
Citation: Gada, S.; Fekik, A.; Mahdal,

M.; Vaidyanathan, S.; Maidi, A.;

Bouhedda, A. Improving Power

Quality in Grid-Connected

Photovoltaic Systems: A

Comparative Analysis of Model

Predictive Control in Three-Level and

Two-Level Inverters. Sensors 2023, 23,

7901. https://doi.org/10.3390/

s23187901

Academic Editor: Fabio Leccese

Received: 11 August 2023

Revised: 11 September 2023

Accepted: 12 September 2023

Published: 15 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Improving Power Quality in Grid-Connected Photovoltaic
Systems: A Comparative Analysis of Model Predictive Control
in Three-Level and Two-Level Inverters
Saliha Gada 1, Arezki Fekik 2 , Miroslav Mahdal 3 , Sundarapandian Vaidyanathan 4,* , Ahmed Maidi 1

and Ali Bouhedda 2

1 Laboratoire de Conception et Conduite des Systèmes de Production, Faculté de Génie Électrique et
d’Informatique, Université Mouloud Mammeri, Tizi-Ouzou 15000, Algeria; saliha.gada@fgei.ummto.dz (S.G.);
ahmed.maidi@ummto.dz (A.M.)

2 Department of Electrical Engineering, University Akli Mohand Oulhadj-Bouria, Rue Drissi Yahia Bouira,
Bouira 10000, Algeria; a.fekik@univ-bouira.dz (A.F.); a.bouhedda@univ-bouira.dz (A.B.)

3 Department of Control Systems and Instrumentation, Faculty of Mechanical Engineering, VSB-Technical
University of Ostrava, 17. Listopadu 2172/15, 70800 Ostrava, Czech Republic; miroslav.mahdal@vsb.cz

4 Centre for Control Systems, Vel Tech University, 400 Feet Outer Ring Road, Vel Nagar, Avadi,
Chennai 600062, Tamil Nadu, India

* Correspondence: sundar@veltech.edu.in

Abstract: The Single-Stage Grid-Connected Solar Photovoltaic (SSGC-SPV) topology has recently
gained significant attention, as it offers promising advantages in terms of reducing overall losses
and installation costs. We provide a comprehensive overview of the system components, which
include the photovoltaic generator, the inverter, the Incremental Conductance Maximum Power
Point Tracking (IC-MPPT) algorithm, and the PI regulator for DC bus voltage control. Moreover,
this study presents detailed system configurations and control schemes for two types of inverters:
2L−3PVSI and 3L−3PNPC. In order to perform a comparative study between the two structures, we
subjected them to the same irradiation profile using the same grid configuration. The Photovoltaic
Array (PVA) irradiance is increased instantaneously, in 0.2 s, from 400 W/m2 to 800 W/m2, is kept at
800 W/m2 for 0.2 s, is then gradually decreased from 800 W/m2 to 200 W/m2 in 0.2 s, is then kept at
200 W/m2 for 0.2 s, and is then finally increased to 1000 W/m2 for 0.2 s. We explain the operational
principles of these inverters and describe the various switching states involved in generating output
voltages. To achieve effective control, we adopt the Finite Set–Model Predictive Control (FS-MPC)
algorithm, due to the benefits of excellent dynamic responsiveness and precise current tracking
abilities. This algorithm aims to minimise the cost function, while taking into account the dynamic
behaviour of both the PV system and the inverter, including any associated delays. To evaluate
the performance of the FS-MPC controller, we compare its application in the three-level inverter
configuration with the two-level inverter setup. The DC bus voltage is maintained at 615 V using the
PI controller. The objective is to achieve a Total Harmonic Distortion (THD) below 5%, with reference
to the IEEE standards. The 2L−3PVSI inverter is above the threshold at an irradiance of 200 W/m2.
The 3L−3PNPC inverter offers a great THD percentage, meaning improved quality of the power
returned to the grid.

Keywords: 2L−3PVSI inverter; 3L−3PNPC inverter; cost function; finite set model predictive control;
incremental conductance; maximum power point tracking; photovoltaic systems

1. Introduction

Competing and surviving in today’s challenging world requires balancing economic
development with environmental conservation. Renewable energy sources (RESs) play
a crucial role in achieving this balance. People nowadays are increasingly interested in
utilising the vast potential of various RESs, such as solar and wind energy. The development
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of renewable energy generation has brought about a significant change in the energy
sector. At present, renewable energy sources (RESs) meet approximately 17% of the global
energy demand, and this figure is projected to rise in order to mitigate the adverse effects
associated with conventional fossil fuel-based energy sources [1]. Traditional energy
sources, such as petroleum and natural gas, are being depleted rapidly, leading to scarcity.
As a result, there has been an increasing trend toward the use of non-traditional energy
sources. Conventional energy sources have been depleted to a great extent due to their
continued use, which has also contributed significantly to pollution and global warming.
Therefore, scientists are emphasising the use of RESs. Non-traditional renewable energy
sources are energy sources that are naturally replenished and do not run out [2].

