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Abstract: Callistemon citrinus has several biological effects; it is anti-inflammatory, anti-obesogenic,
antioxidant, hepatoprotection, and chemoprotective. Its bioactive compounds include terpenoids,
phenolic acids, and flavonoids which have low oral bioavailability and absorption. This study aimed
at developing phytosomes of C. citrinus to improve oral bioavailability and absorption. Phytosomes
were formulated with soybean phosphatidylcholine and C. citrinus leaf extract using the thin layer
sonication method. Phytosomes were evaluated by scanning electron microscopy (SEM), entrap-
ment efficiency, solubility, and particle size determination. Antioxidant capacity and total phenolic,
flavonoid, and terpenoid contents were also measured. The in vivo anti-obesogenic activity was
evaluated. Phytosomes loaded with C. citrinus (P C.c) extract had small spherical shapes. The average
particle size was 129.98± 18.30 nm, encapsulation efficiency 80.49± 0.07%, and solubility 90.00%; the
stability study presented no significant changes in the average particle size at 20 ◦C. P C.c presented
high antioxidant capacity. For the first time, ellagic acid is reported in this plant. The in vivo obesity
study showed a strong anti-obesogenic activity of phytosomes with C. citrinus to reduce 40% body
weight as well as morphometric and biochemical parameters.

Keywords: antioxidant capacity; bioavailability; anti-obesogenic; phosphatidylcholine

1. Introduction

Phytosomes are a delivery system of drug or plant extracts prepared with phos-
pholipids using different types of solvents [1]. Compared with drug or plant extracts,
phytosomes have a better stability profile, avoid destruction of the phytoconstituent by
digestive enzymes and microbiota, increase permeability through membranes, increase
bioavailability, and improve compound efficiency [2].

Oxidative stress is not only a common feature of obesity, cardiovascular, neurological,
and autoimmune diseases but can also be found in aging [3]. During oxidative stress, there
is an increase in reactive oxygen and nitrogen species (ROS/RNS) that are produced by
endogenous and exogenous sources [4].

Antioxidants can inhibit, decrease, delay, or directly scavenge free radicals and neu-
tralize oxidants. They act as reducing agents and metal chelators, which convert hydroper-
oxides into stable compounds. Transferrin, metallothionein, and ceruloplasmin are specific
metal-binding proteins considered antioxidant agents and their mechanisms include bind-
ing pro-oxidant metal ions, such as iron and copper [5]. The intake of antioxidants may
contribute to protecting against the damage produced by reactive oxygen species [6]. The
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antioxidant activity in plants is due to the phenolic, flavonoid, and terpene compounds
found in them [7].

The major compounds found in plants and food are polyphenols and flavonoids.
Despite that they can be found in high concentrations, they also need to be available for
absorption during gastrointestinal to have beneficial effects. However, these compounds of-
ten have low bioaccessibility and bioavailability, which could be due to a number of factors
that affect their absorption, stability of the compounds, and the acidic pH of the stomach
and microbiota [8,9]. Gastrointestinal pH has an important role in the absorption and
bioavailability of oral drugs. In the fasting state, the normal stomach pH is approximately
2.18 ± 0.18 [10]. A change in pH has an impact on the dissolution, solubility release, and
stability of drugs [11]. Quin et al. [12] found that the total polyphenol and flavonoid con-
tents of green tea infusion, at pH 1.2, decreased to 65% and 60%, respectively. In addition,
the antioxidant activity was reduced as well, leading to low bioaccessibility. Polyphenols
are transformed into oligomeric phenols by acidic pH in the stomach. Terpenes containing
polar groups at low gastric pH allow bioaccessibility [13]. In summary, pH changes have
effects on bioaccessibility that have a strong connection with bioavailability.

Callistemon citrinus (Myrtaceae) has been reported to have many biological effects, includ-
ing antimicrobial, anti-inflammatory, antioxidant, hepatoprotective, and anticarcinogenic [14,15].
Recently, Ortega-Pérez et al. [16] reported that C. citrinus leaf extract has anti-obesogenic
activity and reduces the oxidative stress observed in obesity. C. citrinus has many terpene
compounds such as 1-8-cineole, limonene, and α-terpineol [17]. Ayala-Ruiz et al. [18]
showed that the main role of these terpenes is to reduce oxidative stress generated by
obesity in the animal model. The leaves and stems of C. citrinus presented phenolic and
flavonoid compounds, such as eucalyptine, blumenol, gallic acid, and protocatechuic
acid [19].

