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Abstract: Cancer is one of the leading causes of death worldwide. Because each person’s cancer may
be unique, diagnosing and treating cancer is challenging. Advances in nanomedicine have made it
possible to detect tumors and quickly investigate tumor cells at a cellular level in contrast to prior
diagnostic techniques. Quantum dots (QDs) are functional nanoparticles reported to be useful for
diagnosis. QDs are semiconducting tiny nanocrystals, 2–10 nm in diameter, with exceptional and
useful optoelectronic properties that can be tailored to sensitively report on their environment. This
review highlights these exceptional semiconducting QDs and their properties and synthesis methods
when used in cancer diagnostics. The conjugation of reporting or binding molecules to the QD surface
is discussed. This review summarizes the most recent advances in using QDs for in vitro imaging,
in vivo imaging, and targeted drug delivery platforms in cancer applications.
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1. Introduction

Cancer is a group of diseases characterized by the rapid growth of abnormal cells
within the body. In most cancer cases, the mutations or changes in the expression of
proto-oncogenes, tumor suppressor genes, and DNA repair genes are responsible for cancer
development [1]. The majority of cancers are attributed to genetic (mutations, hormones,
immune conditions) or environmental (radiation, chemicals, pollutants) factors, in addition
to indicators of an unhealthy lifestyle (poor diet, tobacco smoking) [2,3]. Furthermore, the
risk of cancer increases significantly with increasing age.

Cancer is one of the leading causes of death worldwide. According to the World Health
Organisation (WHO), the number of cancer deaths was nearly 10 million in 2020 [4–6].
The number of new cases is estimated to be 28.4 million by 2040 [7]. The fight against
cancer remains one of the most significant issues facing the world. Current conventional
means to battle cancer have significant drawbacks, including but not limited to toxicity and
non-specificity of conventional chemotherapeutics [8]. Early detection and intervention
have a significant positive impact on patient outcomes.

In recent decades, research into and applications of nanomedicine have grown sig-
nificantly, especially in cancer diseases [9–14]. Such research has shown great potential to
overcome previous challenges relating to early tumor detection, accurate diagnoses, and
individualized treatment [15–17]. The primary benefit of nanomedicine in cancer therapy
is the tiny size of nanoparticles, which allows them to function at the molecular level,
thereby enhancing diagnosis and improving the chances of achieving innovative targeting
strategies at the molecular level [18–22]. For example, some nanoparticles work by binding
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to cancer biomarkers such as circulating tumor cells, circulating tumor DNA, exosomes,
and specific cancer-associated proteins [23–25].

Nanometer-scale materials (1–100 nm) display intriguing properties due to their
small size [26]. These novel properties are often due to the quantum confinement and
surface effects affected by their small size [27]. The quantum confinement effect confines
moving electrons within a small volume, producing unique optical and electronic effects.
As for surface effects, the chemical reactivity of the surface usually increases as the size
decreases, while the melting point usually decreases [28,29]. These novel optical and
thermal properties of nanomaterials can be useful for both in vivo and in vitro applications
via the active interaction with molecular components at the cellular level.

Several nanoparticles [30–33] have been investigated for cancer diagnosis and therapy.
Nowadays, quantum dots (QDs), often referred to as “artificial atoms”, are a hot topic in
cancer nanomedicine. They were first described in 1981 by Alexey Ekimov [34]. QDs are
made of a relatively small number of atoms (from 100–10,000 atoms) of semiconductor
materials of groups II–VI, III–IV, and IV–VI elements in the periodic table [35]. Their
tiny dimension leads to their characterization as “dots”, while “quantum” is due to their
properties and behavior being described extensively by quantum mechanics [36].

Quantum dots (QDs) are nanoscale nanomaterials that are said to be zero-dimensional
because charge carriers are confined so tightly in three directions [37,38]. Many of their
unique properties arise because semiconducting nanocrystals from 2–10 nm diameter are
smaller than or equal to their exciton Bohr radius [39–43].

The unique electronic properties of QDs result from the particle size and shape, which
can be manipulated for diagnostic purposes. When a QD is excited by an energy photon
hv (the absorption of light), electrons from the valence band (lower energy level) jump
to the conduction band (a higher energy level), resulting in an electron–hole pair called
an “exciton”. As they return to the lowest energy state (ground state), electrons and
holes recombine and release energy or light in the form of single photons [44,45]. The
crystal’s size, composition, and shape determine the wavelength (color) of light that will
be released [46]. The larger size QDs emit orange or red wavelengths, while smaller
QDs emit shorter blue or green wavelengths. Consequently, the specific tuning of these
optical properties (how the QD absorbs and emits energy) can be manipulated to produce
distinctive colors by changing the size and shape of the dot [47].

QD semiconducting nanocrystals have an intrinsic band gap, and when light is ab-
sorbed, electrons are bridged by excitation. They differ from bulk semiconducting materials
due to their inability to create continuous valence and conduction bands, due to the finite
number of atoms in a small cluster. Instead, an electronic structure is produced by QDs
that is analogous to the discrete electronic states seen in single atoms. Hence, they are also
called ‘artificial atoms’ because of their discrete electronic states. As a QD becomes smaller,
the band gap becomes larger. That is, there is an increase in the energy level between the
higher valence band and the lower conduction band. More energy is further required to
excite the dot, and correspondingly, more energy is released when it returns to the ground
state [48,49].

QDs are currently studied by many researchers looking to take advantage of their
unique optical properties, such as high fluorescence, excellent resistance to photobleaching,
small size, and biocompatibility. These properties make them preferable fluorophores
compared to conventional organic dyes with broad emission bands that can fade over
time [50]. They have generated considerable interest in bioimaging and fluorescence labeling
(in vitro and in vivo). Moreover, by adjusting their size and composition, their emission
wavelength can be tuned from visible to infrared wavelengths [51,52], which could be useful
for in vivo imaging, such as in sentinel lymph node mapping for image-guided surgery.

The surface modification of QDs gives them a potential tool in cancer imaging. The
attachment of certain biomolecules (e.g., peptides, antibodies, or small molecules) to
QDs can be used in cancer detection and bioimaging [51]. For example, Brunetti et al.
created near-infrared (NIR) QDs functionalized with NT4 cancer-selective tetra-branched
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peptides that were used to produce their specific uptake and selective accumulation at the
site of colon cancer [53]. Elsewhere, QDs were reported to aid in revealing in vivo drug
release and drug targeting [54,55]. The potential that QDs offer in the fight against cancer
is promising.

Inspired by the exceptional features of QDs and the extensive research on their poten-
tial and advancement in the field, this review presents basic insights into the properties
of QDs and summarizes the different synthesis methods for their production. Then, we
discuss the functionalization of QDs, their applications in cancer management, and their
cytotoxicity issues, emphasizing the recent research progress mainly in the last 6 years.
We guide the reader through the advancements of QDs as a potential cancer imaging and
therapy tool with the hope of bridging the gap and leading to novel discoveries in QDs
potential in the field of cancer.

2. Structural and Optical Properties of QDs

QDs have a structure comprising a core, shell, and sometimes a surface coating, which
provides high stability in photo and chemical behaviors, surface activation, and photolu-
minescence quantum yield. The core is comprised of semiconductor material (e.g., CdSe,
CdTe) in a crystal configuration upon which the excitation wavelengths and fluorescence
emission are dependent. That core is stabilized by the shell structure that surrounds it. The
shell affects the decay kinetics, photostability, and fluorescence quantum yield. A surface
layer that can include organic molecules regulates the stability, dispersibility, and potential
biological interactions. Initially, when prepared, QDs are generally hydrophobic because
they lack surface moieties that form hydrogen bonds; however, hydrophilic molecules or
polymers can be attached to confer dispersibility in water. For example, the stability of QDs
in water can be increased by the attachment or adsorption of amphiphilic polymers with
ionizable functional groups. Figure 1 shows a stylized illustration of a QD.
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Figure 1. Structure of a QD showing the core/shell/ligand.

As mentioned, the structures of typical QDs are core or core/shell structures. Examples
of core QD structures include cadmium telluride (CdTe), while core/shell QD structures
include CdSe/ZnS or CdTe/CdS, whose properties can be further enhanced via different
surface coatings. The electroluminescence and optical properties of the QD core can be
manipulated by altering the sizes of the QD core and shell. Furthermore, core/shell QDs
having a shell band gap larger than the core band gap give rise to the electroluminescence
properties related to exciton decay by radiative processes [56,57].
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Quantum Dots exhibit valuable optoelectronic properties due to the quantum confine-
ment effect. These properties include broad absorption spectra, high fluorescence, strong
photostability, and size-tunable emission. Larger QDs with large densities of states and
band-overlapping structures possess broad absorption spectra and high molar absorptivi-
ties. This particular QD property enables efficient excitation of multiple fluorophores using
a single light source. Yet, this broad absorption spectrum produces narrow emission spectra
due to transitions from a limited number of high energy to low energy levels, which emit
very specific photon energies (hν). Thus, a light source with a wavelength shorter than the
emission wavelength can lead to multiple excitations (and emissions) because of its broad
absorption band. These properties that QDs exhibit, broad excitation spectra and narrow
emission spectra [57], make them suitable for multiplexed imaging [58,59]. Figure 2 names
some optical properties of QDs.
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Unlike organic dyes (1–5 ns), the decay rates of the excited state are slower in QDs.
For example, after excitation, most QDs exhibit a relatively long fluorescence lifetime–10 to
50 ns–which is advantageous in differentiating QD signals from background fluorescence
and attaining more sensitive detection. Thus, time-gated imaging can eliminate background
autofluorescence. They also exhibit low photodegradation rates, which is often challenging
for organic fluorophores.