In the past ten years, there has been a notable surge in the adoption of distributed
energy resources, including solar photovoltaic systems (SPVSs) and energy storage systems
(ESSs), in electrical power grids. Integrating these distributed energy resources into the
power grid has brought several benefits, such as support during heavy loads and improved
power quality. For example, utility-scale solar inverters have the ability to inject reactive
power into the system to enhance the voltage profile, while ESSs can maintain the grid’s
voltage and frequency during faults, allowing microgrids to continue providing power to
loads [3,4]. Of all the solar technologies available, SPVSs are considered a promising option.
Such systems can be managed either through a storage system or by being connected
to the grid [5,6]. SPVSs are one of the most rapidly growing RESs. Multilevel inverters
have gained interest for use in grid-interactive SPVSs because of their widespread use and
strict grid codes [7]. For grid-tied SPVSs, various multilevel inverter topologies have been
presented [7,8]. These inverters’ main goals are to feed the grid with as much active power
as possible that has been extracted from the PVA. For the inverter to function properly,
the specific goals of the various topologies of multilevel inverters (challenges arise in
achieving DC-link voltage balancing in various topologies, such as neutral-point-clamped
(NPC), cascaded H-bridge, and flying capacitor configurations) are also crucial [9]. Various
traditional control methods, along with modulation techniques, have been discussed in the
literature. However, controlling multiple objectives with classical controllers can be quite
complicated [10].

Recently, Finite Set–Model Predictive Control (FS-MPC) has become widely popular
in the field of power converter control, owing to its numerous benefits. It offers rapid
dynamic response, stability, and precise control during steady-state operation. Moreover,
FS-MPC allows for the integration of system nonlinearities and constraints into the control
algorithm [11,12]. FS-MPC follows a unique approach that involves utilising a system
model to predict the future behaviour of states within a specific time interval [11]. These
predictions are then evaluated using a cost function, and the sequence that best minimises
the cost function is selected to determine future control actions. Only the first value in the
sequence is implemented, and the algorithm is recalculated for each sampling period.

Finite Set–Model Predictive Control (FS-MPC) possesses several advantages, such as
its ability to effectively handle nonlinearities and constraints. However, it also has limita-
tions due to the extensive computational requirements for solving the online optimisation
problem, making it impractical when using the short sampling times typically employed in
converter control. To mitigate this challenge, a potential solution is to solve the optimisation
problem offline, as has been demonstrated in previous studies [13,14].

In this paper, we introduce a simplified configuration known as the Single-Stage
Grid-Connected Solar Photovoltaic System (SSGC-SPVS). The system consists of a PVA,
which can be configured in parallel or series depending on the desired voltage and power,
connected to the grid through an inverter. The inverter can either be a three-level, three-
phase neutral point clamped inverter (3L-3PNPC) or a two-level, three-phase voltage source
inverter (2L−3PVSI). To optimise power extraction, we employ an incremental conductance
algorithm (IC-MPPT) along with PI control to regulate the DC-bus voltage. A reference
current is generated for the FS-MP controller, and the magnitude and frequency of the
currents are determined using the FS-MPC algorithm.
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The assessment of power quality being fed back into the grid is determined by
analysing the THD of the grid currents. In previous research, when the irradiance fell under
500 W/m2, the THD of the grid currents got closer to the permissible threshold. For the
3L−3PNPC configuration, in reference [15], the THD was reported to be approximately
3.2% when exposed to an irradiance of 400 W/m2; meanwhile, in reference [16], under an
irradiance of 800 W/m2, the THD reached 3.52%, and in reference [17], at an irradiance of
1000 W/m2, it dropped to 1.57%. For the 2L−3PVSI structure, in [18], at an irradiance of
1000 W/m2, the THD was reported to be 2.54%, while in [19], it was reported to be 1.4% at
1000 W/m2.