Despite the great biological activities of Callistemon citrinus, there are few studies
about the application of nanoparticles with this plant. The biosynthesis of silver oxide
nanoparticles from the aqueous leaf extract of Callistemon lanceolatus (C. citrinus) proved
the in vitro antioxidant capacity and brine shrimp lethality [20]. Paosen et al. [21] reported
the synthesis of silver nanoparticles from the Myrtaceae family and the characterization of
their antibacterial activity. Silver nanoparticles from leaves, flowers, and seeds of C. citrinus
exhibited antiplasmodial and antibacterial activity without toxicity [22]. Gold nanoparticle
from the seed of C. citrinus has antibacterial activity but no antitrypanosomal activity,
unlike the extract obtained by the same seed which exhibits both properties [23]. Poly
(lactic-co-glycolic acid) nanoparticles loaded with C. citrinus phenolics showed anticancer
activity against three breast cancer cell lines with 69% growth inhibition [24]. Recently,
the use of C. citrinus silver nanoparticles from leaf aqueous extract was tested for antibac-
terial activity [25]. Nanotechnology is a delivery system that can be classified into two
groups: inorganic as gold, silver, and copper, and organic as liposomes and polymeric
nanoparticles [26]. When novel drug delivery technology is used, instead of traditional
drug delivery, side effects are reduced whereas safety and efficacy are improved [27].

Obesity is a global health problem. In the Pacific Island states, 50% of the population is
obese. In the United States, one-third of adults are obese [28]. In 2030, more than one billion
adults and 50 million children and adolescents will be considered obese [29]. The treatment
of obesity is not limited to lifestyle modifications and diets. The most common drugs used
to control obesity are orlistat (pancreatic lipase inhibitor), phentermine (sympathomimetic
amine), liraglutide (glucagon-like peptide 1 receptor agonist), and naltrexone-bupropion
(opioid antagonist and a dopamine and noradrenaline reuptake inhibitor). However, all
of them have undesired side effects [30] that can be reduced using natural products from
plants as a strategy against obesity [31].

This study aimed at encapsulating Callistemon citrinus leaf extract in a phosphatidyl-
choline complex to enhance its bioavailability and absorption and prevent weight gain.
This paper demonstrates that the phytosomes of Callistemon citrinus extract had a small
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size, high entrapment efficiency, and good solubility and stability. The anti-obesogenic
activity was also evaluated using male Wistar rats fed with a hypercaloric diet.

2. Materials and Methods
2.1. Preparation of Callistemon citrinus Leaf Extract

Four-year-old leaves of Callistemon citrinus (Curtis) Skeels (Myrtaceae) plants were col-
lected in the city of Morelia, Michoacán, Mexico. The plant voucher specimen EBUM23538
was identified by Professor Patricia Silva at the Biology School of Universidad Michoacana
de San Nicolas de Hidalgo. The fresh leaves were macerated in a 1:10 ratio (w/v 96%
ethanol) at room temperature for 5 days. Then, the extract was concentrated by a rotary
evaporator at 45 ◦C. The yield was 20%. The extract of Callistemon citrinus was prepared
according to the methodology reported by Lopez-Mejia et al. [32]. The authors concluded
that the extract should be prepared with leaves of different four-year-old plants to ensure
the highest concentration of its major compounds, as well as high antioxidant capacity.

2.2. Phytosome Preparation

To prepare phytosomal complex, the same concentration (200 mg/b.w.) of Callistemon
citrinus and phospholipids were used. This dose has therapeutic efficacy against the
inhibition of oxidative stress [15,32] and obesity amelioration [16,18].

Phytosomes were prepared using the assays reported by Baradan et al. [33] and
Álvarez-Cortes [34], with slight modifications. The mixture contained 50 mL of hydration
media (0.01 M phosphate buffer solution, 150 mM NaCl, pH 7.4), 1.25 g of Callistemon
citrinus extract, 1.25 g of soybean phospholipids, and 0.72 g of Tween 80; 1% of ethyl
acetate was added to improve solubility in the solution. The emulsion was formed using a
VCX 500 ultrasonicator with an amplitude of 25% for 10 min at 10 ◦C. Phytosomes had a
stoichiometric ratio of 1:1.

The phytosome complex was placed in an amber-colored glass bottle and stored at
room temperature. Design Expert 11.0.5, an experimental design with response surface
methodology of central composite design, was used to prepare phytosomes. Lecithin
concentration (%w/v) and rotation speed (rpm) were selected as independent variables.
Then, the effect of these variables on the vesicular size and entrapment efficiency of the
phytosomes were assessed. All procedures were protected from light. Finally, to corroborate
the preparation, the phytosomes were observed under optical microscopy.

2.2.1. Lyophilization and Scanning Electron Microscopy (SEM)

Phytosome samples were frozen at −80 ◦C overnight; afterward, lyophilized in a high
vacuum of 34 Pa using a lyophilizer (Labconco Plus 12; Labconco, Kansas City, MO, USA)
for 8 h with a condenser at −43 ◦C. Lyophilized phytosomes were stored in a sealed glass
ampoule at 4 ◦C. One drop of lyophilized sample was placed on a brass electron microscope
tube and coated with copper particles for sputtering. Representative images of the samples
were taken and particle diameters were calculated using scanning electron microscopy
(JEOL JSM-7600F SEM) with a voltage of 20.0 KV at a working distance of 15.1 mm. Details
of the morphological structure of the phytosomes were observed at up to an amplitude of
10,000× and a working distance that allowed minute observations with increasing depth
of focus.

