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Abstract

The molecular mechanisms connecting environmental exposures to adverse endpoints are often unknown, reflecting knowledge
gaps. At the Comparative Toxicogenomics Database (CTD), we developed a bioinformatics approach that integrates manually
curated, literature-based interactions from CTD to generate a “CGPD-tetramer”: a 4-unit block of information organized as a step-
wise molecular mechanism linking an initiating Chemical, an interacting Gene, a Phenotype, and a Disease outcome. Here, we
describe a novel, user-friendly tool called CTD Tetramers that generates these evidence-based CGPD-tetramers for any curated
chemical, gene, phenotype, or disease of interest. Tetramers offer potential solutions for the unknown underlying mechanisms and
intermediary phenotypes connecting a chemical exposure to a disease. Additionally, multiple tetramers can be assembled to
construct detailed modes-of-action for chemical-induced disease pathways. As well, tetramers can help inform environmental
influences on adverse outcome pathways (AOPs). We demonstrate the tool’s utility with relevant use cases for a variety of
environmental chemicals (eg, perfluoroalkyl substances, bisphenol A), phenotypes (eg, apoptosis, spermatogenesis, inflammatory
response), and diseases (eg, asthma, obesity, male infertility). Finally, we map AOP adverse outcome terms to corresponding CTD
terms, allowing users to query for tetramers that can help augment AOP pathways with additional stressors, genes, and phenotypes,
as well as formulate potential AOP disease networks (eg, liver cirrhosis and prostate cancer). This novel tool, as part of the complete
suite of tools offered at CTD, provides users with computational datasets and their supporting evidence to potentially fill exposure
knowledge gaps and develop testable hypotheses about environmental health.

Keywords: database tool; chemical-disease pathway; molecular mechanisms; environmental health; knowledge gaps; adverse out-
come pathway

Environmental health-related research seeks to understand how
chemical exposures influence human health (Grondin et al., 2016).
While associations between exposures and adverse outcomes
(AOs) can be documented, there typically remain knowledge gaps
with respect to the related molecular mechanisms connecting the
2. One approach to ascertaining these mechanisms is to use bioin-
formatics to integrate content from public databases and compu-
tationally identify potential connections (Davis et al., 2019, 2020).
Toward that end, we developed the Comparative Toxicogenomics
Database (CTD; http://ctdbase.org/) as a resource to explore how
environmental chemicals interact with genes and influence bio-
logical processes to affect human health (Davis et al., 2023). Since
2005, CTD biocurators have manually curated scientific articles
using controlled vocabularies and ontologies to help harmonize
environmental health data and capture literature-based interac-
tions relating chemicals, gene products, phenotypes, anatomical
terms, and diseases from comparative organisms (Davis et al.,

2015). Currently, CTD includes over 3.3 million manually curated
interactions describing relationships between 17 200 chemicals,
54 000 gene products, 6300 phenotypes, 960 anatomical terms,
and 4100 diseases, curated from over 142 000 research papers
(http://ctdbase.org/about/dataStatus.go). In turn, CTD integrates
these curated interactions with one another and with select exter-
nal data sources to compute “inferences,” ie, predictive associa-
tions based upon shared intermediates (Davis et al., 2008, 2016).
For example, if chemical C1 has a directly curated interaction
with gene G1, and, independently, gene G1 has a directly curated
association with disease D1, then chemical C1 can be inferred to
have a relationship with disease D1 via the shared gene G1 (King
et al., 2012). CTD inferences enable the postulation of novel con-
nections that might not otherwise be apparent, as well as provide
the potential molecular mechanisms that make the connection:
chemical C1 might play a role in disease D1 via interaction with
the intermediate gene G1.
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Expanding upon this approach, we developed a novel method
that leverages curated interactions in CTD to generate a “CGPD-
tetramer,” which is defined as a 4-unit computational block of
information that relates an initiating Chemical with an interact-
ing Gene and a modulated Phenotype to a Disease outcome
(Davis et al., 2020). In this approach, 5 independently curated rela-
tionships in CTD are combined: a chemical-gene interaction, a
chemical-phenotype interaction, a chemical-disease interaction,
a gene-disease interaction, and a gene-phenotype/Gene Ontology
(GO) annotation (Figure 1A). A CGPD-tetramer is generated only if
all 5 curated statements exist in CTD as supporting evidence. If
any one of the statements do not exist in CTD, the tetramer can-
not be generated. In turn, the evidence-backed CGPD-tetramers
that do emerge can be aligned by shared intermediate genes and
similar phenotypes, allowing them to be assembled into potential
mechanistic chemical-disease pathways that fill exposure knowl-
edge gaps (Figure 1B).