In this study, we propose the use of predictive control to supervise the inverter, with
the aim of minimising the cost function while taking into consideration the dynamics
of both the photovoltaic system, which experiences rapid changes in insolation, and the
inverter, including any potential delays this may introduce. We provide a comprehensive
overview of the overall system, including the two structures (2L−3PVSI and 3L−3PNPC),
the PVA model, and the inverter topology. Furthermore, we detail the hierarchical control
system, starting with IC-MPPT, DC bus, and MPC design. To evaluate the system’s
performance, simulations are conducted using MATLAB and Simulink for both structures.
The THD is assessed at different levels of irradiation—specifically, at 200 W/m2, 400 W/m2,
800 W/m2, and 1000 W/m2 for both structural configurations (2L−3PVSI and 3L−3PNPC).
These data serve as the basis for a comparative analysis of the two structures. The results
are thoroughly analysed and interpreted. Finally, the study concludes with a summary of
the key research findings.

2. System Description
2.1. Global System Configuration

The general block diagram adopted for this study is a PVA connected through a
single-stage grid-tied inverter in two configurations: 2L−3PVSI inverter (Figure 1) and
3L−3PNPC inverter (Figure 2) configuration. Figure 1 depicts the suggested model for
a grid-tied 2L−3PVSI system. This model includes a PV panel group, a PLL circuit, an
LR filter, and an IC-MPPT. Additionally, a block strategy controller is employed. The PV
panel group is directly linked to the grid through the 2L−3PVSI inverter. The PLL circuit
is employed to synchronise the 2L−3PVSI inverter output current with the grid voltage.
Figure 2 depicts a 3L−3PNPC inverter configuration with two capacitors and a neutral
clamped point. The IC-MPPT technique’s output establishes the reference voltage (Vdcre f ).
The measured input voltage of the NPC (Vdc) is compared to this voltage, and one of the
recommended control strategies is employed to generate the required reference current
(i∗max) in consideration of the resulting error.

2.2. PVA Configuration

The five-parameter single-diode model is widely recognised and valued for its sim-
plicity and accuracy in modelling photovoltaic (PV) cells. One significant aspect of this
model, as depicted in Figure 3, is the inclusion of parallel resistance (Rp). This parameter is
responsible for capturing the influence of factors such as leakage current, impurities, and
crystal imperfections within the PV cell structure [20].

The output current of a solar cell, which includes the photocurrent, can be mathemati-
cally modelled by considering components such as light-generated current sources, diodes,
and series and parallel resistances.

Ipv = Iph − Id

[
exp

(
q

cBTA
Vpv

)
− 1
]

(1)

Iph = G[Iscr + Ki(T − Tr)] (2)
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Id = Io

[
T
Tr

]3
exp

[
qEg

KQA

(
1
Tr
− 1

T

)]
(3)

Here, Ipv is the output current and Vpv = (A, V) is the output voltage, T is the tem-
perature, G is the solar irradiance (W/m2), Id is PV saturation current, Io is the saturation
current at Tr,Iscr is the short current under reference conditions, Tr is the reference tempera-
ture, q is the electron charge, and CB is Boltzmann’s constant. The characteristics I/V and
P/V of Solar World SW220 Poly are shown in Figure 4.
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PV cells are placed into PV modules, which are organised into larger PV arrays.
Achieving high efficiency from PV cells is crucial, but is often limited by financial con-
straints, resulting in an efficiency range of 9–20% [21]. PVA electricity generation depends
on atmospheric conditions, with the I-V curve being nonlinear and influenced by solar
irradiance changes, as shown in Figure 4a. Only the knee operation point in Figure 4b
provides maximum power, and so it is essential to operate the PV generator at this point.

2.3. Inverter Configuration

The grid-tied inverters that we employed for our investigation have typical setups.
The switching sequences and the functional schemes are defined for the two configurations.

2.3.1. 2L-3PVSI Configuration

The configuration of the 2L-3PVSI converter is illustrated in Figure 5. One crucial
requirement for the converter’s optimal operation is to ensure that the switches in each leg
operate in a complementary manner. This complementary mode of operation is essential
for preventing any potential short circuits in the DC source. As a result, the converter
is limited to a total of eight permissible switching states. Each of these switching states
generates specific line-to-line output voltages and the DC-link current [22,23].
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The voltage vectors in Figure 6 can be described as follows.
V1 = 0, V2 = 2

3 Vdc, V3 =
(

1
3 + j

√
3

3

)
Vdc,

V4 =
(
− 1

3 + j
√

3
3

)
Vdc, V5 = − 2

3 Vdc, V6 = − 1
3 Vdc − j

√
3

3 Vdc,

V7 =
(

1
3

)
Vdc, V8 = 0

(4)