2.2.2. Particle Size

Particle size was measured with a Nano Particle Analyzer SZ-100, based on the
principle of dynamic light scattering; Ludox TM silica was used as reference material [35].
Ludox TM-50 was diluted to 10% using 0.01 M KCL. A total of 10 mL of KCl/LUDOX
solution was filtered through a 2.5 µm filter. The samples were placed in a plastic cuvette
and analyzed at a 90◦ scattering angle. All the batches were analyzed in a triplicate manner
and mean and SD were calculated. Table 1 shows the measurement conditions to determine
the particle size.
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Table 1. Measurement conditions to determine the particle size.

Temperature 25 ◦C

Particle LUDOX (1.45–0.000i)
Dispersion medium Water
Cell Plastic
Distribution type Monodisperse narrow

2.2.3. Stability Study

The stability analysis was assessed by storing the phytosomes at 20 ± 2 ◦C and
4 ± 1 ◦C and the particle size was measured 1, 3, 5, and 10 days after storing. Later, it was
measured after three and a half months.

2.2.4. Study of Vesicular Entrapment/Encapsulation and Solubility

The entrapment efficiency of C. citrinus phytosomes was measured using UV-visible
spectrophotometer [36]. A total of 1 mL of dialyzed vesicular suspension was taken and
diluted with 0.1 mL of Triton X-100. The solution was centrifuged at 1350× g for 5 min and
the supernatant was diluted with ethanol. The amount of drug entrapped was analyzed
spectrophotometrically at a maximum of 425 nm against ethanol containing Triton X-100 as
blank. Equation (1) computes the efficiency of entrapment (EE); Tdrug is the total amount
of drug; Edrug is the extract entrapment in the formulation (phytosome); and Udrug is the
extract not entrapped in phytosomal formulation.

EE =
Edrug
Tdrug

× 100% =
Edrug

Edrug + Udrug
× 100% =

(
1− Udrug

Edrug + Udrug

)
× 100% (1)

Solubility analysis was calculated by dissolving 2 mg of each of the complexes formed
(soybean phospholipid particles) and C. citrinus leaf extract in 5 mL of different solvents
in small volumetric flasks. The solutions were stirred continuously for 1 h [37]. The
experiments were performed in triplicate.

2.3. In Vitro Antioxidant Activity
2.3.1. DPPH Radical Assay

The 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay was performed as reported by Ka-
marac et al. [38]. The solution reaction contained 10 µL of the sample (C. citrinus leaf extract
or phytosome at 200 mg), 90 µL of methanol, and 2 mL of methanolic solution of DPPH
0.1 mM, which were mixed and incubated in the dark for 60 min at room temperature; its
absorbance was measured at 517 nm. Trolox (25–800 µM) was used as standard.

2.3.2. ABTS Radical Scavenging Assay

The 2,2′-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay was per-
formed as reported by Rufino et al. [39], with slight modifications. A total of 2.6 mM
potassium persulfate solution was mixed in equimolar amounts with ABTS (ready to use,
Sigma); then, the solution was stirred in the dark for 3 h at 27 ◦C. This working solution
was diluted with ethanol to obtain an absorbance from 0.8–0.9 at 734 nm. For the tests, 1 µL
of C. citrinus leaf extract (200 mg) and 1 µL of the phytosomes (200 mg) were used, and
49 µL of absolute ethanol and 950 µL of working solution were added. Subsequently, the
absorbance at 734 nm was determined after 6 min of starting the reaction.

2.3.3. Ferric-Reducing Antioxidant Power (FRAP) Assay

The FRAP assay was performed as reported by Thaipong et al. [40]. Working solution
contained 10 mM 2,4,6-tri [2-pyridyl-s-triazine] (TPTZ) in 40 mM HCL, 20 mM ferric
chloride (FeCl3.6 H2O), and 300 mM sodium acetate buffer (pH 3.6) in a 1:1:10 ratio. A total
of 0.1 mL of sample was mixed with 1.5 mL working solution and allowed to stand at room
temperature for 20 min in darkness. Then, the absorbance was measured at 593 nm. Results
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were expressed as mean values ± one standard deviations. Trolox standards ranged from
25 to 800 µM.

2.3.4. Determination of Total Phenolic Content

The total phenolic content was determined using the reported by Pripdeevech et al. [41],
with slight modifications; in brief, 0.2 mL of the sample and 1.0 mL of Folin–Ciocalteu
reagent (1:9 v/v) were shaken vigorously for 5 min. Then, 1.0 mL of 7% Na2CO3 and 5.0 mL
of distilled water were added. The reaction mixture was allowed to stand for 60 min at
room temperature in darkness and its absorbance was measured at 765 nm. Gallic acid was
used as standard (0.01–0.4 mM). Total phenolic content was expressed as mg gallic acid
equivalent (mg GAE).

2.3.5. Total Flavonoid Content

The total flavonoid content was determined using the assay reported by Chang et al. [42].
In brief, 0.5 mL of the sample mixed with 1.5 mL of 95% methanol, 0.1 mL of 10% aluminum
chloride, 0.1 mL of 1 M potassium acetate, and 2.8 mL of distilled water, stood for 30 min at
room temperature in darkness, and the absorbance was measured at 415 nm. Water was
used instead of aluminum chloride as blank. Rutin acid was used to calculate the standard
curve (0.025–0.5 mg/mL).