Applying CTD content to fill knowledge gaps between expo-
sure and adverse endpoints has been used to propose potential
mechanisms and pathways for an array of environmental
health events, including pesticide-induced prostate cancer
(Grondin et al., 2016), 4-nonylphenol-associated Parkinson dis-
ease (Kosnik et al., 2019), ozone-induced myocardial infarction

(Davis et al., 2020), sulforaphane-triggered AOs (Bozic et al.,
2023), heavy metal-associated depression (Nguyen and Kim,
2023), air pollution/metal-induced Alzheimer disease (Davis
et al., 2023), seizure risks associated with pesticides in medical
cannabis (Pinkhasova et al., 2021), bisphenol A and
benzo(a)pyrene-induced cell signaling modes-of-action for lung
cancer (Stanic et al., 2021), arsenic-induced reproductive
defects (Chai et al., 2021), and respiratory diseases resulting
from e-cigarette chemicals (Grondin et al., 2021), among many
others.

A major advantage to this computational approach is that no
a priori knowledge is needed regarding relationships between a
chemical, gene, phenotype, or disease to collect the datasets.
Users simply input any chemical, gene, phenotype, and/or dis-
ease of interest, and CTD automatically constructs the relevant
tetramers containing the data of interest. Previously, this process
required complex manual integration of data content freely
available from CTD (http://ctdbase.org/downloads/). Here, we
introduce a new, user-friendly, online tool called CTD Tetramers
that performs the necessary integration to generate and display
computed CGPD-tetramers with their supporting lines of evi-
dence. We demonstrate this novel tool’s utility with numerous
relevant use cases.

Figure 1. CGPD-tetramers. A, CGPD-tetramers are computationally generated information units that interrelate 4 data types from CTD: a chemical (C),
gene product (G), phenotype (P), and disease (D). To generate a CGPD-tetramer by data integration, 5 individual lines of supporting evidence are
required as directly curated interactions between the 4 data types: chemical-gene, chemical-phenotype, chemical-disease, gene-disease, and gene-
phenotype/GO. If any 1 line of supporting evidence is lacking, the tetramer is not generated. B, Maximizing the shared gene and phenotype overlaps
between individual tetramers allows them to be constructed into longer, more detailed molecular mechanistic pathways (see Davis et al. [2020] for
details). Here, 10 tetramers involving 1 chemical (C1), 5 unique genes (G1–G5), 6 phenotypes (P1–P6), and 1 disease outcome (D1) can be combined.
Similar phenotypes (eg, P1–P2–P3 and P5–P6) can be clustered into separate modules. Shared genes are used to bridge the modules through shared
molecular mechanisms: gene G2 connects phenotype module P1–P2–P3 to phenotype P4, and then gene G4 bridges phenotype P4 with phenotype
module P5–P6. Some examples of similar phenotypes might include all those involving cell death, such as “apoptotic process” (GO:0006915), “apoptotic
signaling pathway” (GO:0097190), “programmed cell death” (GO:0012501), “positive regulation of apoptotic process” (GO:0043065), “cell death”
(GO:0008219), etc.
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Materials and methods
CTD data version and analysis