Unlike organic fluorophores, which, when exposed to light, bleach after a few seconds
of continuous exposure, QDs are quite photostable. Photostability is important in most
fluorescence applications. This lack of photobleaching allows continuous or long-term
monitoring of slow biological processes [59]. QDs can withstand hours of repeated excita-
tion and fluorescence cycles with high brightness levels and photobleaching thresholds.
It has been observed that QDs are more photostable than “stable” organic dyes such as
Alexa488 [60], and thus offer several advantages in diagnostic applications [61,62].

As mentioned, the size- and chemically-tunable properties are advantageous in select-
ing an emission wavelength suitable to a specific experiment. For example, the emission
wavelength of cadmium sulfide (CdS) and zinc selenide (ZnSe) dots can be tuned from
blue to near-ultraviolet light. Similarly, cadmium selenide (CdSe) QDs of different sizes
emit light across the visible spectrum. For far-infrared and near-infrared emissions, indium
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phosphide (InP) and indium arsenide (InAs) QDs can be used [63]. Table 1 lists the emission
ranges for some common QDs.

Table 1. Size of QDs and their emission wavelengths. Reprinted with permission from [64].

Quantum Dots Size Range (Diameter nm) Emission Range (nm)

Cadmium sulfide (CdS) 2.8–5.4 410–460
Cadmium telluride (CdTe) 3.1–9.1 520–750
Cadmium selenide (CdSe) 2–8 480–680

CdTe/CdSe 4–9.2 650–840
Indium phosphide (InP) 2.5–4.5 610–710
Indium arsenide (InAs) 3.2–6 860–1270

Lead selenide (PbSe) 3.2–4.1 1110–1310
1-Dodecanethiol silver sulfide

((Dt)-Ag2S) 5.4–10 1000–1300

These unique optical properties of QDs make them highly appealing to a wide array
of research and diagnostic applications in diagnostic bioimaging, drug delivery, and more.

3. Synthesis of QDs

QDs must be carefully synthesized to meet specific optical requirements. Their synthe-
sis can be divided into two general categories, the top-down method and the bottom-up
approach [56].

3.1. Top-Down Approach

In the top-down approach, QDs are formed by the ablation of bulk semiconductor
materials. This includes processes such as electron beam lithography, reactive ion etch-
ing, and focused ion beam. These processes synthesize QDs with diameters of around
30 nm. However, these processes have limitations, such as incorporating impurities
during synthesis.

3.1.1. Electron Beam Lithography (EBL)

In electron beam lithography (EBL), the surface of a resist (electron-sensitive mate-
rial) is patterned by scanning with a focused beam of electrons. The resist is made of a
polymeric compound, which can either be a negative resist (i.e., long-chain polymer) or
a positive resist (i.e., short-chain polymer). The solubility of the resist is altered by the
electron beam, allowing the selective removal of either exposed regions or non-exposed
regions of the resist when immersed in a solvent (called a developer). If the resist becomes
soluble when immersed, it is a positive resist; if it becomes insoluble (i.e., unexposed
parts removed), it is a negative resist. The purpose is to fabricate very small structures
in the resist whose pattern can then be transferred to the substrate by etching. Although
this technique can design patterns directly with sub-10 nm resolution, it is slow and
expensive [65,66]. Nandwana et al. [67] reported direct patterning of QD nanostructures
using EBL. In this example, functionalized CdSe/ZnS QDs were deposited onto a gold-
coated silicon substrate, followed by direct patterning using EBL in the QD film. The QD
film was washed using toluene, which removed the unexposed QDs, leaving the exposed
areas anchored to the substrate due to the electron beam. QDs were observed to retain
their optical properties after cross-linking. Similarly, Palankar et al. [68] reported using
EBL to generate QD micropattern arrays. The QDs fabricated were reported to retain their
fluorescence and bio-affinity during lithography.

3.1.2. Reactive Ion Etching

In dry etching, an etching chamber is used, where a reactive gas species is introduced,
and plasma is formed by applying radio frequency energy by which the gas molecules are
broken into reactive fragments. These high-energy species collide with the surface, reacting
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to form a volatile reaction product. Thus, the surface is slowly etched away. The surface can
be protected from etching with a mask pattern. This process is also referred to as reactive
ion etching [66,69,70]. Site- and dimension-controlled indium gallium nitride (InGaN)
QDs were fabricated by Lee et al. [71]. The QDs were disk-shaped and integrated into a
nanoscale pillar. They utilized inductively coupled plasma reactive ion etching to fabricate
arrays of nanopillars with different densities and nanopillar diameters from InGaN/GaN.
They observed single nanopillars that exhibited strong and distinct photoluminescence at
room temperature. The advantages of this process include reducing the amount of etchants
used, easy disposal, and eliminating the need to use dangerous liquid etchants. However,
the drawback of this process is that it is both time-consuming and expensive, as it requires
very specialized equipment [66].

3.1.3. Focused Ion Beam (FIB)

QDs can be fabricated with exceedingly high lateral precision through the focused
ion beam technique. The semiconductor substrate’s surface is sputtered using highly
focused beams from a source of metal ions (Au/Si, Ga). The size, shape, and inter-particle
distances of the QDs depend on the ion beam size. Furthermore, it has been reported that
a beam with a minimum diameter of 8–20 nm allows QDs to be etched to <100 nm [70].
Choi et al. [72] used focused ion beam luminescence quenching (FIB-LQ) to enhance the
single photon purity of the site-controlled QD emission. Optical quality was retained while
the SNR of the QD improved, and at increased temperatures, single photon properties
were maintained due to the improved signal-to-noise ratio (SNR). In a similar study,
Zhang et al. [73] combined focused ion beam (FIB) patterning and self-assembly quantum
dots to produce regular QD arrays. High resolution and high flexibility are the advantages
of this process. However, the technique is slow and utilizes expensive equipment.

3.2. Bottom-Up Approach

In the bottom-up approach, small units are assembled (precipitated) into the desired
structure’s shape and size. This process involves nucleation, growth, and chemical decom-
position [74]. QDs are synthesized with different techniques, which are further classified
into wet-chemical and vapor-phase methods. Wet-chemical methods processes include
sol–gel, and microemulsion, while vapor-phase methods processes include molecular
beam epitaxy, physical vapor deposition, and sputtering [70]. In wet-chemical methods,
conventional precipitation methods are followed by measured control of single solution
parameters or a mixture of solutions. The process of precipitation always involves both
nanoparticle nucleation and limited growth. Nucleation can involve homogenous, het-
erogenous, or secondary nucleation. QDs of the desired size, shape, and composition can
be acquired by varying factors such as stabilizers, temperature, electrostatic double-layer
thickness, and precursor concentration [70,75]. More details are given below.

3.2.1. Wet Chemical Methods
Sol–Gel

Sol–gel methods are commonly used to synthesize QDs [76,77]. The technique prepares
a sol (a solution or suspension) of a metal precursor salt (acetates or nitrates, alkoxides) in a
base or acidic medium. The process has three steps: hydrolysis, condensation (formation of
sol), and growth (formation of gel). In brief, inside the solvent medium, the metal precursor
hydrolyzes and condenses, thereby forming a sol, which then grows or polymerizes,
forming a network (gel). This process can be used to prepare thin films, fibers, microspheres,
etc. The advantages of this process for QD formation include good control of composition,
better control of structure, incorporation of nanosized materials, and no use of special
or expensive equipment. However, the process is slow, complex, and may involve toxic
solvents [78]. QDs of semiconductor types II–VI and IV–VI zinc oxide, cadmium sulfide,
and lead sulfide (ZnO, CdS, PbS) have been synthesized using this method [76,77,79]. For
example, mixing solutions of Zn-acetate with alcohol and sodium hydroxide, followed by
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controlled aging in air, produced zinc oxide (ZnO) QDs [76]. Titanium dioxide (TiO2) QDs
were synthesized by Javed et al. [80] using the sol–gel reflux condensation method. They
reported the QD to have an average 5–7 nm crystallite size, which offers a large surface area
and exhibits photocatalytic properties. In another study by Jiang et al. [81], zinc selenide
(ZnSe) QDs embedded in silicon oxide (SiO2) thin films were synthesized using the sol–gel
process. The synthesis was done with H2SeO4 as a source for selenium and Zn (Ac)2·H2O
as a source for zinc. One advantage of this approach to making ZnSe/SiO2 thin films is a
reduction in the amount of selenium volatilization. The sol–gel process was reported to be
cost-effective and simple [80–82].

Microemulsion Process

A useful method for synthesizing QDs at room temperature is the microemulsion
process. Two microemulsions of an aqueous phase in oil are prepared, each having a single
chemical component of the semiconductor. While mixing slowly at room temperature, the
water droplets collide and merge, thereby creating a mixture that forms QDs inside the very
small water droplet. The process can also be done using an oil-in-water emulsion with the
oil phase containing the semiconductor components. The use of alcohol instead of water
has also been employed. In the reverse microemulsion process, water is dispersed into oil
(immiscible liquid) and stirred vigorously in the presence of a surfactant to form extremely
small emulsion droplets. The variation of the water-to-surfactant molar ratio controls the
size of the water droplet, which in turn affects the size of the resulting QD [44,70,83]. The
reverse micelle method has been used to prepare II–VI core and core/shell QDs. Shakur [84]
synthesized zinc sulfide (ZnS) QDs by the reverse micelle method using polyvinyl pyrroli-
done as a surfactant and produced a size of 2.1 nm. In another study, Karanikolos et al. [85]
synthesized luminescent zinc selenide (ZnSe) QDs using a microemulsion process. The
synthesized QDs were reported to exhibit excellent photostability and size-dependent
luminescence. Cadmium sulfide (CdS) and CdS/ZnS semiconductor QDs were synthesized
by the reverse micelle method in a study by Lien et al. [86]. Sodium bis (2-ethylhexyl)
sulfosuccinate (AOT) was used as a surfactant. The synthesized QD had a diameter of
~2.5 to 4 nm, which was dependent on the surfactant concentration. In addition, the
core/shell nanocrystal structure was reported to have excellent luminescence and pho-
tostability. This process is said to be cost-effective, easy to handle/control by modifying
parameters such as the ratio of water to surfactant, inexpensive, highly reproducible, and
displays good monodispersity [87–89]. However, this process has limitations, such as low
yield and the need for large amounts of surfactant, which could result in the incorporation
of impurities and presents difficulty in separating the surfactant from the final QDs [90].