2.3.6. Total Terpenoid Content

The total terpenoid content was determined using the methodology described by
Chang and Lin [43]. A mixture containing 100 µL of sample (10 mg/mL), 150 µL of
vanillin/glacial acetic acid (5% w/v), and 20 µL of sulfuric acid was incubated at 60 ◦C for
45 min. The mixture was left on ice for 7 min to stop reaction. Finally, 2.25 mL of glacial
acetic acid was added and its absorbance was measured at 548 nm. A total of 1,8-Cineole at
1–6 mg/mL was used as standard.

2.4. GC-MS Determination

The samples were analyzed in an Agilent 7890A gas chromatography equipment (Agilent
Technologies, Folsom, CA, USA) with an HP5MS30M column (5% phenyl polysilphenylene-
siloxane, 30 × 0.25 × 0.25; Agilent Technologies, USA) coupled to an electronic impact
ionization quadrupole mass analyzer mass spectrometer. Hewlett Packard 5975C (Hewlett
Packard, Palo Alto, CA, USA, EEA). The initial temperature of the oven was 60 ◦C for
1 min and was increased to 280 ◦C at 8 ◦C/min. The injector temperature was 230 ◦C,
the ionization source 230 ◦C, and the quadrupole temperature 150 ◦C. Helium was used
as carrier gas at a constant flow of 1 mL/min. The mass spectrometer was operated in
the EI mode at 70 eV using a range of m/z 50–500 and the voltage was −1737 V. Total
ion chromatograms (TIC) were processed using the automated data processing Software
MassHunter Workstation version B.06.00 (Agilent Technologies, Inc.). To identify the
different compounds, the mass spectrum of each compound detected was compared to
those in mass spectral databases (Wiley 275 and US National Institute of Science and
Technology (NIST) V. 2.0. The quantities of compounds were calculated from a standard
calibration curve using 1,8-cineole at range 1–0.2 mg/mL.

2.5. HPLC Determination

Phenolic acids were quantified by using a high-performance liquid chromatograph
(HPLC, Agilent 1260 Infinity Series), equipped with a quaternary pump, auto sampler,
column oven, diode array detector (DAD), and Express 90 analytical column. Å C18,
250 × 4.6, 5 µm. The column temperature was 40 ◦C with an injection volume of 5 µL, the
flow was 0.7 mL/min. The mobile phases were A: methanol and B: 1% formic acid. The
gradient elution was: 0–5 min: 2% A; 5–15 min: 2–15% A; 15–30 min: 15–25% A; 30–35 min:
25–35% A; 35–45 min: 35–55% A; 40–50 min: 55% A; 50–55 min: 55–2% A; 55–60 min:
2% A; Post time: 5 min. The DAD detector: 255, 270, 280, 310, 322, 355, 370 nm. Eleven
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available HPLC grade phenolic markers were considered (gallic acid, 4-hydroxybenzoic
acid, chlorogenic acid, caffeic acid, vinylic acid, syringic acid, p-coumaric acid, ferulic acid,
synaptic acid, ellagic acid, t-cinnamic acid, quercetin, and rutin).

2.6. Anti-Obesity Evaluation of Phytosomes
2.6.1. In Vivo Study
Animals

Two-month-old male Wistar rats (180–200 g) were obtained from the laboratory ani-
mals of the Chemical-Biological Research Institute of UMSNH. All the animals were housed
in plastic cages in the following conditions: 12 h light–dark cycle, relative humidity of
60–70%, and a temperature of (23–24 ◦C). They had ad libitum access to food and water.
The animals were kept in the bioterium of the Chemical-Biological Research Institute of
UMSNH. All protocols were approved and conducted in accordance with the guide for the
care and use of laboratory animals by the Mexican Official Standard (NOM-062-ZOO-1999)
and the Ethics Committee of the Universidad Michoacán de San Nicolás de Hidalgo.

2.6.2. Obesity Induction

A high-fat diet (HFD) containing 45.4% normal chow (Rodent diet brand Purina rat
chow), 14.8% lard, 14.8% vegetable fat, and 25% fructose was daily prepared as reported
in [16]. Fifty-four male Wistar rats were randomly divided into 9 (n = 6) groups to be fed.
Group 1 (chow diet), Group 2 (chow diet plus vehicle), Group 3 (chow diet plus C. citrinus
extract 200 mg/kg), Group 4 (HFD), Group 5 (HFD plus C. citrinus extract 200 mg/kg),
Group 6 (HFD plus phytosomes loaded with C. citrinus (P C.c) 50 mg/kg), Group 7 (HFD
plus P C.c 100 mg/kg), Group 8 (HFD plus P C.c 200 mg/kg) and Group 9 (HFD plus
orlistat 5 mg/kg). Treatments were administered by oral gavage once daily at 9.00 a.m. in
the home cage for 15 weeks. The animal’s age at the end of the treatment was 23 weeks.
All blood samples were collected after 12–13 h of fasting by cardiac puncture. After blood
collection, the animals were anesthetized with pentobarbital sodium injection (150 mg/kg),
and all tissues were taken, washed, and stored at −80 ◦C for subsequent analysis.