Analysis was performed using CTD public data available in
March 2023 (revision 17024). CTD is updated with new content on
a monthly basis (http://ctdbase.org/about/dataStatus.go); conse-
quently, query results described in this text may vary over time.
For analysis, CTD data pages and tetramer query results were
downloaded (available formats: CSV, Excel, XML, or TSV) into
spreadsheets and the sorting, advanced filtering, and subtotaling
functions provided in Excel were used to survey and count the
unique data types. Venn diagrams were constructed using CTD’s
MyVenn tool (https://ctdbase.org/tools/myVenn.go) and the pub-
licly available “Venny” tool (https://bioinfogp.cnb.csic.es/tools/
venny/index.html). For use cases, official CTD terms were input
as query terms in the CTD Tetramers tool for chemicals, genes,
phenotypes, and diseases, with the filtering parameter set to
Direct Relationships (“return data for exact input query term
only”), unless otherwise indicated in the text. The official CTD
terms (and their CTD accession identifiers) include: case 1:
“Fluorocarbons” (MESH:D005466) and “Asthma” (MESH:D001249);
case 2: “bisphenol A” (MESH:C006780), “Obesity” (MESH:D009765),
“Diabetes Mellitus, Type 2” (MESH:D003924), and “Hypertension”
(MESH: D006973); case 3: “apoptotic process” (GO:0006915),
“spermatogenesis” (GO:0007283), and “Infertility, Male”
(MESH:D007248); and case 4: “Carbon Tetrachloride”
(MESH:D002251), “Liver Cirrhosis” (MESH: D008103), “cell death”
(GO:0008219), “cell activation” (GO:0001775), “inflammatory
response” (GO:0006954), and “collagen biosynthetic process”
(GO:0032964).

Phenotype versus disease

CTD operationally distinguishes between the concept of pheno-
type and disease based upon the source vocabulary used by a
CTD biocurator to annotate the chemical-induced endpoint
reported in the literature (Davis et al., 2018). If the chemical-
induced outcome is a term in the MEDIC disease vocabulary
(http://ctdbase.org/voc.go?type=disease), then the information is
curated and annotated as a disease data type in CTD using that
MEDIC disease term (Davis et al., 2012). Consequently, any
chemical-induced endpoint that does not exist in MEDIC is con-
sidered, de facto, a phenotype and instead is curated and anno-
tated using a term from the GO (http://ctdbase.org/voc.go?type=
go), which CTD uses as a controlled vocabulary for chemical-
induced molecular and biological phenotypes (Davis et al., 2018).
For example, “breast neoplasms” exists in MEDIC (MESH:
D001943) and is therefore curated and treated as a disease data
type in CTD, while “blood vessel endothelial cell migration” does
not exist in MEDIC, and is consequently treated as a phenotype
using the GO (GO:0043534). In this sense, phenotypes are observ-
able biological events that could potentially be intermediary
processes informing and influencing the normal and predisease
state prior to clinical manifestation.

CTD Tetramer tool

CTD’s tetramer-generating functionality was initially written as
standalone processes for internal (Davis et al., 2020; Grondin et al.,
2021) and third-party analyses (Pinkhasova et al., 2021); these
processes are now converted and fully integrated into ctdbase.org
for public use (http://ctdbase.org/query.go?type=tetramer). CTD
tetramers are generated by backend processes on a real-time
basis, as are summaries of the supporting lines of evidence. The
CTD architecture of front-facing and backend processes has been

described elsewhere (Davis et al., 2011; Grondin et al., 2018).
Briefly, ctdbase.org is primarily a Jakarta EE-based, Model-View-
Controller architecture with PostgreSQL database management
systems, all within the context of Linux and Apache/Tomcat.