3.2.2. Vapor-Phase Method

Vapor-phase methods to produce QDs involve QDs deposited in an atom-by-atom
process, as described below.

Molecular Beam Epitaxy (MBE)

Molecular beam epitaxy (MBE) is one of the vapor-phase methods used under ultra-
high vacuum conditions (~10−10 Torr). It involves the deposition of overlayers to grow
elemental compound semiconductor materials of nanostructures on a heated substrate [91].
The process forms a beam of atoms or molecules from the evaporation of an apertured source.
The beams can be formed from solids (Ga and As to form GaAs QDs) or a combination of
solids and gases (e.g., PH3 or tri-ethyl gallium). This method uses the large lattice mismatch
to self-assemble QDs from II–VI semiconductors and III–V semiconductors [70]. During the
process, a reflection high-energy electron diffraction gun is used to monitor the growth of
the crystals. Although it is expensive and requires complex equipment, heating the material
is slow and controlled, and the process does not involve a slow chemical reaction, resulting
in a reduced amount of defects [66]. Brault et al. [92] used molecular beam epitaxy to grow
AlyGa1−yN QDs on AlxGa1−xN (0001) for light-emitting-diode applications.
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Physical Vapor Deposition (PVD)

Physical vapor deposition requires a high vacuum (≤10−6 Torr) to retain a good
vapor flow. A material is sublimated inside the vacuum by thermal evaporation, thereby
condensing the substrate from the vapor. Techniques such as resistive heating, electron
beam heating, and laser ablation have been used to evaporate the material. The quality of
the films produced and their physical characteristics are influenced by the rate of deposition,
pressure, substrate temperature, and distance between source and substrate. These factors
control the creation of QDs from the thin films deposited [70]. As an example, niobium
pentoxide (Nb2O5) QDs were grown by Dhawan et al. using PVD [93]. This process does
not require expensive chemical reagents, the coatings by PVD have excellent adhesion, and
the process allows the deposition of different types of materials. However, the equipment
employed is complex and expensive [94,95].

Sputtering

The sputtering process produces nanostructures by bombarding a surface with high-
energy particles (e.g., via gas or plasma). It is an effective technique for developing thin
films of nanomaterials. During the process, high-energy gaseous ions bombard the semicon-
ductor surface (target material), causing the physical expulsion of atoms or molecules from
the surface, depending on the incident gaseous ion energy [96,97]. This technique is also
referred to as ion sputtering and is commonly performed in an evacuated chamber. The pro-
cess is done in different ways, such as radio frequency and magnetron sputtering [94,98,99].
Cadmium selenide (CdSe) QDs were synthesized by Dahi et al. [100] using radio frequency
magnetron sputtering. The synthesized QDs had an average size of less than 10 nm in
diameter using a radio frequency power of 14 W and a deposition duration of 7.5 min. It is
noteworthy that increasing either RF power or deposition time (or both) increased the CdSe
QD size. The advantages of this process are reduced surface contamination, no required
solvents, and facile tuning of the size, shape, and optical density through careful control of
pressure, temperature, and deposition time. However, a drawback of this process is the
redeposition of unwanted atoms, which may contaminate the QDs.

3.3. Other Syntheses

QDs are also produced using hydrothermal synthesis. This is a one-pot synthesis by
which inorganic salts are crystallized from aqueous solution by regulating temperature
and pressure. In this technique, the temperature can be raised very high due to the
pressure containment in the autoclave. This results in partial chemical decomposition and
promotes molecular collisions, causing the formation of QD. By changing the pressure,
temperature, reactants, and aging time, different QD sizes and shapes can be attained [70].
This method of preparing QDs gives excellent photostability and high quantum yield. The
process is efficient, timesaving, and more convenient. However, a significant disadvantage
of this process is the need for expensive autoclaves [101]. Shen et al. [102] developed
nitrogen-doped carbon QDs (N-CQDs) by the hydrothermal synthesis of glucose and
phenylenediamine. The synthesized N-CQDS were reported to have good photostability,
water solubility, and low toxicity. They were also reported to be excellent fluorescent
probes for Fe3+ and CrO4

2− in addition to serving as cell imaging reagents for Hela cells.
Likewise, QDs can be fabricated using the solvothermal method, which is similar to the
hydrothermal except that organic solvents with high boiling points are used instead of
water [103,104]. Luo et al. [105] synthesized multiple color emission iron disulfide (FeS2)
QDs by the solvothermal method. Temperature, time, and the reactant ratio were varied
to make QDs with blue, green, yellow, and red fluorescence. The blue emission of the
QDs was used as a fluorescent responsive signal and the yellow emission was used as a
reference signal to construct a molecular imprinting radiometric sensor used for the visual
detection of aconitine. The process was reported to be simple and low in cost.

The microwave-assisted synthesis of QDs is a rapid heating method that shortens
reaction time and improves production yield. In this method, fewer solvents are used,
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and tiny particles with a narrow size distribution can be created [106,107]. Cadmium
selenide (CdSe) QDs were synthesized by Abolghasemi et al. [108] using the microwave-
assisted method. The QDs were synthesized in an N-methyl-2-pyrrolidone solvent with
a microwave irradiation power of 900 W. It was reported that this method showed easy
control of the size and band gap energy of the QDs, resulting in controllable emission from
photoluminescence spectroscopy. The performance of the QDs was tested in photovoltaic
solar cells, where results showed that the QDs are suitable sensitizers.

Recently, an ultrasonic technique was employed to synthesize QDs. This method
utilizes ultrasound, which causes acoustic cavitation. This involves the formation, devel-
opment, and implosive collapse of bubbles in a liquid, which produces high pressure and
high energy [109,110]. Graphene QDs (GQDs) were synthesized by Zhu et al. [111] from
graphene oxide (GO) by ultrasonication in KMnO4 for 4 h. High-resolution transmission
electron microscopy (HR-TEM) revealed that the GQDs had an average of 3.0 nm lateral
diameter with a narrow size distribution. The GQDs were reported to be uniform and
of high crystallinity. These QDs were used in an alkaline phosphate (ALP) activity assay.
In another study by Chen et al. [112], perovskite QDs were synthesized using ultrasonic
synthesis. This synthesis method was reported to produce smaller particle sizes with a
more uniform particle-size distribution. They also used this method to prepare different
chemical compositions of CH3NH3PbX3 QDs that could tune emission wavelengths, thus
providing a wider range of pure colors. Table 2 catalogs the various types of QDs and
their synthesis.

Table 2. The different synthesis techniques used to fabricate QDs.

Synthesis Methods QDs Fabricated Properties Refs.

Electron beam lithography
QD nanostructures Optical properties retained after

cross-linking [67]

QD microarrays Fluorescence
Bioaffinity [68]

Reactive ion etching Indium gallium nitride
(InGaN) QDs

Strong and distinct
photoluminescence signal [71]

Sol-gel

Titanium dioxide (TiO2) QDs large surface area
photocatalytic properties [80]

Zinc selenide (ZnSe) QDs
embedded in Silicon dioxide (SiO2) - [81]

Cadmium sulfide (CdS)
and Ni-doped CdS Highly crystalline [113]

Zinc oxide (ZnO)@polymer
core/shell Quantum yield above 50% [114]

Zinc oxide (ZnO) QD High photoluminescence
quantum yield [115]

Microemulsion (reverse micelle)

Zinc sulfide (ZnS) QDs
Pure nanocrystal

Quantum confinement effect
Photoluminescence peak at 365 nm

[84]

Cadmium sulfide/Zinc sulfide
(CdS/ZnS) semiconductor QDs

Excellent luminescence and
photostability [86]

Cadmium selenide@Zinc sulfide
(CdSe@ZnS) within monodisperse

silica

Good monodispersity
High luminescence [89]

Microemulsion (gas contacting
technique) Zinc selenide (ZnSe) QDs Excellent photostability and

size-dependent luminescence [85]

Microemulsion method + ultrasonic
waves (sono-microemulsion method) Cadmium sulfide (CdS) Narrow size distribution

High crystallinity and purity [116]

Physical vapor deposition Niobium pentoxide (Nb2O5) QDs Quantum confinement effect [93]
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Table 2. Cont.

Synthesis Methods QDs Fabricated Properties Refs.

RF magnetron sputtering Cadmium selenide (CdSe) QDs Optical properties [100]

Solvothermal

Zinc Oxide (ZO) QDs
Small size

Pure, high crystallinity and
surface area

[117]

Graphene QDs (GQDs)

11.4% photoluminescence
quantum yield
High stability

Biocompatibility
Low toxicity

[118]

Hydrothermal

Nitrogen- and sulfur-doped carbon
QDs (N, S-doped CQDs)

Small
Spherical

Green emission
[119]

Fluorescence quantum
yield (10.35%)

Nitrogen-doped carbon QDs
(N-CQDs)

Low toxicity
Good photostability [102]

Silicon QDs
Good water dispersibility

Strong photoluminescence High
pH stability

[120]

Tin oxide/Tin sulfide in reduced
bovine serum albumin (SnO2/SnS2

@r-BSA2)

Specific selectivity
Long term stability

Enhanced reproducibility
[121]

Nitrogen-doped Graphene QDs
(N-GQDs)

High quantum yield
Long-term fluorescence stability
High sensitivity and specificity

[122,123]

Molecular beam epitaxy Indium arsenide gallium arsenide
core/shell (InAs/GaAs) QDs

Strong photoluminescence intensity
High structural properties [124]

4. Surface Functionalization of QDs

QDs have been widely used in various applications such as bioimaging, drug delivery,
and diagnostics [125–130]. This has only been possible due to functionalizing their surfaces,
thereby enhancing biocompatibility, uptake, stability, and reducing biological toxicity [131].
After synthesis, QDs are generally hydrophobic, which could produce a cytotoxic effect
on cells or reduce their uptake efficiency, limiting their use in clinical practice. Hence, the
surfaces of QDs need to be altered for prospective diagnostic and therapeutic applications
by making them hydrophilic, and by attaching various chemical groups and targeting
molecules [132–134]. This can be achieved by coating or conjugating the surface of the QDs
with molecular ligands, growing silica, or applying other coatings to the QDs, such as with
amphiphilic polymers [135–138]. The next sections present general descriptions of methods
for surface modification.