2.6.3. Measurement of Morphometric and Biochemical Parameters

Rats were weighed weekly. The percentage of weight gain, adiposity index, and Lee in-
dex were calculated as reported by Ortega-Pérez et al. [16]. Plasma glucose, triacylglycerol,
and cholesterol were measured using enzymatic colorimetric kits SPINREACT® following
the manufacturer’s protocols.

2.7. Statistical Analysis

One-way ANOVA is a parametric method that can be used to determine if two or
more groups of data are statistically different. Parametric tests make assumptions about
the population distribution of the sample and in nonparametric tests the distribution of
a population is unknown. This study selected a parametric test because it is more likely
to detect significant differences with these methodologies than the use of nonparametric
methods. The test results were expressed as mean ± standard error (SEM) or standard de-
viation (SD). Data were analyzed using GraphPad Prism (version 8.0) by one-way analysis
of variance (ANOVA). To determine statistical differences (a, b, c) of nano-phytosomes,
and morphometric and biochemical parameters between groups, Tukey’s multiple com-
parison test was conducted. * p ≤ 0.05 is a statistically significant result. Tukey’s honestly
significant difference (HSD) test, is a post hoc test used in ANOVA to compare all possible
pairs of means. When conducting ANOVA and finding a significant difference among
group means, a post hoc test like Tukey’s is needed to determine whether the specific group
means significantly differed from each other.
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3. Results and Discussion
3.1. Morphology and Particle-Size Analysis

Phytosomes are a strategy used to improve the solubility and bioavailability of herbal
extracts [44]. Particle size and phospholipid composition are important factors to obtain
these parameters. This study used soybean phosphatidylcholine because this lipid is a main
component of membranes and also provides choline, a substrate of choline acetyltransferase
to produce the acetylcholine neurotransmitter. Xie et al. [45] reported that using soybean
phosphatidylcholine to prepare curcumin-loaded phytosome presented small particle size,
high-surface charge, stability, and drug-loading capacity. Figure 1 shows small spherical
shapes of phytosomes loaded with Callistemon citrinus under an optical microscope at 40×.

Figure 1. Optical microscope images at a 40× scale of Callistemon citrinus phytosomes.

Scanning electron microscope (SEM) was used to evaluate the size and surface mor-
phology. Figure 2 shows the SEM image confirming that phytosomes have a highly
spherical structure. The average particle size of the Callistemon citrinus phytosome was
129.98 nm ± 18.30 nm in the emulsion.

Figure 2. Scanning electron microscope images at scales of 1000×. Particle size was obtained through
Nano Particle Analyzer SZ-100 of phytosomes loaded with Callistemon citrinus (200 mg/kg).
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3.2. Study of Vesicular Entrapment/Encapsulation

The percentage drug entrapment was determined by extracting phytosomes with
centrifugation and the supernatant was measured by UV-visible spectroscopy. Table 2
shows the drug entrapment. The results showed that the entrapment efficiency (EE) was
about 80.49%. In this way, the encapsulation efficiency of phytosomes is represented by
the concentration of unbound C. citrinus leaf extract (200 mg/kg); this indicates that the
leaf extract and soybean phospholipids react to form the complex with a high degree of
entrapment of the leaf extract.

Table 2. Entrapment efficiency of the Callistemon citrinus phytosomes.

Parameter Abs

Tdrug 0.189 ± 0.01
Udrug 0.045 ± 0.07

EE 80.49 ± 0.07%
(Tdrug) is the total amount of drug, (EE) is the efficiency of entrapment, and (Udrug) is the extract not entrapped
in phytosomal formulation. The data are expressed with the mean (n = 4) and standard deviation (±SD).

3.3. Study of Stability and Solubility

Table 3 shows the stability of the C. citrinus phytosome. During the storage period at
20± 2 ◦C, no significant changes in average particle size were observed for the phytosomes.
However, low temperatures caused an increase in the particle size up to two folds. Our
results indicate that a phytosome loaded with C. citrinus remained stable for three and a
half months. This result is similar to a phytosome loaded with Cuscuta reflexa [46].

Table 3. Effect of the temperature on the stability of Callistemon citrinus phytosomes at 1, 3, 5, and 10
days and 3.5 months.

Temperature

Days 20 ± 2 ◦C 4 ± 1 ◦C

1 193.62 ± 27.33 a 285.07 ± 14.04 ab

3 218.06 ± 59.55 a 412.80 ± 248.22 abc

5 256.50 ± 29.00 a 454.23 ± 175.28 abc

10 279.64 ± 61.21 a 570.70 ± 132.73 bc

106 283.82 ± 51.87 ab 623.23 ± 142.18 c

Values are the particle size (nm) expressed as mean± SD (ANOVA followed by Tukey, statistically different values
(a, b, c) between groups (p ≤ 0.05, n = 6)).

