe.
• FN = false negative, data points predicted as safe that are hazardous.

The metrics adopted for the proposed semantic segmentation experiments are preci-
sion vs. recall and the intersection over union (IoU), which are described next.

4.1. Precision vs. Recall

The precision vs. recall is more suitable than the global accuracy metrics for semantic
segmentation because the latter will yield misleading results if the data set is unbalanced.
In our case, the hazardous terrain must be correctly classified because any hazard can lead
to mission failure. Therefore, we need a metric that takes into account the FN .

The recall refers to the percentage of total relevant results correctly classified by the
algorithm, and it is computed as:

Recall =
TP

TP + FN
(8)
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Conversely, precision refers to the percentage of the relevant results:

Precision =
TP

TP + FP
(9)

As we discussed earlier, the FN are extremely important because they can lead to
mission failure. Consequently, high recall is desirable. Nevertheless, one should avoid
low precisions to avoid situations where the algorithm does not clearly identify any safe
landing site.

4.2. Intersection over Union

The intersection over union score, also named the Jaccard index, is often used to
compare multi-class semantic segmentation methods. It is defined as follows:

IoU =
TP

TP + FP + FN
(10)

Compared to precision and recall, the IoU is a stricter metric because it considers TP,
FP, and FN all together. The latter means that the IoU score results in lower scores since
every misclassified pixel considerably impacts the overall score. We compute the IoU score
for each class separately and compute the mean of all class scores afterward.

5. Results

After training, the vision transformer model is evaluated on the test set. The test set is
20% of randomly selected pictures in the training set, for a total of 25,000 images spanning
from a minimum height of 500 m to a maximum of 10 km. The model performance is
also been compared with a selected UNet’s architecture defined in Table 1. Generally, we
observed good performance from the UNet model even with small datasets [17]. The UNet
has been trained on the same dataset of the ViT with the same data augmentation. We
employed the same cross-entropy loss function using the ADAM optimizer with a learning
rate of 1 × 10−5, a batch size of 20, and 100 epochs. However, we saved the model weights
only when the validation loss decreased to the previous epoch. The validation minimum
was at the 35th epoch, meaning the model was overfitting in subsequent iterations.

Both models are trained with the GPU CUDA system to accelerate the processes. The
code has been written in Python 3.9, exploiting the machine learning tools provided by the
Pytorch package.

Figure 6 shows the results of both models on the test set. The values in these plots
are the average values of pictures at a specific altitude. Apparently, both models perform
better at higher altitudes. This may happen because the images taken at higher altitudes
have more chance to show illuminated areas, thus making relevant terrain features visible.
The standard deviation is the transparent area on the right plot around each line. Also,
in this case, we notice a smaller standard deviation at higher altitudes. The ViT model
outperforms the UNet for both IoU and precision metrics. However, the recall values for
both models are very similar, thus stressing the importance of employing both precision
and recall as evaluation metrics. Here, we conclude that the UNet model classification is
biased toward hazards.

The relationship between model performance and the altitude of the image can be
additionally established by qualitatively analyzing the test results. In some images, the
camera does not capture any light (dark crater spots), making the model incorrectly classify
the whole image as hazardous. In Figure 7, some examples of the test set classified by the
ViT model are shown.

Including these completely black images makes the test set closer to a real-life scenario.
However, obtaining a reliable output from input without information is virtually impossible.
Consequently, in Figure 8 we show the ViT performance on a “cleaned” test set to evaluate
the model performance when black images are absent. More specifically, 4891 images out
of the 25,000 of the test set have been discarded. Both models’ performance mainly benefits
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by filtering out the images with no information at lower altitudes. We also notice that the
standard deviation on ViT’s IoU value is smaller, thus indicating higher robustness.

Table 1. UNet architecture.

Blocks Channels

Double Conv. 3→ 64
Down1 64→ 128
Down2 128→ 256
Down3 256→ 512
Down4 512→ 1024

Up1 1024→ 512
Up2 512→ 256
Up3 256→ 128
Up4 128→ 64

Classification Head 64→ 2

Blocks Layers

Double Conv.

Conv2D
BatchNorm2D

ReLU
Conv2D

BatchNorm2D
ReLU

Down MaxPool2D
Double Conv.

Up Bilinear Up-Sampling
Double Conv.