4.1. Ligand Exchange

This process involves exchanging hydrophobic ligands such as trioctylphosphine ox-
ide (TOPO), trioctylphosphine (TOP), and hexadecyl amine (HDA) on the QD surface with
hydrophilic ligands to promote the formation of stable suspensions in water [139]. The most
common approach for ligand exchange is the use of thiols (-SH), such as mercaptoacetic
acid (MAA), mercaptopropionic acid (MPA), mercaptoundecanoic acid (MUA), and dihy-
drolipoic acid (DHLA) as anchoring groups, all of which present carboxyl (-COOH) groups
as hydrophilic and ionized groups to enhance hydrogen bonding with water. Furthermore,
at the proper pH (pH 5 to 12), ionic groups provide charge repulsion between particles.
The attachment of hydrophilic polymers such as PEG can enhance the solubility range of
QDs by steric repulsion [51,139,140].
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The as-synthesized QDs are reported to have a small hydrodynamic size, which is
useful in fluorescence resonance energy transfer (FRET) experiments [141]. However, after
the process, there is a decrease in fluorescence quantum yield.

In other studies, the multidentate ligands were used as sensing probes to detect
bovine serum albumin (BSA) protein in aqueous media [142]. Similarly, Chen et al. [143]
reported the ligand exchange of oleate-capped ZB-CdSe with oleylamine, resulting in a
significant decrease in photoluminescence quantum yield (PLQY). In another study [144],
a method was optimized to overcome the issue of the reduced fluorescence and stability
of silver telluride (Ag2Te) QDs. Tributylphosphine (TBP) was added during synthesis,
which was used as a precursor (TBP-Te) to form a high fluorescent Ag2Te core. The rapid
injection of TBP-Te precursor in hot solvent resulted in a PLQY of up to 6.51%. This
was then followed by phase transfer of NIR-II Ag2Te QDs via direct ligand exchange of
hydrophobic Ag2Te surface ligands with ligands of the thiol family (e.g., glutathione (GSH),
DL-cystine, dithiothreitol (DTT), dihydrolipoic acid (DHLA), DHLA-EA, cysteamine, and
thiol-containing PEG). It was observed that the hydrophilic thiol ligands promoted the
water solubility of QDs and that only ligands composed of free thiol groups were suitable
for this technique. Moreover, the QDs were reported to retain a PLQY of nearly 5% as
well as exhibiting good biocompatibility. PEGylated Ag2Te QDs were used for “second”
near-infrared (NIR-II) imaging in mice. Unlike near-infrared (NIR) imaging with emission
wavelengths between 700–900 nm, which is reported to produce substantial background
signal and affect the quality of images [145], the NIR-II window encompasses emission
wavelengths between 1000–1700 nm. Thus, it exhibits excellent penetration capacity and
high-resolution fluorescence imaging in the living body. Real-time imaging in mice showed
high brightness in abdominal vessels, sacral lymph nodes, hindlimb arterial vessels, and
tumor vessels [144].

4.2. Surface Silanization

This coating process produces a silica shell around the QDs. It is an effective process
for the modification of hydroxyl-rich material surfaces. This technique initially deposits
hydroxyl groups by ligand exchange of the surface hydrophobic groups with a thiol-derived
silane ligand (e.g., mercaptopropyltris (methyloxy)silane (MPS)) to place silanol groups
on the surface. This is followed by further silica shell growth, where other silanes can be
added on the outer surface to modify the surface charge or provide reactive functional sites.
Aminopropylsilanes (APS), phosphosilanes, and polyethylene glycol (PEG)-silane are the
most frequently used silanes [138,140]. Due to the silica thickness, the aqueous stability,
size, biocompatibility, and fluorescence of the QDs are enhanced after being covered with
a silica layer [146]. The layer also serves as a platform for further coating processes due
to the silane shell end terminal groups exposing either their thiol, phosphate, or methyl
terminal ends for subsequent reactions [147]. The advantage of this process is that the silica
shells are highly crosslinked, thereby stabilizing the silanized QDs [147]. Furthermore, this
is a preferred approach because the QDs can be made more biocompatible, less toxic, and
chemically inert. The presence of silica increases the photostability of QDs by preventing
surface oxidation [148,149], which makes them useful for applications such as drug and
gene delivery, therapy, and bioimaging [150,151].

For example, silica coating is reported to suppress photoluminescence bleaching through
the reduction in photochemical oxidation of cadmium selenide (CdSe) surfaces [152]. Simi-
larly, encapsulation in silica was reported to prevent the loss of Cd2+ ions [153]. However,
the silica shell is reported to increase the hydrodynamic size. Ham et al. [154] fabri-
cated SiO2@InP QDs@SiO2 NPs by encapsulating multiple indium phosphide/zinc sulfide
(InP/ZnS) QDs onto silica templates and coating silica shells over them. The fabricated
QDs were reported to exhibit hydrophilic properties due to the surface silica shell. The
NPs were further applied in detecting tumors where the fluorescence signal was notably
detected in the tumor. Goftman et al. synthesized silica-coated cadmium selenide (CdSe)
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QDs by the reverse microemulsion method. The silica-capped QDs were reported to have
high stability and initial brightness [155].

4.3. Amphiphilic Ligands

In this approach, the hydrophobic surfactants trioctylphosphine, trioctylphosphine
oxide, and hexadecylamine (TOP/TOPO/HDA) are preserved on the surface of the QDs.
They are coated or encapsulated with crosslinked amphiphilic polymers containing hy-
drophobic and hydrophilic segments. The synthesized QDs are hydrophobic, and upon
encapsulation with an amphiphilic polymer, an attraction is formed between the hydropho-
bic alkyl chains and the hydrophobic components of surfactants on the surface of the QDs.
In contrast, the hydrophilic component (carboxylic acid or polyethylene glycol chains)
provides dispersibility in aqueous solution and chemical functionality. During the coating
process, the amphiphilic polymers are hypothesized to provide additional stability to the
QDs through crosslinking reactions [51,138,156]. Some amphiphilic polymers include poly
(acrylic acid), phospholipids, and maleic anhydride copolymers [156].

Yoon et al. [157] fabricated CdSe@ZnS/ZnS core/shell QDs encapsulated with an
amphiphilic polymer (i.e., poly(styrene-co-maleic anhydride) PSMA). The amphiphilic
polymer (PSMA) served as a crosslinker for the matrix polymer between the maleic anhy-
dride of QDs and the diamines of PDMS within a ring-opening reaction. This produced
a highly transparent polymer at low curing temperature with enhanced compatibility
between QDs and a polydimethylsiloxane (PDMS) matrix and also improved dispersion of
QDs. The encapsulated QDs were also reported to preserve photoluminescence intensity as
a result of using this encapsulation method. They further fabricated a light-emitting diode,
which was observed to have excellent luminous efficacy.

Starch-g-poly(acrylic acid)/ZnSe-QDs hydrogel was fabricated by Abdolahi et al. [158].
The QDs were fabricated to serve as an effective adsorbent and photocatalyst. In another
study, Speranskaya et al. [159] synthesized hydrophobic cadmium selenide (CdSe)-based
QDs. The QDs were hydrophilized by coating with amphiphilic polymers (i.e., maleic
anhydride-based polymers and Jeffamines). The polymer-coated QDs were reported to
retain up to 90% of their initial brightness. Carolina and Wolfgang [160] synthesized pyridyl-
modified amphiphilic polymeric ligands (Py-PMA) in order to overcome the limitations of
QDs coated with amphiphilic polymers, such as a decrease in photoluminescence quantum
yield and diffusion of small molecules causing oxidation. Poly (isobutylene-alt-maleic
anhydride) backbone was used for synthesis with pyridyl and alkyl end groups. The
synthesized polymer-coated QDs were reported to preserve photoluminescence quantum
yield and exhibit good colloidal stability in water.

4.4. Microsphere Coating

The microsphere coating of QDs is of great interest in biological applications [161]. The
formation of composite nanostructures in which micro-composite nanostructures are assem-
bled from QDs by an encapsulant component that can serve as a glue, a scaffold, or a matrix
has been developed by researchers. Different techniques have been used for encapsulating
QDs into microspheres. These include dispersing synthesized microspheres, placing QDs in
a solvent or non-solvent mixture [162], and electrostatic bondage of QD to the microsphere
surface [163]. The reverse microemulsion method [164] and emulsion polymerization [165]
are encapsulation techniques. For example, a uniform magnetic/fluorescent microsphere
was synthesized by Li et al. [164] using the Pickering emulsion polymerization method.
The authors synthesized QD-encoded magnetic microbeads that were closely covered
with a Pickering structure containing many silica nanoparticles. This was done using a
microfluidic device that produced homogenous microbeads by forming Pickering emulsion
droplets. The oil-in-water emulsion (O/W) droplets fabricated contained the oil phase
(i.e., Fe3O4 NPs and QDs along with PSMA polymer were dispersed in toluene) and the
water phase (silica NPs dispersed in deionized water), with the silica NPs accumulated
at the interface (i.e., the oil and water interface). Thus, the silica NPs served as stabiliz-
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ers. They reported the successful synthesis of a CdSe/ZnS core/shell along with a Fe3O4
nanoparticle encapsulated in a magnetic fluorescence microsphere (MFM microsphere).
The microspheres were observed to be highly homogenous in shape, to have a high surface
area, and to be well dispersed. Moreover, they also exhibited excellent fluorescent stability
under room temperature. Hence, they further tested the microspheres to detect tumor
markers (CEA, CA199, CA125) in a single sample. Results showed the detection limits
achieved to be 0.027 ng/mL, 1.09 KU/L, and 1.48 KU/L for CEA, CA199, and CA125,
respectively. The microspheres exhibited excellent detection performance.