AO term mapping

The “Key Event Relationships” file (https://aopwiki.org/down-
loads/aop_ke_ker.tsv) from the public AOP-Wiki database
(https://aopwiki.org/) was downloaded (April 15, 2022), and 179
terms defined as “AOs” by AOP-Wiki were extracted. A CTD bio-
curator reviewed the individual AO terms and manually mapped
them to corresponding terms and accession identifiers in either
CTD Disease (http://ctdbase.org/voc.go?type=disease) or CTD GO/
Phenotype (http://ctdbase.org/voc.go?type=go). Of the official 179
AOs, 153 (85%) mapped to 1 or more terms in CTD, including: 98
AOs resolved to a single corresponding CTD disease term, 29 AOs
mapped to a single corresponding CTD phenotype, and 26 AOs
mapped to 1 or more phenotype and/or disease terms. These
mapped AOs are used in 297 AOPs. A few AO terms mapped to
multiple terms in CTD; for example, the AO term
“Hyperinflammation” (AO:1868) was mapped to both the CTD dis-
ease term “Inflammation” (MESH:D007249) and to the CTD phe-
notype term “positive regulation of inflammatory response” (GO:
0050729). Of the 179 AO terms, 26 (15%) could not be confidently
mapped to a corresponding CTD term because they described
concepts not found in CTD, eg, “Increased, Population” (AO:1164),
“Inflammatory events in light-exposed tissues” (AO:1599), and
“impaired, Hive thermoregulation” (AO:568).

Results and discussion
CTD Tetramers tool

The new CTD Tetramers tool is available under the “Analyze”
menu bar at CTD (http://ctdbase.org/query.go?type=tetramer).
The query form simply requires a user to input any data types of
interest, ie, a chemical, gene, phenotype, or disease (Figure 2).
Since the CTD Chemical, CTD Phenotype, and CTD Disease
vocabularies are hierarchical, users have the option to return tet-
ramers for the exact input term only (eg, diabetes mellitus) or
include the descendant to the input term (eg, diabetes mellitus,
as well as the descendant terms gestational diabetes, type 1 dia-
betes, type 2 diabetes (T2D), diabetic neuropathies, diabetic
angiopathies, diabetic ketoacidosis, etc.). Users can input their
search terms directly into the fields or first explore the available
terms from the CTD vocabularies by using the “Select” pop-up
boxes for each data type.

With 4 distinct types of data input, a user can perform simple
searches or construct multiparameter queries (Figure 3).
Searching with a single environmental chemical, such as
“cadmium,” returns 20 585 tetramers linking this heavy metal
with 1059 genes, 269 phenotypes, and 127 unique diseases. By
clicking the “Revise query” button at the top of the output page, a
user can modify the query by adding another data type, such as
“hypertension” as the disease outcome, which reduces the output
to 775 tetramers. A further query revision adding a phenotype
such as “signal transduction” and its descendants refines the out-
put to 38 tetramers for cadmium, 26 genes, 8 different signal
transducing phenotypes, and hypertension. This iterative process
allows users to survey the resulting data landscape for each
query and make changes to refine or expand the results.
Importantly, a user can initiate the query for any data type of
interest; it does not have to be a chemical. For example, a user
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Figure 2. CTD Tetramers query page. CTD’s new tool CTD Tetramers (http://ctdbase.org/query.go?type=tetramer). Users simply enter at least 1 data type
of interest in either the chemical, gene, phenotype, and/or disease query boxes. The “Select” pop-up windows allow users to first survey terms from the
available vocabularies for each data type. As well, users can filter to retrieve either direct or hierarchical relationships for chemicals, phenotypes, and
diseases. A toggle box at the top (“What is a CTD Tetramer?”) provides additional information about how tetramers are computed and how to use the
tool.

Figure 3. Multiparameter queries. Users can enter up to 4 data types as input values simultaneously to perform multiparameter queries. A single input
term (eg, cadmium as a chemical) generates over 20 500 tetramers composed of 1059 genes, 269 phenotypes, and 127 diseases. Including an additional
data type (eg, hypertension as a disease outcome) refines the output to 775 tetramers composed of 115 genes and 172 phenotypes. Additional input
terms further restrict the tetramer outputs, enabling users to navigate the data landscape by expanding or focusing the number of tetramers and data
components.
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might be interested in a specific gene (eg, heme oxygenase
HMOX1 yields over 19 700 tetramers composed of more than 790

chemicals, 45 phenotypes, and 60 diseases) or a particular dis-
ease or cellular phenotype (eg, “neuron projection development”

generates over 4000 tetramers composed of more than 45 chemi-
cals, 80 genes, and 300 diseases) to see how they can be con-

nected to environmental health. Importantly, all returned
tetramers include an “Evidence” column which documents the 5

supporting lines of evidence necessary to computationally con-

struct each unique tetramer, providing both comprehensive
traceability and transparency for the user, and allowing them the

ability to assess the plausibility and strength of the relationships
(Figure 4).