2.3.2. 3L-3PNPC Configuration

NPC multilevel inverters are designed to generate a stepped output voltage wave-
form by utilising different levels of DC capacitor voltage [24]. For example, an m-level
NPC inverter comprises (m−1) capacitors connected to the DC bus, 2 × (m−1) switching
devices per phase, and 2 × (m−2) clamping diodes per phase. Figure 7 provides a visual
representation of a three-level NPC inverter. To achieve this configuration, the DC bus
voltage is divided into three distinct levels using two DC capacitors, namely, C1 and C2.
Each capacitor maintains a voltage of VDC⁄2 volts, and the voltage distribution is limited to
specific capacitor levels [24].
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The utilisation of NPC multilevel inverters allows for the generation of output volt-
ages with enhanced resolution and reduced harmonic distortion. By employing multiple
capacitor levels, the staircase waveform can approximate a sinusoidal waveform with
increased precision. This improved voltage quality is particularly advantageous in a variety
of applications, including renewable energy systems and motor drives, as it helps minimise
power losses and mitigate undesirable effects on connected devices.

The switching states of 3L-3PNPC are presented in Table 1.

Table 1. Switching states of an 3L−3PNPC inverter (x = a, b, c).

Sx Sx1 Sx2 Sx3 Sx4 Sx0

+ 1 1 0 0 VDC/2
0 0 1 1 0 0
− 0 0 1 1 −VDC/2

In equation form, the following can be expressed:

Vxn =


Vc1 + Vc2 if (Sx1, Sx2) are ON
Vc2 if (Sx2, Sx3) are ON
0 if (Sx3, Sx4) are ON

(5)

ixn =


i1 if (Sx1, Sx2) are ON
iN if (Sx2, Sx3) are ON
i2 if (Sx3, Sx4) are ON

(6)

Figure 8 illustrates the potential voltage vectors and corresponding switching states.
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3. System Control

The control system is divided into three stages for the two configurations (i.e., 2L-
3PVSI and 3L−3PNPC). The first is the IC-MPPT, the second is the DC-voltage control,
followed by, finally, FS-MPC.

3.1. IC-MPPT Algorithm

In order to optimise the energy output of a photovoltaic (PV) system in variable
weather conditions, it is essential to incorporate a maximum power point tracking (MPPT)
algorithm. The IC-MPPT algorithm is based on the concept of utilising the incremental
conductance of the PV panel to determine the slope of the power curve. By ensuring that the
incremental conductance matches its instantaneous value, the MPPT algorithm effectively
tracks the maximum power point [24,25]. Figure 9 provides a visual representation of the
flowchart for the IC-MPPT algorithm.

3.2. DC-Bus Voltage Control

The DC-bus voltage is maintained at its reference level for the two configurations,
i.e., for both 2L−3PVSI and 3L−3PNPC inverters. For 3L−3PNPC inverter, the measured
DC-bus voltage is the sum of the two capacitors.

A simple PI regulator is used in the two configurations, as shown in Figure 10. The
output of the PI controller is the amplitude reference current, which constitutes the input
of the model’s predictive controller.
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3.3. MP Controller Design

Finite Set–Model Predictive Control (FS-MPC) is a highly popular approach employed
in power electronic converters to effectively manage the flow of electrical energy. This
technique is renowned for its advantages, which include its simple design and remarkable
dynamic performance [26,27]. The underlying principle of FS-MPC revolves around select-
ing the most suitable switching state of the power converter in order to minimise the future
deviation of the controlled variable [28,29].

During the implementation of Finite Set–Predictive Model Control (FS-MPC), an
important aspect to consider is the evaluation of the cost function. This function considers
different terms that are derived from the controlled variables and operating conditions. To
achieve the desired performance, it is crucial to define weighting factors that establish the
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relationship between these terms. Nonetheless, a significant challenge in deploying FS-
MPC is the careful selection of appropriate weighting factors that can adequately balance
the control objectives. This task requires finding the optimal combination of weights to
assign to various terms in the cost function, which is essential for achieving the desired
control performance. This issue has been addressed in previous studies [29,30].

The FS-MPC algorithm for the control of the 3L-NPC is initialised with the discretisa-
tion of DC current. The equations governing the dynamic behaviour of the voltage across
the DC-link capacitor can be expressed as follows:

dVc1

dt
=

1
C

ic1(t) (7)

dVc2

dt
=

1
C

ic2(t) (8)

Here, C1 and C2 are capacitances across the upper and lower DC-link capacitors,
respectively. Additionally, Vc1 and Vc2 are DC-link capacitor voltages. Moreover, ic1 and ic2
are currents through capacitors C1 and C2, respectively.