Zhao et al. [166] synthesized bismuth oxybromide/carbon quantum dots (BiOBr/CQDs)
microspheres using the solvothermal method followed by the hydrothermal process. The
synthesized microsphere QDs were reported to exhibit excellent photoactivity under visible
light irradiation due to exceptional electron transfer, and the CQDs exhibited increased light
harvesting capacity in addition to stability and enhanced visible-light absorption ability.
Moreover, QD-based sensors have been observed to agglomerate, leading to self-absorption
and non-radiative deactivation. Hence, to overcome this issue, microsphere-QD-sensor
platforms are being utilized. For instance, Khan et al. [167] developed a fluorescent sensor
platform for heavy metal sensing. The authors used non-toxic fluorescent zinc oxide ZnO–
QDs that were conjugated with carboxymethyl cellulose (CMC) polymer (ZCM) for the
synthesis of microspheres for sensing heavy metal (cationic metal ions, e.g., Pb2+, Hg2+,
Fe3+, Cr6+, Cu2+, Ni2+, Mn2+). To differentiate these metal ions, a fluorescence turn-off
response was adopted. Their results showed that the developed sensor had an affinity
towards the different heavy metal ions and excellent photostability. In addition to detecting
the heavy metals, the sensor could also quantify them with an accuracy of 5%. However,
only Fe3+, Cr6+, and Cu2+, among the seven metals, showed high sensitivity toward the
sensor system. Table 3 presents several examples of functionalization of the surface of QDs.

Table 3. A summary of surface functionalization of QDs (showing the advantages and disadvantages
of the four main techniques).

Surface Modification
Techniques Advantages Disadvantages Refs.

Ligand exchange Ease of processing
Small QD size

Degradation of QD photophysical
properties in an aqueous

environment (i.e., reduced PLQY)
QD core is susceptible to oxidation

[51,168–170]

Surface silanization

Improves biocompatibility
Highly cross-linked ligand molecules

End terminal groups allow further coating
through the exposure of the terminal ends

(e.g., thiol).
Control of silica shell thickness encourages

fine-tuning of QD response to light.
Improves PLQY of QDs

Improves photochemical stability

Large hydrodynamic size
Aggregation of QDs in

aqueous solution
[171–173]

Amphiphilic ligands

More chemically stable
Increased colloidal stability

Good biocompatibility and strong, stable
fluorescence signals

Size enlargementSurface defects [138,174,175]

Microsphere coating
Improve QD stability

High fluorescence
Can mask QD toxicity effectively

The formation of a uniform
microsphere is hindered.

Reduced PLQY
Encapsulation of high

concentrations of QDs results in
QD aggregation

[167,176,177]
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This table shows that each of these methods has its advantages. However, the final
choice depends on the specific application and the requirements. For instance, the ligand
exchange process decreased the photoluminescence quantum yield (PLQY). Hence, direct
encapsulation of QDs with silica shell resolves the issue of reduced luminescence yields.
This layer of silica on the QD is reported to provide enhanced aqueous stability and
fluorescence by the silica’s thickness [146]. Yet, it was reported that coating with silica shell
yields larger QDs due to the difficulty in controlling the silica thickness [173]. Moreover,
the encapsulation of QDs with an amphiphilic polymer also preserves quantum yield (QY)
even after surface modification.

Regarding microspheres, they are reported to provide hydrophobic protection. This is
because some QDs are hydrophobic in nature and not biologically useful. Thus, QDs are
functionalized or coated to make them water-dispersible and enhance their biocompati-
bility. However, it was reported that the size of the photoluminescence (PL) microsphere
determined QD stability, with a larger PL microsphere observed to give more hydropho-
bic protection of the interiors of QDs compared to smaller PL microspheres [178]. In
other words, for every possible application, the prerequisite is to properly functionalize
the surface of the QDs accordingly while ensuring they do not lose their physicochemi-
cal properties, which are enhanced in aqueous media. Figure 3 illustrates some surface
functionalization approaches of a multifunctional QD.
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Figure 3. Surface functionalization of QD core/shell. The surface coating (e.g., amphiphilic polymer
coating) enables antibodies, drugs, proteins, and other compounds to be linked with it. Hydrophobic
drugs can also be integrated between the hydrophobic core and amphiphilic layer.

5. Application of QDs
5.1. QDs for In Vitro Tumor Imaging

One of the most important applications of QDs in recent research has been to produce
in vitro fluorescent images of cancerous cells. The unique properties of QDs make them
preferable to traditional fluorescence organic dyes. A schematic representation of QDs for
in vitro tumor imaging is shown in Figure 4.
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Nitrogen-doped carbon QDs (N-CQDs) were synthesized hydrothermally by
Wu et al. [179] using tetraphenyl porphyrin and its metal complex (Pd or Pt) as a pre-
cursor. As a result of the strong photoluminescence (PL) exhibited by the CQDs, they
were investigated as imaging probes for living cells. HeLa cells treated with CQDs
(0.2 mg/mL) exhibited blue, green, and red fluorescence at excitation wavelengths of
405 nm, 458 nm, and 514 nm. Fluorescence images showed CQDs to be mainly dispersed
in the cell cytoplasm, and the nucleus showed weak emission signals. These experiments
supported that CQDs enter into cells via endocytosis.

Near-infrared (NIR) emitting CdHgTe/CdS/CdZnS QDs were synthesized by
Liu et al. [180]. The QDs were coated with N-acetyl-L-cysteine (NAC), 3-mercaptopropionic
acid (MPA), and thioglycolic acid (TGA) thiol ligands. HeLa cells were stained with these
QDs and exposed to continuous UV excitation. In vitro studies showed that after 20 min
of irradiation, stained HeLa cells produced red emission. Fluorescence images revealed
that after 40 min, NAC-tagged CdHgTe/CdS/CdZnS QD-stained cells showed high photo-
stability in the intracellular environment compared to TGA- and MPA-capped QDs. This
success was attributed to the NAC thiol capping of the QDs preventing degradation.

Near-infrared (NIR) CdTe/CdS was synthesized in an aqueous solution with 3-
mercaptopropionic acid (MPA) as a stabilizer. These QDs were employed to monitor
the change in Cu2+ concentration in living cells. HeLa cells were incubated with the
synthesized QDs (5 µg/mL), followed by adding Cu2+ (30 µM) before fluorescence imag-
ing. A bright fluorescence signal from the cells at 700–800 nm showed efficient uptake of
CdTe/CdS. However, when HeLa cells were treated with 30 µM of Cu2+ before incubation
with the QDs, significant fluorescence quenching (~90%) was observed. This observation
was attributed to the aggregation of QDs mediated by the competitive binding between
MPA and the Cu2+ in the solution. Overall, they reported the nanosensor to exhibit high se-
lectivity, excellent photostability, and rapid response [181]. Fluorescence images generated
during this study are shown in Figure 5.

Shi et al. synthesized molybdenum disulfide (MoS2) QDs with Na2MoO4 as the molyb-
denum source and 2H2O·GSH as the sulfur source using hydrothermal synthesis [182].
The reaction conditions (i.e., precursor, precursor ratio, ratio, reaction time, and tem-
perature) were optimized to improve the photoluminescence quantum yield (PLQY).
These MoS2 QDs were then used for fluorescence imaging. The in vitro studies reported
glutathione–molybdenum disulfide (GSH-MoS2) to be biocompatible after SW480 cells
were exposed to the QDs (from 0 to 1.5 µM Mo). They reported that blue fluorescence was
observed in the SW480 cells cytoplasm.

In another study, blue-fluorescent nitrogen-doped graphene quantum dots (N-GQDs)
were produced by Tao et al. [183]. The QDs were synthesized using hydrothermal synthesis
from citric acid and diethylamine, and the binding sites were highlighted. The doping with
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nitrogen element resulted in ample amide II bonds (this provides a structure for integrating
HA with N-GQDs) and enough binding sites to conjugate hyaluronic acid (HA). In order to
recognize the breast cancer cells (MCF-7 cells), the N-GQDs were conjugated to HA through
an amide bond. It was reported that the formation of amide bonds was more conducive
under alkaline conditions. In addition, MCF-7 cells exhibited stronger fluorescence as a
result of combining HA-conjugated N-GQDs (HA-N-GQDs) with CD44 over-expressed on
the MCF-7 cells surface. Their results showed the good cytocompatibility, low toxicity, and
high fluorescence of HA-N-GQDs.
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Figure 5. Confocal fluorescence images of HeLa cells (A) before and (B) after mixing with CdTe/CdS
QDs at 5 µg/mL and (C) 30 µM of Cu2+ was then added to (B) to monitor concentration change of
Cu2+ Showing as (1) brightfield images, (2) fluorescence images (700–800 nm filter), and (3) merging
of (1) and (2). (Scale bar 30 µm. Reprinted with permission from [181]).