The low lipid solubility of some compounds may be the reason for their weak
absorption [47]. Thus, the solubility is an important parameter to study. Table 4 shows
that Callistemon citrinus phytosomes were completely soluble in four solvents and partially
soluble in one of them. Assuming 20% for the former and 10% for the latter, Callistemon
citrinus phytosomes had a 90% of solubility. It follows that C. citrinus extract, without and
with tween 80, shows 80% of solubility and finally soybean liposomes. The formation of
phytosomes with plant extract is based on hydrogen-bonding interaction, which increases
the bioavailability and stability of the compounds [48]. Consequently, phytosomes have
better lipophilicity and hydrophilicity than bioactive compounds.
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Table 4. Solubility profile of Callistemon citrinus leaf extract, Callistemon citrinus phytosomes, and
soybean phospholipids.

Solvent C. citrinus Extract
(200 mg/kg)

C. citrinus Extract
(200 mg/kg) +

Tween 80

C. citrinus
Phytosomes
(200 mg/kg)

Soybean
Liposomes +

Tween 80

Soybean
Liposomes-Tween 80

Distilled water Partially Partially Soluble Soluble Micellar shape
Methanol Soluble Soluble Partially Unsolvable Soluble

Dichloromethane Soluble Partially Soluble Soluble Soluble
Chloroform Soluble Soluble Soluble Soluble Partially

Hexane Partially Soluble Soluble Soluble Soluble

5 mL of each solvent was added. The solutions were placed under continuous stirring for 1 h; n = 4.

3.4. In Vitro Antioxidant Activity of Callistemon citrinus Phytosomes

DPPH, ABTS, and FRAP are methodologies commonly used to evaluate the an-
tioxidant capacity of plant extracts. DPPH and ABTS are based on the hydrogen or
electron-donating capacity and FRAP on the capacity of reducing ferric to ferrous [49].
Ortega-Perez et al. [16] reported the strong antioxidant capacity and the total phenol,
flavonoid, and terpene compounds of Callistemon citrinus leaf extract. Figure 3 shows
that both C. citrinus extract and C. citrinus phytosomes exhibited significant inhibitory activ-
ity against the DPPH and ABTS radicals and a high ability to reduce ferric to ferrous. Many
reports have demonstrated the correlation between total phenolic and flavonoid content
and their antioxidant activities [50]. This study also found this correlation, suggesting that
the compounds produced the antioxidant effect in C. citrinus, acting as hydrogen donators,
singlet oxygen quenchers, and reducing agents [51].

Figure 3. Determination of antioxidant capacity and total phenol, flavonoid, and terpenoid contents
of Callistemon citrinus leaf extract and phytosomes. Data are expressed with the mean± standard error
(ANOVA followed by Tukey, n = 6). The same letter (a) meaning that there is no statistical differences.

Figure 3 shows that there are no significant differences between the bioactive com-
pounds and the antioxidant capacity in the Callistemon citrinus extract and the phytosomes
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of C. citrinus. This result shows that during the process of creating phytosomes, the bioac-
tive compounds and antioxidant capacity were retained. However, the encapsulation did
not significantly improve the activity. This result agrees with Saonere et al. [52], which
found antioxidant capacity in a phytophospholipid complex of Glycerrhiza glabra.

Phytosomes containing extracts of mulberry and ginger used against the metabolic
syndrome improved the antioxidant system and decreased inflammatory cytokines such as
IL-6 and TNF-α [53]. The use of phytosome curcumin against paracetamol-induced liver
toxicity in mice showed an increase in enzymatic antioxidant activities and the reduction
in lipoperoxidation products [54]. Deleanu et al. [55] reported that phytosomes with the
extract of ginger rhizomes and rosehips increase the bioavailability, antioxidant, and anti-
inflammatory properties in LPS-induced systemic inflammation in mice. These results
suggest that the use of phytosomes can improve enzymatic antioxidant properties and
reduce inflammation during oxidative stress [33].

3.5. Gas Chromatography and Mass Spectrometry Analysis

Figure 4 shows the chromatogram of C. citrinus extract and C. citrinus phytosome
analyzed by GC/MS to evaluate the terpenes profile. Terpenes were quantified according
to GC/MS. Table 5 shows that 1,8-cineole and α-terpineol were the main compounds
of the extract and phytosome. These two monoterpenes have been reported to have
hepatoprotective, antiviral, antimicrobial, antioxidant, and anticarcinogenic effects [32,56],
suggesting that C. citrinus may constitute an alternative pharmacological tool to treat
oxidative stress in some diseases.

Figure 4. Comparison of terpenoid abundance (arbitrary units) in GC/MS total ion chromatogram of
Callistemon citrinus leaf (black) and C. citrinus phytosomes (blue).

Table 5 shows the calculated retention indices and a comparison with retention indices
found on the NIST home page (www.nistwebbook.com (accessed on 17 March 2023)). A
total of 80% of the compounds were identified and only two of them could not be fully
identified despite having a Match Factor above 800 (Good Match). According to the NIST
library, Match Factor scores > 900 mean an Excellent Match, whereas Match Factors scores
in the range of 800–900 are a Good Match. All identified compounds have Factor scores
above 800.

www.nistwebbook.com


Pharmaceutics 2023, 15, 2178 11 of 17

Table 5. Terpene contents in Callistemon citrinus leaf extract and C. citrinus phytosomes (GC/MS).