To predict and anticipate the dynamics of the variables involved in the cost function,
it is essential to utilise a discrete-time model of the system. This discrete-time model allows
for the formulation of mathematical equations that describe the system’s behaviour over
discrete time intervals. To achieve this, the Euler preview technique is employed due to
its simplicity and acceptable accuracy, which is very important for achieving improved
performance [23,31]. Using this technique, the system’s discrete time form can be obtained,
as shown in the following:

di(t)
dt
≈ i(k + 1)− i(k)

Ts
, (9)

where Ts is the sampling period.
Euler’s method is utilised to discretise Equation (9), resulting in an equation that

enables the prediction to anticipate the forthcoming current at (k + 1)−th time step for the
27 potential switching states applied to the inverter. The resulting relation is presented in
Equation (10) in the following format:

dVcx

dt
≈ Vcx(k + 1)−Vcx(k)

Ts
(10)

The discrete-time equations that provide the predicted values of Vp
c1(k + 1) and

Vp
c2(k + 1) are stated as follows:

Vp
c1(k + 1) = Vc1(k) +

Ts

C
ic1(k) (11)

Vp
c2(k + 1) = Vc2(k) +

Ts

C
ic2(k) (12)

Equations (13) and (14) indicate that the input current and the steady states of the
inverter have an impact on the currents ic1 and ic2.

ic1(k) = idc(k)− [K1aia(k) + K1bib(k) + K1cic(k)] (13)

ic2(k) = idc(k)− [K2aia(k) + K2bib(k) + K2cic(k)] (14)

The current values ic1(k) and ic2(k) depend on the value of the input currents and
switching states of the inverter, as expressed in Equations (13) and (14). We note that idc(k)
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is the current furnished by the voltage source Vdc. Furthermore, the values of K1x and K2x
depend on the switching states.

K1x =

{
1 if Sx = (+)
0 otherwise

(where x = a, b, c) (15)

K2x =

{
1 if Sx = (−)
0 otherwise

(where x = a, b, c) (16)

The characteristics of the grid current flowing through the interfacing filter inductor
can be described as follows:

L
digx(t)

dt
= Vinvx(t)− Rigx(t)− egx(t), (17)

where Vinvx is the inverter voltage output.
The three-phase abc- reference frame variables

(
egx and igx

)
are transformed into an

orthogonal αβ- reference frame (e gαβ and igαβ

)
using Clarke’s transformation matrix (P),

given as follows:

P =

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

]
(18)

The discrete-time model of the grid current is obtained as follows:

igαβ(k + 1) =
(

1− RTs

L

)
igαβ(k) +

Ts

L
[
Vinvαβ(k)− egαβ(k)

]
(19)

Here, Vinvαβ(k) is the evaluated voltage vector, which belongs to all 19 voltages.
Figure 11 illustrates the predictive control strategy employed for the 3L−3PNPC inverter
implemented in MATLAB/Simulink. In this approach, future values of current and po-
tential differences across the capacitors are predicted using measurements taken from
the inverter.
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Figure 11. Block diagram for FS-MPC-based 3L−3PNPC inverter implementation using MAT-
LAB/Simulink.

A total of 27 switching states are generated, and corresponding cost functions are
evaluated based on the predictions obtained. Transition states that reduce the cost function
J are selected and applied in the next sampling stage.

In order to minimise the difference between the measured current and the desired
value, the Neutral Point Clamped (NPC) inverter employs a cost function (J) as a reference
value. This cost function is specifically designed to quantify the extent of the deviation
between the actual and desired currents.
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By utilising the cost function given by Relation (20), the NPC inverter aims to optimise
its control strategy and adjust its operation to achieve a current output that closely matches
the desired waveform. The formulation of the cost function J takes various factors into con-
sideration, such as system constraints, performance objectives, and control requirements.

The cost function J is defined as follows:

J =
∣∣∣ire f

α (k + 1)− ip
α(k + 1)

∣∣∣+ ∣∣∣ire f
β (k + 1)− ip

β(k + 1)
∣∣∣+γ

∣∣∣Vp
c1(k + 1)−Vp

c2(k + 1)
∣∣∣ (20)

Here, ire f
α (k + 1), ip

α(k + 1) and ire f
β (k + 1), ip

β(k + 1) indicate the real and imaginary

parts of the reference and predicted currents in the αβ frame. The symbols Vp
c1(k + 1),

Vp
c2(k + 1) represent the anticipated values of the DC-link capacitor voltages. Additionally,

γ is the weighting factor ( γ = 0.001).
Figure 12 presents the flowchart illustrating the various steps of the MPC algorithm

for the 3L-3PNPC inverter.
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Figure 12. Flowchart of the MPC for the 3L−3PNPC inverter.