5.2. QDs for In Vivo Tumor Imaging

The excellent fluorescent signals and multiplex capabilities of QDs make them a
promising tool for cancer bioimaging, specifically in vivo. Researchers have reported many
examples of using QDs to image tumors in vivo. A schematic representation is shown in
Figure 6.
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For instance, Zhu et al. [184] developed near-infrared (NIR) fluorescent silver se-
lenide (Ag2Se) QDs tagged with Cetuximab for targeted imaging and cancer therapy. The
multifunctional nanoprobe was reported to display fluorescent contrast at the tumor site,
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and 24 h post-injection, the fluorescence was still easily detected at the tumor site, unlike
with Ag2Se QDs alone. Their results showed that this nanoprobe significantly inhibited
tumor growth, and the survival rate of nude mice with orthotopic tongue cancer improved
from 0% to 57.1%. This platform was claimed to have successfully targeted orthotopic
tongue cancer.

Sulfonic-graphene QDs were used by Yao et al. [185] to target tumor cells in vivo. They
showed that the sulfonic-GQDs had successfully penetrated the plasma membrane into
tumor cells without modifying any bio-ligand, which they attributed to high interstitial
fluid pressure. They also reported fluorescence of the sulfonic-GQDs at an excitation of
470 nm in tumor-bearing mice post-injection. Rapid accumulation of sulfonic-GQDs at
the tumor site occurred 0.5 h after injection and was cleared 24 h later. This research
demonstrated sulfonic-GQDs’ ability to target nuclei of tumor cells in vivo with a low
distribution in normal tissues.

In another study, Wu et al. [186] developed a novel strategy against tumor cells.
They modified near-infrared fluorescent indium phosphide (InP) QDs using a vascular
endothelial growth factor receptor 2 (anti-VEGFR2) monoclonal antibody and attached miR-
92a inhibitor to VEGFR2-InP QDs. The miR-92a is said to enhance the expression of tumor
suppressor p63. Their results showed that the functionalized InP nanocomposite showed an
enhanced NIR fluorescence intensity at the tumor site, which had accumulated via enhanced
permeability and retention effect, thereby targeting tumor angiogenic cells. Moreover, using
nude mice inoculated with k562 cells, they investigated the suppression of tumor growth
in vivo. They observed the functionalized InP nanocomposite to significantly inhibit tumor
growth compared to InP QDs or miR-92a, which showed moderate suppression. Overall,
the developed system may provide a new and promising chemotherapy strategy against
tumor cells.

Fluorescent silver indium sulfide/zinc sulfide (Ag-In-S/ZnS (AIS/ZnS)) QDs with red
emission were synthesized by Sun et al. [187] and then dispersed with poly(vinylpyrrolidone)
(PVP) for imaging of tumor drainage lymph nodes. The synthesized QDs were subcuta-
neously injected in nude mice, and a bright red fluorescence was observed, suggesting that
AIS/ZnS QDs are excellent fluorescent probes for in vivo imaging. To image sentinel lymph
nodes, AIS/ZnS QDs were intradermally injected into the extremities of nude mice, and
the QDs were observed to migrate to sentinel lymph nodes. Furthermore, within 10 min of
intratumoral injection in mice bearing H460 tumors, AIS/ZnS QDs were observed to stain
tumor drainage lymph nodes with bright red fluorescence. However, after 10 min, only
weak fluorescence was observed in the tumor drainage lymph node.

Triple-negative breast cancer (TNBC) is known to develop rapidly and is associated
with recurrence and metastasis. The efficacy of chemotherapy is reported to be poor, with
the survival rate of patients affected being less than 30%. Hence, Zhao et al. [188] designed
and constructed biomimetic black phosphorus QDs (BBPQDs) coated with cancer cell
membranes for tumor-targeted photothermal therapy (PTT) and anti-PD-L1 mediated im-
munotherapy. The stability of the BBPQDs after encapsulating with cancer cell membrane
exhibited active targeting and enrichment ability in tumors. Subsequently, Cy5.5-labelled
BBPQDs were intravenously injected into BALB/c mice bearing 4T1 tumors to investigate
tumor targeting and tissue distribution. The BBPQDs were reported to exhibit significant
fluorescence intensity post-injection compared to Cy5.5-labeled BPQDs. Moreover, after
72 h, the BBPQDs showed good tumor targeting, high aggregation, and good retention
at the tumor site. The BBPQDs exhibited excellent photothermal properties and could
kill tumors directly and induce dendritic cell maturation and the activation of T cells.
BBPQD-mediated PTT and αPD-L1 combined inhibited tumor recurrence and metastasis
through the immune memory effect.

Stable fluorescent CQDs were synthesized by Huang et al. [189] under photobleaching
treatment. The synthesized CQDs were reported to have a quantum yield (QY) of ~13%
at an excitation of 365 nm, proving them to be viable in bioimaging mice with Smmc-
7721 tumor cells. The CQDs were intravenously injected (0.2 µg/mL). Optical images of
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the distribution of the CQDs were obtained at different time points. The study reported
detecting fluorescence signal 5 min post-injection, and CQDs accumulated at the tumor site
after 3 h. Complete accumulation of the CQDs was reported to occur at 12 h. The CQDs
appeared to exhibit good biocompatibility and could be used for a prolonged imaging
period. Results also showed that CQDs accumulated in the tumor, kidney, and liver.
However, no fluorescence signal was detected in the heart, lungs, and spleen. In addition,
the CQDs were reported to exhibit excellent bioimaging performance, low cytotoxicity, and
antioxidant activity.

Although the unique optical properties of QDs make them an attractive fluorescent
probe, specifically in bioimaging, the potential toxicity of QDs, such as those containing toxic
heavy metals, has limited their applications. Hence, Yaghini et al. [190] developed a heavy-
metal-free biocompatible and good photoluminescence quantum yield (PLQY) Indium-based
QD (bio CFQD® NP) for imaging in vivo. These metal-free QDs were investigated for in vivo
axillary lymphatic mapping applications. Twenty-four hours post-injection of the QDs in the
paw of rats, the QDs were observed to accumulate mainly in the regional lymph nodes with
negligible accumulation in the spleen and liver while exhibiting stable photoluminescence.
Their low intrinsic toxicity makes them attractive for in vivo tumor imaging.

5.3. QDs for Drug Delivery

QDs are just one example of the numerous nanoparticles (NPs) that have been widely
investigated for drug delivery applications. Reports show that antitumor efficacy is in-
creased while systemic side effect is reduced, which is attributed to effective nanoparticle
entrapment of anti-cancer drugs and control of distribution in cells and in tissue. The use
of nanoparticles as drug delivery agents has been reported to overcome the limitations
posed by traditional cancer therapies, including but not limited to overcoming multidrug
resistance, lack of specificity, and cytotoxicity. Their specific advantages, such as enhanced
stability, reduced toxicity, precise targeting, and biocompatibility, promote the use of NPs
as nanocarriers in cancer therapy [191–193].

Moreover, these nanocarriers have been found to facilitate the administrative routes
and enhance the biodistribution of drugs [194]. They act as drug vehicles and can target
tumor cells or tissues while shielding the drug during transport [192]. The delivery of drugs
to the site occurs actively, i.e., a drug delivery system (DDS) is coupled with peptides and
antibodies anchored with lipids or receptors at the target site, or passively, i.e., the drug is
transported via self-assembled nanostructured material and released at the target site [195].

Nanoparticles, in general, are excellent nanocarriers for targeted drug delivery. They
serve as potential candidates due to their biocompatibility, controlled drug release, pro-
longed circulation time, and accumulation at the tumor site due to enhanced permeability
and retention (EPR) effect [196–198]. Table 4 lists some common nanoparticles used for
drug delivery, along with their advantages and disadvantages.

Table 4. Advantages and disadvantages of organic and inorganic NPs used for drug delivery.

Organic Nanoparticles Advantages Disadvantages Refs.

Liposomes Enhances drug solubility Decreased stability [199,200]
Reduces drug toxicity

Micelles
Improves circulation time Lack of targeting moieties [201,202]

Protects aqueous drug cargo

Polymer NP (Chitosan) Increase drug residence time in the bloodstream Initial burst release results
in loss of drug efficiency [203,204]

Dendrimers

The hydrophobic core allows insoluble anti-tumor
drugs to be absorbed and provides smooth delivery.

Rapid clearance of
reticuloendothelial system [205,206]

The hydrophilic part increases stability and limits
the particles' interaction with serum proteins.
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Table 4. Cont.

Organic Nanoparticles Advantages Disadvantages Refs.

Inorganic Nanoparticles

Silver NPs Enhances PTX distribution in tumor
microenvironment

Release of silver ions
in cytosol [207,208]

Gold NPs
Enhances photothermal therapy Low tissue clearance [209–211]

Easily functionalized

Mesoporous silica NPs Controlled drug release Slow biodegradation [204,212]

Magnetic NPs (iron oxide) Precise targeting of cancer cells
Release of PTX under external magnetic field Removal by macrophages [213–215]

Quantum Dots Improves the bioavailability of the drug Leaching of heavy metals [216,217]

The use of QD nanoparticles for targeted drug delivery is of great interest due to their
unique properties, including their distinctive optical characteristics due to their quantum
confinement effects. QDs are also an excellent choice because of their intrinsic fluorescence
and unique properties to serve as a multifunctional nanosystem. This includes their ability
to aid in targeted drug delivery and improve the bioavailability and stability of drugs by
prolonging the circulation time in vivo and improving distribution [216].

The use of QDs for drug delivery requires the modification of their surface with target
ligands (e.g., thioglycolic acid, polyethylene glycol (PEG), antibodies, DNA, biotin, or
peptides) [218,219]. Some surface modifications enable the drug molecules to bind to the
QDs through covalent bonds or electrostatic binding, which forms nano-drug carriers and
then makes fluorescent tags of drug molecules in cells and live animals [220]. Hence, QDs
can act as drug carriers as well as fluorescent probes to trace drug distribution in vivo [221].
However, the size of the QD should be considered because excretion from the body is
important. Moreover, the drugs can be loaded into a polymer NP system containing either
hydrophilic QDs or hydrophobic QDs, depending on the polymer particle type used for
encapsulation. This is followed by delivery at the desired site, where the polymer particle
releases the drug via degradation at low pH or diffuses out of the polymer [222]. Figure 7
shows the development of molybdenum disulfide (MoS2) QDs for tumor fluorescence
imaging, tumor targeting, and chemo/photodynamic therapy (PDT).