RT RIlit RIcalc Ref. RIlit
Match
Factor

Prob
(%) Compounds Extract Phytosomes

7.47 1041 1059 Silva et al. [57] 972 93.8% 1,8-Cineole 0.613 ± 0.05 0.224 ± 0.04
10.91 1143 1131 Radulovic et al. [58] 950 67.2% L-Pinocarveol 0.097 ± 0.007 0.030 ± 0.005
11.65 1140 1114 Muselli et al. [59] 883 68.6% Pinocarvone 0.016 ± 0.003 nd
11.76 1170 1166 Al-Omar [60] 923 63.9% Borneol 0.0081 ± 0.001 nd
12.54 1172 1143 Boti et al. [61] 952 74.5% α-Terpineol 0.0894 ± 0.04 0.0233 ± 0.003
23.04 1567 1530 Babushok et al. [62] 929 55.5% Globulol 0.011 ± 0.002 0.0012 ± 0.001
33.78 2099 2045 Babushok et al. [62] 894 81.2% Phytol 0.1714 ± 0.03 0.0637 ± 0.01
45.04 2847 2914 Zhao et al. [63] 963 50.4% Squalene 0.1041 ± 0.01 0.0044 ± 0.001
53.66 - 2886 - 886 59.9% Unknown 1 0.0957 ± 0.02 0.0364 ± 0.006
54.94 - 2848 - 941 86.5% Unknow 2 0.8505 ± 0.05 0.2187 ± 0.03

RT retention time (min). RIlit retention index (iu) reported in the literature for 5% phenyl polysilphenylene-
siloxane GC column. RIcalc retention index obtained through the modulated chromatogram. Ref. RIlit retention
index bibliography found in the literature for 5% phenyl polysilphenylene-siloxane GC column. Extract (mg/mL),
phytosomes (mg/mL). nd = Not detected. Non-polar retention index (n-alkane scale). The values are the
mean ± SD (n = 3). Fragment ions (m/z) of unknown 1: 218 (100), 203, 219, 69, 95, 426 [M+], 411.4. Unknown 2:
189 (100, 95,207,93,135, 426 [M+], 411.4.

3.6. High-Performance Liquid Chromatography Analysis

The phenolic and flavonoid compounds were identified according to their retention
time in HPLC. Ellagic acid was found for the first time in C. citrinus. Figures 5 and 6
show that gallic acid, p-coumaric acid, and ellagic acid are the compounds identified in
the Callistemon citrinus extract and phytosome. These phenolic acids have been reported to
have anticancer, antiviral, antioxidant, and anti-inflammatory activities [64]. Table 6 shows
that the concentration of gallic acid, p-coumaric acid, and ellagic acid was very similar in
the C. citrinus extract and in the phytosome.

Figure 5. HPLC chromatograms of the Callistemon citrinus leaf extract.
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Figure 6. HPLC chromatograms of Callistemon citrinus leaf phytosome.

Table 6. HPLC analysis profile in Callistemon citrinus leaf extract and phytosomes.

Compounds Extract (µg/mL) Phytosomes (µg/mL)

gallic acid 6.94 ± 0.06 5.93 ± 0.0

4-hydroxybenzoic acid nd nd

chlorogenic acid nd nd

caffeic acid nd nd

Vanillic acid nd nd

Syringic acid nd nd

p-coumaric acid 0.47 ± 0.05 0.65 ± 0.07

ferulic acid nd nd

synaptic acid nd nd

ellagic acid 74.3 ± 1.3 67.3 ± 1.4

t-cinnamic acid nd nd

quercetin nd nd

rutin nd nd
nd = Not detected. Data expressed as mean ± SD (n = 3).

Until now, silver, gold, and poly (lactic-co-glycolic acid) nanoparticles loaded with
Callistemon citrinus [22–24] have been reported. Nanoparticles have some characteristics that
could affect their toxicity as nature, size, mobility, stability, surface aggregation, and storing
time [65]. Metal oxide nanoparticles reduced the enzymatic activity of microorganisms [66].
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However, the use of phytosomes as a delivery method of natural products has advantages.
Phytosomes have an amphiphilic characteristic that allows the extract compounds to
interact with the hydrophilic and hydrophobic parts, increasing the therapeutic effect.

3.7. Effect of Phytosomes on Morphometric and Biochemical Parameters

The rats fed with HFD showed increased body weight compared to the other groups.
Conversely, the administration of phytosomes loaded with C. citrinus to animals fed with
HFD showed significantly reduced body weight as compared to obese rats (Figure 7).
These results agree with Ortega et al. [16]. A previous study showed that C. citrinus extract
inhibited lipase activity in a dose-dependent manner [16]. Regarding the phytosomal
dosage (50, 100, and 200 mg/kg) and C. citrinus extract (250 mg/kg), this study showed
similar effects in all of them to reduce weight. This study suggests that phytosomes
loaded with C. citrinus extract have stronger anti-obesogenic activity than C. citrinus extract
itself; this result is probably due to the high bioavailability, which improves the solubility,
allowing to reduce the dose. The Lee and adiposity indices in the HFD group were higher
than those in other groups. Also, glucose and triacylglycerol levels increased in the HFD
group, contrary to the rest of the groups (Table 7).