For the 2L-3PPVSI, the same algorithm is applied, in just one difference in the capacitor
voltage, which do not constitute an input of the MP Controller. Figure 13 presents a
flowchart for the MPC algorithm for the 2L−3PVSI inverter.
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4. Simulation Results

To conduct a comparative analysis between a photovoltaic generator interfaced
with the electrical grid using a two-level inverter (2L-3PVSI) and a three-level inverter
(3L−3PNPC), we employed MATLAB Simulink to model both structures. The objective
was to evaluate their performance under identical conditions, utilising the same PVA and
electrical grid configuration.

For the control of both structures, we opted for the Finite Set Model Predictive Control
(FS-MPC) technique. This control strategy was chosen due to its desirable features, which
include simplicity and excellent dynamic responsiveness.

To ensure a fair comparison, we employed the same simulation parameters for both
structures. These parameters, outlined in Table 2, encompass various aspects related to the
simulation setup, such as time steps, sampling rates, and system configurations.

Table 2. PVA and grid parameters.

Parameters Values

Pmpp (W) 220.168
Vmpp (V) 29.2
Impp (A) 7.54
Voc (V) 36.6
Isc (A) 8.08
Parallel string 6
Series modules 21
Rg (Ω

)
0.1

Lg (H) 3.3 × 10−3

Grid voltage (V) 130
f grid (HZ) 50
MPPT-Ts (s) 1 × 10−5

FS-MPC-Ts (s) 1 × 10−5

DC-Bus Capacitor (F) 2.2 × 10−9

Figure 14 displays the irradiance profile of photovoltaic solar panels (PV) during a
typical day. This irradiance profile is crucial for determining the availability of the solar
energy captured by the PV panels.
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Figure 15 illustrates the power delivered by the photovoltaic solar panels (PV) deter-
mined on the basis of the irradiance profile presented in Figure 14.
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Figure 16 presents the results of the measured and reference voltages of the DC bus
for two different structures: (a) 2L−3PVSI and (b) 3L−3PNPC.
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Figure 17 displays the results of the grid current for two different structures:
(a) 2L−3PVSI and (b) 3L−3PNPC.

Sensors 2023, 23, x FOR PEER REVIEW 16 of 23 
 

 

 
(a) 2L−3PVSI structure 

 
(b) 3L−3PNPC structure 

Figure 17. Inverter grid current. 

Figure 18 presents the results of the grid voltage for two different structures: (a) 
2L−3PVSI and (b) 3L−3PNPC. 

 
(a) 2L−3PVSI structure 

Figure 17. Inverter grid current.

Figure 18 presents the results of the grid voltage for two different structures: (a)
2L−3PVSI and (b) 3L−3PNPC.

Sensors 2023, 23, x FOR PEER REVIEW 16 of 23 
 

 

 
(a) 2L−3PVSI structure 

 
(b) 3L−3PNPC structure 

Figure 17. Inverter grid current. 

Figure 18 presents the results of the grid voltage for two different structures: (a) 
2L−3PVSI and (b) 3L−3PNPC. 

 
(a) 2L−3PVSI structure 

Sensors 2023, 23, x FOR PEER REVIEW 17 of 23 
 

 

 
(b) 3L−3PNPC structure 

Figure 18. Grid voltage. 

Figure 19 presents the results of network voltage and phase current for two different 
structures: (a) 2L−3PVSI and (b) 3L-3PNPC. 

 
(a) 2L−3PVSI structure 

 
(b) 3L−3PNPC structure 

Figure 19. Phase voltage and grid current. 

Figure 20 presents the results of active and reactive power for two different struc-
tures: (a) 2L−3PVSI and (b) 3L−3PNPC. 

 
(a) 2L-3PVSI structure 

Figure 18. Grid voltage.



Sensors 2023, 23, 7901 16 of 22

Figure 19 presents the results of network voltage and phase current for two different
structures: (a) 2L−3PVSI and (b) 3L-3PNPC.
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Figure 20 presents the results of active and reactive power for two different structures:
(a) 2L−3PVSI and (b) 3L−3PNPC.
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Figure 21 displays the total harmonic distortion (THD) of the grid current for two
different structures: (a) 2L−3PVSI and (b) 3L−3PNPC.
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Table 3 shows the comparative analysis of the two structures in terms of power ripples,
dynamic response, and total harmonic distortion.

Table 3. Comparative analysis of the two structures.