The CTD Tetramers tool generates data for constructing poten-

tial mechanistic modes-of-action for environmental health. In
the use cases below, we demonstrate how the tool can be lever-

aged to retrieve datasets that enable users to survey environmen-
tal health events and help design testable hypotheses. The

results below are not meant to be taken as finalized, resolved
knowledge pathways, but are merely illustrative examples of

how such hypotheses can be rapidly designed using results from
this new online tool.

Use case 1: 1 chemical-1 disease: exploring perfluoroalkyl
substances and asthma

Per- and polyfluoroalkyl substances (PFAS) are widespread fluo-
rocarbon contaminants from industrial and consumer products.
They are often dubbed “forever chemicals” due to their
degradation-resistant molecular configuration, leading to envi-
ronmental persistence and bioaccumulation (Berhanu et al., 2023;
Langenbach and Wilson, 2021). Recently, PFAS exposure in chil-
dren has been associated with immune system defects, including
asthma, but the evidence is equivocal and a mode-of-action
remains unknown (Beck et al., 2019; Jackson-Browne et al., 2020;
Rappazzo et al., 2017; von Holst et al., 2021).

To see if we could fill such knowledge gaps with potential
molecular intermediates and provide a testable model for verify-
ing a relationship between PFAS exposure and asthma, we
queried CTD Tetramers using “fluorocarbons” as the chemical
parent input (and selected the hierarchy filter to include descend-
ant chemicals) and “asthma” as the disease outcome. The query
generated 203 tetramers that included only 2 PFAS chemicals
(perfluorooctane sulfonic acid [PFOS] and perfluoro-n-nonanoic
acid [PFNA]), 28 genes, and 70 phenotypes connected to asthma
(Supplementary Table 1). This initial analysis provides a starting

Figure 4. CTD tetramer transparency and traceability. Every generated CGPD-tetramer includes an “Evidence” column with a hyperlinked “Supporting
Lines of Evidence,” providing both transparency and traceability as to how the tetramer was generated. The first 4 supporting lines of evidence (C-G, C-
P, C-D, and G-D) are direct interactions annotated by CTD biocurators from the literature, and all the supporting interaction statements as well as the
PubMed article identifiers (from whence the interactions were curated) are listed. The fifth supporting line of evidence (G-P) is electronically imported
from gene-GO annotations provided by NCBI.
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point for identifying potential molecular intermediates (Table 1),

many of which have recognized mechanistic signaling roles in

immune and inflammatory responses (eg, IL1B, TNF, IL4, IL6,

IL10, IL1RL1, CCL2, CCL5, CXCL14). Next, following our previously

described protocol for manually clustering similar phenotypes

into groups (Davis et al., 2020), we assigned the 70 phenotypes to

14 broad modules, including the modules “Cell Response to

Stimulus,” “Oxidative Stress Events,” “Cell Signaling,” and

“Inflammatory Response” (Table 2). Starting with only those 4

modules, the data can be assembled into an initial framework

using overlapping genes to establish mechanistic connections

between the 4 modules, and many of these genes have a role in

immune and inflammatory responses, making them candidates

as molecular intermediates for PFAS-driven asthma in children

(Figure 5). Importantly, additional phenotype modules can be

incorporated into the framework. For example, a recent study

observed that elevated serum triglycerides are associated with

and might represent an unrecognized trait contributing to

asthma (van Zelst et al. 2021). Interestingly, several of the com-

puted phenotypes generated by CTD Tetramers are about lipid,

cholesterol, and triglyceride metabolism and they involve shared

genes/proteins (eg, CAT, IL4, and IL6) that enable the

“Metabolism” module to be connected with the “Oxidative Stress

Events,” “Cell Signaling,” and “Inflammatory Response” modules.