Classification Head Conv2D

Figure 6. IoU plot on the test set. The transparent area in the IoU plot represents the
standard deviation.
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Figure 7. In the sample test dataset, the input images are shown in the first row; in the second, the
ground truth; and in the third row, the Vision Transformer model’s predictions. The “white” pixels
are labeled as safe, while the “black” ones are labeled as hazardous.
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Figure 8. IoU plot on the test set “cleaned”. The transparent area in the IoU plot represents the
standard deviation.

Figure 9 shows the distribution of the test set images with respect to the altitude
and the distribution of the IoU score. On the left plot, one can see the distribution of
the IoU score of the ViT as compared to the UNet on the test set. The test images are
normally distributed in the “uncleaned” dataset. Conversely, on the right plot, we notice
a reduction in the number of images at lower altitudes in the “cleaned” dataset. What
concerns the distribution of the IoU score is a reduction in the number of lower scores,
which are associated with images with no information. On the right plot, the distribution
peak for the IoU value is around 80% for an altitude that spans between around 5000 and
9000 m.

0 2,000 4,000 6,000 8,000 10,000
Altitude [m]

0.0

0.2

0.4

0.6

0.8

1.0

Io
U

model
ViT
UNet

0 2,000 4,000 6,000 8,000 10,000
Altitude [m]

0.0

0.2

0.4

0.6

0.8

1.0

Io
U

data
ViT uncleaned
ViT cleaned

Figure 9. On the left, the IoU distribution for the ViT and UNet models. On the right, the IoU
distribution for the ViT model on the “cleaned” and “uncleaned” datasets.
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Both models are not optimized for real-world deployment. However, it is interesting
to see how the two models compare on computational speed. The mean time for one
iteration (one image) in the ViT model is 0.346 s, with a maximum time of 0.500 s and a
minimum of 0.318 s. The UNet shows a faster computational time with a mean time of
0.012 s, a maximum time of 0.054, and a minimum of 0.006. Both models have been trained
and tested on a machine with the following specifics: dual CPU Xeno E5-2680 v4, 256 Gb of
RAM, and GPU Nvidia RTX3090.

6. Conclusions

In this work, we designed and evaluated the performance of a vision transformer
architecture for hazard detection during the Spacecraft’s descent toward the lunar surface
in the challenging case of low illumination conditions. Vision transformers are a new
architecture for image encoders, where the image is split into fixed-size patches. Each of
them is then linearly embedded, position embeddings are added, and the resulting sequence
of vectors is fed to a standard transformer encoder. The ViT model represents an input
RGB image as a series of image patches and directly predicts class labels for the image. The
dataset comprises images of the lunar south pole surface with the corresponding segmented
labels “hazardous” or “safe” depending on the pixel’s local slope and roughness values.
The images have been created using the lunar south pole DTM in the modeling/rendering
software Blender.

The ViT model performs well in recognizing hazards at altitudes ranging from 5000
to 9000 m, even in low-light conditions. The authors also found that the ViT model
outperforms a classic UNet model. Compared to a classical convolutional network, the ViT
encoder does not downsample the input image. Therefore, there is no loss of information to
learn the terrain features maintaining the global receptive field throughout the training. ViT
performance is at its best between 5000 and 9000 m, and the metrics values degrade as the
camera gets closer to the surface. It is important to note that images without information
poison the metrics since the camera sensor did not gather enough light. Nevertheless, the
inclusion of these images is a more realistic scenario.

It is worth noticing that no noise has been added to the images. The ViT network has
more learning parameters than the UNet, specifically 105 million vs. 17 million of the UNet,
which influences both training and deployment computational speed.

Low-light computer vision with a passive sensor is a challenging problem. This model
cannot substitute an active sensor like LiDAR, independent of the illumination conditions.
Nevertheless, the model is powerful at very high altitudes and is easy to implement as a
backup or aid system to the more complex sensors.

The authors plan for the future is to refine the dataset by adding environmental and
camera noises and adopt a smaller and less computationally intensive ViT model on an
Nvidia Jetson Nano for a test with a real camera and a lunar mocap.
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Abbreviations
The following abbreviations are used in this manuscript:

Lidar Light detection and ranging
ALHAT Autonomous precision landing and hazard detection and avoidance technology
GNC Guidance-navigation and control
DCE Deep convolutional encode
NLP Natural language processing
ViT Vision transformer
DOF Degrees of freedom
MHSA Multihead self-attention
FFN Feed-forward network
BSDF Bidirectional scattering distribution function
DTM Digital terrain model
TP True positive
TN True negative
FP False positive
FN False negative
IoU Intersection over union
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