Irradiance (W/m2) = 200

Structure Power ripples (kW) Dynamic response (s) THDi (%)

2L−3PVSI 0.09 N/A 6.83

3L−3PNPC 0.08 N/A 3.32

Irradiance (W/m2) = 400

Structure Power ripples (kW) Dynamic response (s) THDi (%)

2L−3PVSI 0.088 0.04 3.45

3L−3PNPC 0.075 0.025 1.75

Irradiance (W/m2) = 800

Structure Power ripples (kW) Dynamic response (s) THDi (%)

2L−3PVSI 0.087 0.07 1.66

3L−3PNPC 0.073 0.015 0.98

Irradiance (W/m2) = 1000

Structure Power ripples (kW) Dynamic response (s) THDi (%)

2L−3PVSI 0.086 N/A 1.31

3L−3PNPC 0.069 N/A 0.9
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5. Discussion

As shown in Figure 15, a direct correlation is observed between the solar irradiance
profile and the power delivered by the PV panels. When solar irradiance is high, the
generated power reaches its maximum, while during periods of low irradiance, the gen-
erated power decreases. This close correlation between the solar irradiance profile and
the generated power confirms that the photovoltaic system perfectly follows the chosen
irradiance profile, demonstrating the efficiency of converting solar energy into electricity
by the PV panels.

In Figure 16, when the 2L-3PVSI structure is used, it can be observed that the fluctua-
tions of the DC bus voltage are not perfectly reduced compared to the 3L-3PNPC structure.
This indicates that the 3L−3PNPC structure is better at regulating the DC bus voltage, re-
ducing undesirable voltage variations to a greater extent. On the other hand, the 2L-3PVSI
structure shows a tendency to exhibit larger ripples in the DC bus voltage, which can have
an impact on the stability and quality of the power supply system.

In Figure 17, when the 3L−3PNPC structure is employed, it can be noticed that the
currents are perfectly sinusoidal compared to the 2L−3PVSI structure. This indicates that
the 3L-3PNPC structure generates more regular and currents with higher quality, resulting
in the injection of energy of excellent quality into the electrical grid. On the other hand,
the 2L-3PVSI structure exhibits currents that may have distortions and harmonics, which
can adversely affect the quality of the energy injected into the grid. Consequently, the
utilisation of the 3L−3PNPC structure significantly enhances the quality of the energy
supplied to the network.

When using the 2L−3PVSI structure, the 3L−3PNPC structure generates a more stable
grid voltage that is closer to the reference value, as illustrated in Figure 18. The stability
of the grid voltage is essential for ensuring reliable and optimal operation of electrical
devices linked to the grid. Therefore, the use of the 3L−3PNPC structure can contribute to
enhancing the quality of the electrical energy supplied to the network.

In Figure 19, both structures operate with a unity power factor, meaning that they
inject active power equal to the apparent power into the grid. However, the 3L-3PNPC
structure exhibits better stability in terms of grid voltage and phase current than the 2L-
3PVSI structure. Stable grid voltage and phase current are crucial for maintaining the
balance of the electrical grid and ensuring the proper operation of connected devices. Thus,
the use of the 3L−3PNPC structure can provide improved stability and reliability when
supplying electrical energy to the grid.

In Figure 20, For both structures, the active and reactive powers follow their respective
references, indicating a balance between energy production and consumption. However,
the 3L−3PNPC structure exhibits superior stability in terms of both active and reactive
power, with no fluctuations, when compared to the 2L−3PVSI structure. A stable and
ripple-free behaviour for active and reactive power is crucial for ensuring efficient and
reliable system operation, as well as better energy management. Therefore, the use of the
3L-3PNPC structure ensures increased stability in active and reactive powers, ultimately
enhancing the quality of the energy supplied to the grid.