Nanomaterials 2023, 13, x FOR PEER REVIEW 20 of 37 
 

 

The use of QD nanoparticles for targeted drug delivery is of great interest due to their 

unique properties, including their distinctive optical characteristics due to their quantum 

confinement effects. QDs are also an excellent choice because of their intrinsic fluorescence 

and unique properties to serve as a multifunctional nanosystem. This includes their ability 

to aid in targeted drug delivery and improve the bioavailability and stability of drugs by 

prolonging the circulation time in vivo and improving distribution [216]. 

The use of QDs for drug delivery requires the modification of their surface with target 

ligands (e.g., thioglycolic acid, polyethylene glycol (PEG), antibodies, DNA, biotin, or pep-

tides) [218,219]. Some surface modifications enable the drug molecules to bind to the QDs 

through covalent bonds or electrostatic binding, which forms nano-drug carriers and then 

makes fluorescent tags of drug molecules in cells and live animals [220]. Hence, QDs can 

act as drug carriers as well as fluorescent probes to trace drug distribution in vivo [221]. 

However, the size of the QD should be considered because excretion from the body is 

important. Moreover, the drugs can be loaded into a polymer NP system containing either 

hydrophilic QDs or hydrophobic QDs, depending on the polymer particle type used for 

encapsulation. This is followed by delivery at the desired site, where the polymer particle 

releases the drug via degradation at low pH or diffuses out of the polymer [222]. Figure 7 

shows the development of molybdenum disulfide (MoS2) QDs for tumor fluorescence im-

aging, tumor targeting, and chemo/photodynamic therapy (PDT). 

 

Figure 7. Illustration of synthesized PEGylated MoS2 conjugated with arginine-glycine-aspartic acid 

(RGD) peptide to form MPR (i.e., novel nanocarrier) and then loaded with doxorubicin (DOX) to 

form MPRD. MPRD exhibits tumor-targeting ability, pH-responsive drug release, and synergistic 

chemo/PDT performance under near-infrared (NIR) laser irradiation(grey circles: synthesized MoS2 

QDs, red circles: Dox, green triangles: RGD). Reprinted with permission from [223]. 

Table 5 shows in vitro and in vivo targeted drug delivery using QDs. 

Table 5. In vitro and in vivo targeted drug delivery using QDs. 

QDs Used In Vitro Drug Cell Line Ref. 

Iron oxide carbon QDs encapsulated in chitosan (Fe2O3 

/CQDs/Chitosan)  
Curcumin MCF-7 cells [224] 

Transferrin (TF)-conjugated Carbon QDs Doxorubicin MCF-7 cells [225] 

Graphene oxide QDs conjugated with glucosamine and 

boric acid (GOQDs-GlcN-BA) 
Doxorubicin MCF-7 cells [226] 

Magnesium nitride (Mg/N) doped carbon QDs (CQDs) Epirubicin (EPI) 
4T1 and MCF-7 

cells 
[227] 

Figure 7. Illustration of synthesized PEGylated MoS2 conjugated with arginine-glycine-aspartic
acid (RGD) peptide to form MPR (i.e., novel nanocarrier) and then loaded with doxorubicin (DOX)



Nanomaterials 2023, 13, 2566 20 of 35

to form MPRD. MPRD exhibits tumor-targeting ability, pH-responsive drug release, and synergistic
chemo/PDT performance under near-infrared (NIR) laser irradiation(grey circles: synthesized MoS2

QDs, red circles: Dox, green triangles: RGD). Reprinted with permission from [223].

Table 5 shows in vitro and in vivo targeted drug delivery using QDs.

Table 5. In vitro and in vivo targeted drug delivery using QDs.

QDs Used In Vitro Drug Cell Line Ref.

Iron oxide carbon QDs encapsulated in
chitosan (Fe2O3/CQDs/Chitosan) Curcumin MCF-7 cells [224]

Transferrin (TF)-conjugated Carbon QDs Doxorubicin MCF-7 cells [225]

Graphene oxide QDs conjugated with
glucosamine and boric acid

(GOQDs-GlcN-BA)
Doxorubicin MCF-7 cells [226]

Magnesium nitride (Mg/N) doped carbon
QDs (CQDs) Epirubicin (EPI) 4T1 and MCF-7 cells [227]

Nitrogen-doped Graphene QDs (N-GQDs) Methotrexate (MTX) MCF-7 human breast
cancer cells [228]

PEGylated molybdenum disulfide QDs
(PEG-MoS2 QDs) Doxorubicin U251 cells [229]

Zinc oxide adipic dihydrazide heparin
(ZnO-ADH-Hep) Paclitaxel A549 cells [230]

Cadmium-sulfide-modified chitosan
(CdS@CTS) Sesamol MCF-7 cell [231]

PEGylated Silver graphene QDs (Ag-GQDs) Doxorubicin HeLa and DU145 cells [232]

Magnetic carbon triazine dendrimer reacted
with graphene QDs (Fe3O4@C@TD GQDs)

microsphere
Doxorubicin A549 cell [233]

QDs used in vivo

Graphene QDs Doxorubicin MCF-7 cells [234]

Silver sulfide (Ag2S) QDs conjugated
with chitosan Doxorubicin HeLa cells [235]

Manganese doped zinc sulfide (Mn-ZnS)
QDs conjugated with folic acid (FA) 5-fluorouracil (5-FU) 4T1 breast cancer cells [236]

PEGylated silver sulfide Ag2S QDs Doxorubicin MDA-MB-231 human breast
tumor cells [237]

Graphene QD (GQD)-modified magnetic
chitosan Fe3O4@CS Doxorubicin Hepatocellular carcinoma [238]

Red-emissive carbon QDs (CQDs) Doxorubicin HeLa cells [239]

Black phosphorus QDs (BPQDs)
encapsulated in platelet-osteosarcoma hybrid

membrane (OPM)
Doxorubicin Osteosarcoma [240]

Nitrogen-doped carbon QDs conjugated with
folic acid (FA) Doxorubicin 4T1 and MCF-7 cells [241]

PEGylated molybdenum disulfide (MoS2)
QDs conjugated with arginylglycylaspartic

acid (RGD) peptide
Doxorubicin HepG2 cells [223]

Polyethyleneimine (PEI)-conjugated
graphene QDs (GQDs) Doxorubicin HCT116 cells [242]
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The anti-tumor drug Adriamycin was loaded into a drug delivery system (DDS)
developed by Hao et al. [243] through covalent interactions and the formation of Zn2+-
DOX. The lanthanum-doped zinc oxide (La-ZnO) QDs were modified with hyaluronic
acid (HA). This enables them to bind specifically to receptor CD44. In addition, the devel-
oped system was PEGylated to stabilize it under physiological conditions. Their results
showed that an anti-tumor effect and dual fluorescence enhancement were achieved due to
lanthanum doping.

Similarly, Cai et al. [55] used covalent interactions and the formulation of a zinc
doxorubicin (Zn2+-Dox) chelate complex to load Doxorubicin to hyaluronic-functionalized
PEGylated zinc oxide (HA-ZnO-PEG). They reported that the system exhibited an acidic
pH response, which triggered targeted drug release in tumors.

A polylactic acid (PLA) polymer matrix has been used for drug encapsulation as it
provides sustained and controlled drug release. Gautam et al. [244] conjugated Gefitinib to
polyethylene glycol graphene QDs (PEG-GQDs) and encapsulated the QDs in polylactic
acid (PLA) microsphere for cancer therapy. They aimed to use the developed system for
controlled drug (Gefitinib) delivery. They reported drug release to be around 65% after
48 h at an acidic pH (pH = 4.5). This was attributed to destabilized electrostatic interaction.
At basic pH (pH = 7.4), drug release was observed to be slower. They suggested that their
prepared system using PLA microspheres could be an excellent candidate for cell imaging
and drug delivery. Figure 8 illustrates the in vitro release of Gefitinib-loaded microspheres.
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Figure 8. In vitro release of drug (Gefitinib)-loaded microspheres at pH 4.5 and 7.4. Reprinted with
permission from [244].

Furthermore, Wei et al. [245] evaluated using QDs as an effective tool for microenviron-
ment-targeted drug delivery. Using chemical oxidation and a covalent reaction, Pt-loaded
and polyethylene glycol (PEG)-modified graphene QDs (GQDs) were developed as a drug
delivery system. The Pt-loaded and PEG-GQDs were developed to overcome hypoxia-
induced chemoresistance in oral squamous cell carcinoma. The accumulation of Pt within
oral squamous cell carcinoma (OSCC) cells was significantly enhanced using polyethylene
glycol–graphene QDs-Pt (GPt) in normoxia and hypoxia. The GPt was observed 2 h
after incubation in the cytoplasm and in the nucleus 5–8 h after incubation. After 24 h,
GPt luminescence was further enhanced, indicating that GQDs can transfer Pt and are
potential platforms for nucleus-targeted drug delivery. The in vivo studies reported that
GPt inhibited tumor growth.