Figure 7. Final body weight percentage in control rats and the different experimental treatments
during the 15 weeks. Values are presented as mean ± standard error (ANOVA followed by Tukey,
n = 6). Statistically different values (a, b) between groups.

Table 7. Effect of C. citrinus on morphometric parameters, obesity markers, and biochemical determi-
nations in rats.

Measurements Control Control +
Vehicle

Control +
C. citrinus

Extract
(200 mg/kg)

Hypercaloric-
fat Diet
(HFD)

HFD +
Orlistat

(5 mg/kg)

HFD +
C. citrinus

Extract
(250 mg/kg)

HFD +
Phytosomes
(50 mg/kg)

HFD +
Phytosomes
(100 mg/kg)

HFD +
Phytosomes
(200 mg/kg)

Morphometric parameters

Abdominal
circumference

(cm)

20.50 ±
0.45 a 20.50 ± 45 a 21.00 ±

0.45 a 25.50 ± 0.45 b 22.25 ±
0.45 a

20.33 ±
1.36 a 21.0 ± 0.52 a 21.20 ± 20 a 21.50 ±

0.45 a

Nose-to-anus
length (cm)

25.25 ±
0.60 a

24.37 ±
0.60 a

24.60 ±
0.54 a 24.41 ± 0.91 a 23.66 ±

0.91 a
24.41 ±
0.91 a

23.80 ±
0.54 a

24.12 ±
0.60 a

23.50 ±
0.60 a

Nose-to-tail
length (cm)

46.40 ±
0.42 a

46.40 ±
0.42 a

46.87 ±
0.47 a 45.66 ± 0.38 a 45.71 ±

0.47 a
44.66 ±
1.63 a

45.87 ±
0.47 a

45.75 ±
0.47 a

45.12 ±
0.47 a

Markers of obesity

BMI (kg/m2) 0.67 ±
0.03 b

0.72 ±
0.03 ab

0.70 ±
0.03 ab 0.88 ± 0.04 a 0.72 ±

0.04 ab 0.69 ± 0.09 b 0.66 ± 0.04 b 0.68 ± 0.04 b 0.76 ±
0.04 ab

Adiposity
index

2.78 ±
0.55 c

2.77 ±
0.55 c 2.52 ± 0.62 c 9.43 ± 0.62 a 5.56 ±

0.71 bc 6.18 ± 0.39 b 5.98 ± 0.71 b 4.82 ±
0.71 bc

4.02 ±
0.62 bc

Lee index 0.30 ± 0.01 0.30 ± 0.02 0.30 ± 0.01 0.33 ± 0.01 a 0.30 ± 0.01 0.30 ± 0.01 0.29 ± 0.01 0.30 ± 0.01 0.31 ± 0.01
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Table 7. Cont.

Measurements Control Control +
Vehicle

Control +
C. citrinus

Extract
(200 mg/kg)

Hypercaloric-
fat Diet
(HFD)

HFD +
Orlistat

(5 mg/kg)

HFD +
C. citrinus

Extract
(250 mg/kg)

HFD +
Phytosomes
(50 mg/kg)

HFD +
Phytosomes
(100 mg/kg)

HFD +
Phytosomes
(200 mg/kg)

Biochemical parameters

Triacylglycerol
(mg/dL)

90.66 ±
11.64 c

103.66 ±
11.64 c

109.66 ±
11.64 c

202.66 ±
11.64 a

90.66 ±
11.64 c

136.33 ±
66.96 b

103.50 ±
11.64 c

105.33 ±
11.64 c

118.66 ±
11.64 b

Blood glucose
(mg/dL)

93.99 ±
8.24 a

101.37 ±
8.24 a

95.59 ±
8.24 a

111.11 ±
8.24 b

100.24 ±
8.24 a

97.00 ±
4.24 a

104.18 ±
8.24 a

92.24 ±
8.24 a

96.65 ±
8.24 a

Total
cholesterol
(mg/dL)

161.33 ±
2.69 a

160.33 ±
2.69 a

162.00 ±
2.69 a

159.66 ±
2.69 a

156.66 ±
2.69 a

162.00 ±
2.69 a

155.66 ±
2.69 a

161.00 ±
2.69 a

159.30 ±
2.69 a

Values expressed as mean ± SEM (n = 6, ANOVA followed by Tukey test, statistically different values (a, b, c)
between groups; p ≤ 0.05).

Callistemon citrinus phytosomal formulation improved oral bioavailability. Even the
administration of low doses reduced the morphometrical and biochemical parameters in
the treated animals.

4. Conclusions

The Callistemon citrinus phytosomal formulation improved oral bioavailability, re-
tained the major compounds, and was stable for three and a half months when stored
at 20 ◦C. Phytosomes of C. citrinus, even in low doses, reduced morphometrical and bio-
chemical parameters in Wistar rats fed with a high-fat diet. The results also revealed that
the supplementation of phytosomes of Callistemon citrinus reduced excessive weight in
the animals.
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