With a solar irradiance of 400 W/m2 it can be observed that the THD of the grid current
is lower when the 3L−3PNPC structure is used, with a value of 1.75%, compared to the 2L-
3PVSI structure, which exhibits a THD of 3.45%, as shown in Figure 21. This indicates that
the 3L−3PNPC structure generates grid current with less harmonic distortion, resulting
in improved quality of the injected electrical energy into the grid. However, with a solar
irradiance of 1000 W/m2, the 3L−3PNPC structure once again demonstrates a significant
improvement in terms of harmonic distortion of the current, as shown in Figure 22. Its THD
is 0.90%, while the 2L−3PVSI structure has a THD of 1.31%. This difference highlights the
superior ability of the 3L−3PNPC structure to generate cleaner grid current that closely
approximates an ideal sinusoidal waveform, as detailed in Table 3. Table 3 also assesses both
dynamic response and power fluctuations. The 3L−3PNPC configuration demonstrates
superior dynamic performance when compared to the 2L-3PVSI setup. Specifically, for
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an irradiance range of 0 to 400 W/m2, the response time is reduced from 0.04 s (in the
2L−3PVSI structure) to 0.025 s (in the 3L−3PNPC structure). Similarly, for irradiance levels
between 400 and 800 W/m2, the 3L−3PNPC setup achieves a response time of 0.015 s,
whereas the 2L-3PVSI structure lags behind, with a response time of 0.07s. The 2L−3PVSI
exhibits higher power fluctuations, whereas they are reduced when the irradiance is at
1000 W/m2. Specifically, at an irradiance of 1000 W/m2, the 3L−3PNPC exhibits a power
fluctuation of 0.069 kW, whereas the 2L−3PVSI shows a slightly higher power fluctuation,
at approximately 0.086 kW.
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Table 4 illustrates that the THD results exhibit significant variations compared to those
reported in references [18,19], with higher THD values in most cases for the two-level
structure presented in this study. This may indicate a more substantial harmonic distortion
in the grid current for the 2L−3PVSI configuration used. However, it is worth noting that
these values remain within acceptable limits according to IEEE 512 standards.

Table 4. Grid current THD of the 2L-3PVSI structure in previous works.

2L-3PVSI

Reference [18]

Irradiance (W/m2) 1000 800 400 200

THD (%) 2.25 N/A N/A N/A

Reference [19]

Irradiance (W/m2) 1000 800 400 200

THD (%) 1.40 1.60 2.6 6.1
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Table 5 reveals that the THD results exhibit significant variation compared to those
reported in references [15–17], with higher THD values in most cases for the three-level struc-
ture (3L−3PNPC) presented in this study. This may indicate a more substantial harmonic
distortion in the grid current for the 3L−3PNPC configuration used. Nevertheless, these
values remain within acceptable limits according to the IEEE 512 standards. The discrepan-
cies between this study and the references for both structures (3L−3PNPC and 2L−3PVSI)
can be attributed to differences in simulation parameters and component models.

Table 5. Grid current THD of 3L−3PNPC structure in previous works.

3L−3PNPC

Reference [15]

Irradiance (W/m2) 1000 800 400 200

THD (%) 0.97 1.51 3.2 N/A

Reference [16]

Irradiance (W/m2) 1000 800 400 200

THD (%) N/A N/A 3.45 N/A

Reference [17]

Irradiance (W/m2) 1000 800 400 200

THD (%) 1.57 N/A N/A N/A

6. Conclusions

This study aimed to assess the performance of two configurations for integrating
solar energy into the electrical grid, namely, the two-level inverter system (2L−3PVSI)
and the three-level NPC inverter system (3L−3PNPC), using a Finite Set Model Predictive
Control (FS-MPC) approach. The results obtained clearly demonstrate that the 3L-3PNPC
inverter has significant advantages in terms of the quality of the energy injected into
the grid and dynamic performance compared to the 2L−3PVSI inverter. However, the
2L−3PVSI inverter still maintains its appeal in terms of cost and ease of modelling and
control, especially for solar irradiance levels exceeding 400 W/m2.

Nevertheless, it is crucial to note that this study has limitations. The simplified models
used for both the 2L−3PVSI and 3L−3PNPC inverters may not fully represent performance
in real-world environments, and the lack of integration of grid disturbances is also a
point to consider. Therefore, further research is needed to explore these systems more
comprehensively, incorporating more detailed models and grid disturbance scenarios.

Future research required in this field includes the optimisation of control strategies
for both configurations, taking into account dynamic variations in solar irradiance and
grid disturbances. Additionally, experimental studies are necessary to validate simulation
results and assess the actual performance of these systems. Finally, analysing the cost
effectiveness and environmental impact of these configurations in real-world conditions is
a promising research area for guiding the practical implementation of the integration of
solar energy into electrical grids.
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Abbreviations

2L-3PVSI Two-Level, Three-Phase Voltage Source Inverter
3L-3PNPC Three-Level, Three-Phase Neutral Point Clamped
DC Direct Current
ESS Energy Storage System
FS-MPC Finite Set Model Predictive Control
IC Incremental Conductance
MPPT Maximum Power Point Tracking
PI Proportional Integrator
PLL Phase Looked Loop
PV Photovoltaic
PVA Photovoltaic Array
RES Renewable Energy Source
SPVS Solar Photovoltaic System
SSGC-SPVS Single Stage Grid Connected Solar Photovoltaic System
THD Total Harmonic Distortion
N/A Note Applicated
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