In another study, graphene QDs (GQDs) were incorporated into carboxymethyl cellu-
lose (CMC) hydrogels to design a hydrogel nanocomposite film loaded with doxorubicin as
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a drug model. They reported drug release to inversely depend on the concentration of GQD
(i.e., release % of DOX from CMC/GQD decreases with increasing GQD concentration)
even as the pH was varied. In addition, increasing GQD concentration resulted in increased
drug loading capacity, showing that GQDs incorporated in CMC films resulted in pH
sensitivity and the prolonged release of the therapeutic agent [246]. Olerile et al. [247]
developed paclitaxel (PTX) and CdTe@CdS@ZnS QDs co-loaded in nanostructure lipid
carriers (NLC). Their experiments showed that the encapsulation efficiency of PTX was
80.70 ± 2.11% and the drug loading was 4.68 ± 0.04%. In addition, the rate of tumor
suppression was reported to be 77.85%. Their results showed that the co-loaded NLC could
also detect H22 tumors, revealing some potential for bioimaging.

Zhao et al. [248] also used paclitaxel (PTX) as a model drug. They synthesized
manganese-doped zinc selenide zinc sulfide (ZnSe:Mn/ZnS) core/shell, and the anti-cancer
drug (PTX) was co-loaded into hybrid silica nanocapsules conjugated with folate. Folic
acid (FA) conjugation was performed via an esterification reaction between FA carboxylic
groups and animated F127 amino groups. The PTX solubility (0.1 µg/mL) was reported
to be enhanced 630 times, improving the loading amount to 62.99 µg/mL. Their reports
showed sustained release of PTX across 12 h. Overall, the developed hybrid nanocapsules
showed the efficacy of anti-cancer drug loading and sustained release. Figure 9 illustrates
the process of FA conjugation.
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from [248].

Demir Duman et al. [249] evaluated the use of near-infrared-emitting silver sulfide
(Ag2S) QDs. The Ag2S QDs surfaces were coated with PEG, functionalized with Cetuximab
(Cet) antibodies to target and reveal tumor cells, and loaded with the 5-fluorouracil (5FU)
anti-cancer drug. The QDs were developed for targeted NIR imaging and treatment of lung
cancer via low and high epidermal growth factor receptors (EGFR). The Cet-conjugated
QDs delivered 5FU effectively and selectively to A549 cells and provided exceptionally
enhanced cell death associated with apoptosis. They suggested their novel system would
significantly overcome drug resistance compared to the treatment of 5FU alone.

Yang et al. [250] developed GQDs loaded into hollow mesoporous silica nanoparticles
(HMSN cavity) (GQDs@hMSN-PEG NPs). The singlet oxygen (1O2) generating capacity of
the GQDs was not affected after hMSN loading. The developed GQDs@hMSN-PEG NPs
were reported to exhibit excellent absorption and emission properties. The drug loading
capacity was measured and the NPs were found to carry significant amounts of DOX. They
further demonstrated drug delivery feasibility on mice bearing 4T1 tumors by injecting
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GQDs@hMSN (DOX)-PEG, with results showing the feasibility of tumor-directed drug
delivery. Table 6 summarizes some other applications relative to cancer involving QDs.

Table 6. Other recent applications of QDs relative to cancer [226,251–268].

QDs Utilized Application Target Cells

Carbon QDs (CQDs) Drug delivery Breast cancer cell line
Carbon QDs (CQDs) Drug delivery Breast MCF-7 cancer cells

Graphene QDs (GQDs) Drug delivery U251 glioma cells
Near-infrared (NIR) copper indium

sulfide zinc sulfide core/shell
(CuInS2/ZnS) QDs

In vivo RR1022 Cancer cell

Alloyed Zinc copper indium sulfide
(ZCIS) QDs In vitro HER2-positive SKBR3 cancer cells

Molybdenum disulfide (MoS2)
QDs-MXene

Electrochemiluminescence (ECL) sensor
for detection Gastric cancer cell exosome

Zinc oxide (ZnO) QDs Drug delivery HepG2 cells

Molybdenum disulfide (MoS2) QDs Photodynamic therapy
Drug delivery HeLa and HepG2 cells

Manganese-doped molybdenum
disulfide (Mn-MoS2) QDs

In vivo MR imaging
Fluorescence labeling

786-O
Renal carcinoma cells

Titanium-ligand-coordinated black
phosphorus QDs (TiL4@BPQDs) In vivo Photoacoustic Imaging MCF-7 cancer cells

Graphene QDs (GQDs) Photothermal therapy MDA-MB-231
Folic-acid-conjugated carbon QDs

(FA-CQDs) Fluorescence imaging MCF-7 cells and ovarian cancer (HeLa)

Copper indium sulfide zinc sulfide
core/shell (CuInS/ZnS) QDs Sensor probe for targeted imaging BEL-7402 cancer cells

Titanium nitride (Ti2N) QDs
Photoacoustic (PA) imaging-guided

photothermal therapy (PTT) in
near-infrared (NIR-I/II) biowindows

293T, 4T1 and U87 cancer cells

Cadmium telluride cadmium sulfide
(CdTe/CdS) core–shell QDs Fluorescence imaging MDA-MB-231/MDR

Zinc oxide (ZnO) QDs Drug delivery MCF-7
Cadmium selenide telluride zinc sulfide

(CdSeTe/ZnS) QDs Photothermal therapy Hepatoma cells Huh7

Graphene QDs (GQDs) Drug delivery MCF-7 cells
Near-infrared (NIR) silver selenide

(Ag2Se) QDs In vivo tumor imaging MCF-7 human breast cancer cells and
SW1990 pancreatic cancer cells

6. Cytotoxicity

The cytotoxicity of many QDs is a major deterrent to using QDs in widespread
biomedical imaging and therapy. Despite their promising potential in various applications
due to their optoelectronic properties, the toxicity of QDs limits their use to in vitro or
animal studies. The toxicity of QDs is attributed to their chemical compositions containing
heavy metal ions such as cadmium and indium [269]. In addition, their environmen-
tal conditions and physicochemical structure contribute to toxin availability (e.g., size,
concentration, capping material, mechanical stability, etc.) [270–272]. For instance, the
cardiotoxicity of cadmium selenide zinc sulfide (CdSe/ZnS) QDs was investigated by
Li et al. [273]. A significant amount of cadmium (Cd) was detected in the hearts of mice
bearing CdSe/ZnS QDs. Their results showed the accumulation of CdSe/ZnS QDs in the
heart in addition to the incomplete QD excretion of up to 42 days.

In another study, the toxicity of copper indium disulfide zinc sulfide (CuInS2/ZnS)
core/shell QDs was investigated in vivo. Ninety days after injection, indium was detected
in the kidney, heart, brain, and testis. In another study, CuInS2/ZnS QDs were reported to
accumulate in the liver and spleen [274].

Furthermore, QD toxicity results from the generation of reactive oxygen species
(e.g., free radicals and the creation of singlet oxygen) [275], which could damage DNA.
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Near-infrared (NIR) QDs have also been reported to present a health risk. For instance,
Zhang et al. [276] reported that lead sulfide/cadmium sulfide (PbS/CdS) QDs (0.7%)
remained in mice after 1 month. The QDs were observed in the liver, spleen, lungs, kidneys,
stomach, and gut and distributed to other body parts. The toxicity and accumulation of
QDs in off-target tissues is an issue that must be addressed.

Conversely, researchers have reported that the coating of QDs or the surface func-
tionalized QDs reduced the leaching of ions [277], thereby reducing acute toxicity. For
instance, Murase et al. [278] synthesized cadmium selenide/zinc sulfide (CdSe/ZnS) QDs
encapsulated in highly emitting silica capsules by the sol–gel method. At a shell thickness
of 15 nm, the release was suppressed effectively compared to a shell thickness of 10 nm.
They further reported leakage suppression at a temperature of 40 ◦C. Their results revealed
that the silica capsules were non-toxic to cells. There is still the need to consider the effec-
tive surface coating of QDs because a better-protecting shell is less likely to leach heavy
metals; however, at the same time, the size of QDs is increased after encapsulation, which
might hinder their use in some applications. Even if capping can effectively minimize
toxic ion release and preclude acute toxicity, the long-term buildup of capped QDs must be
addressed for clinical translation to be approved. Consequently, additional investigation is
warranted to develop improved methods for synthesizing QDs that mitigate or eradicate
their toxic properties.

7. Conclusions

The use of nanoparticles in the fight against cancer has been researched extensively.
Nanoparticles possess several characteristics required to overcome the limitations of con-
ventional cancer management strategies, thus providing a platform for early detection and
treatment. Quantum dots are the latest nanoparticles to exhibit unique properties that could
impact how cancer is diagnosed and treated. These features include their small tuneable
size, stable photoluminescence, large surface-to-volume ratio, and potential biocompatibil-
ity. QDs have been extensively applied for in vitro and in vivo tumor imaging and, more
specifically, integrated with therapeutic agents for targeted drug delivery in vivo. The
flexibility to bioconjugate or modify the surface of QDs according to the needed application
qualifies QDs to be potential candidates as multifunctional systems. Many studies have
shown that drug encapsulation in QDs increased drug delivery efficacy. More importantly,
surface-modified QDs show promise as a great platform that could simultaneously deliver
loaded drugs and provide real-time imaging of the biodistribution of the drug at tumor
sites in vitro and in vivo.

Furthermore, studies have revealed that QDs subjected to surface modification serve
as fluorescent markers and can inhibit tumor growth substantially or directly induce tumor
cell death when combined with the requisite receptors or ligands. While the toxicity issues
associated with QDs containing heavy metals like cadmium have been acknowledged,
their tendency to accumulate in bodily organs due to their overall size hinders some of
their potential use in human in vivo imaging and drug delivery applications. Hence, the
development of heavy-metal-free QDs is extensively studied for possible clinical applica-
tions [279]. While acknowledging the need to minimize QD dimensions and appropriately
capping them to mitigate toxicity, all while considering the specific application needs, it is
important to note that QDs have demonstrated novel and useful promise in cancer imaging
and treatment. Without a doubt, persistently utilizing the QD platform for cancer-related
biological research will lead to a noteworthy breakthrough that has the potential to reshape
the current research landscape.
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