Similarly, the role of apoptosis in asthma (Hough et al., 2020) ena-

bles the “Cell Death” module to be integrated into the same

framework, with many overlapping genes/proteins (eg, BCL2,

IL1B, IL6, NOS2, PARP1, SOD1, TGFB1, TNF, and VEGFA) to provide

the molecular connections. In this approach, CTD Tetramers pro-

vide the initial datasets to help users construct and tailor

chemical-disease pathways that include modules of interest into

testable frameworks for environmental health.

Use case 2: 1 chemical-multiple diseases: discovering
shared mechanisms for bisphenol A-associated metabolic
outcomes

Bisphenol A is a commercial chemical that can function as an
endocrine disrupter (Kahn et al., 2020), with the potential to influ-
ence numerous health outcomes, including several metabolic
diseases (Boudalia et al., 2021; Provvisiero et al., 2016; Wehbe et al.,
2020). We used CTD Tetramers to quickly generate tetramers con-
necting bisphenol A to 3 metabolic endpoints: obesity, T2D, and
hypertension. These queries independently resulted in 1291 tet-
ramers (164 genes and 375 phenotypes) for obesity, 1453 tet-
ramers (163 genes and 383 phenotypes) for T2D, and 1978
tetramers (196 genes and 452 phenotypes) for hypertension. To
identify potential shared mechanisms, we compared by Venn
analysis the sets of genes (447 total), phenotypes (554 total), and
gene-phenotype dimers (3612 total) across all 3 disease out-
comes. The intersections of associated gene and phenotype data-
sets allows a dissection of potentially shared and unique
mechanistic steps connecting bisphenol A to the 3 AOs (Figure 6).
The genes/phenotypes shared by all 3 diseases could potentially
represent common molecular mechanisms, perhaps reflecting
core biological processes in either the normal or predisease state.
Other mechanisms shared by only 1 or 2 diseases might poten-
tially contribute to more specific disease-defining events. While
these hypothetical pathways are highly speculative, the point is
that CTD Tetramers provides users with the ability to rapidly col-
lect complex data relationships and the associated lines of evi-
dence to start building mechanistic frameworks for further
analysis and improved understanding of how the same chemical
might contribute to different environmental diseases.

Use case 3: multiple chemicals-1 disease: surveying how
different exposures converge on the same molecular
mechanisms

Various environmental factors have been associated with male
infertility (Rodprasert et al., 2023; Szab�o et al., 2023), consistent
with the idea that diseases can be the result of multifactorial
components, both genetic and environmental, often from an
assortment of stressors over a lifetime. Understanding the inter-
play between multiple low-dose chemical exposures and an array
of genetic factors is necessary to formulate testable, realistic
models for environmental health (McHale et al., 2018; Virolainen
et al., 2023). To survey how different types of chemical exposures
could converge to potentially influence male infertility, we uti-
lized CTD Tetramers to independently generate 342 tetramers (62
chemicals and 12 genes) and 757 tetramers (78 chemicals and 14
genes), respectively, connecting the phenotypes of
“spermatogenesis” and “apoptotic process” (and descendants) to
the disease outcome of male infertility (Figure 7). There are 50
shared chemicals between the 2 sets of tetramers, and several of
them can be grouped into different exposure sources, including
cigarettes, phthalates, pesticides, and arsenics, that have interac-
tions with shared genes modulating apoptosis and spermatogen-
esis, and in the case of 3 genes (ACE, BAX, and TP53), both
phenotypes (Figure 7). This type of analysis enables users to build
testable pathways that incorporate various multiexposure sour-
ces that converge upon shared molecular mechanisms to derive
more complex environmental and genetic contributions toward
male infertility.

Use case 4: applying tetramers to inform AO pathways

CGPD-tetramers are computed as a 4-unit block, initiated by a
chemical interacting with a gene product to trigger an

Table 1. Genes from 203 CGPD-tetramers connecting PFAS
exposure with asthma

Gene No. associated tetramers No. associated phenotypes

BCL2 18 15
IL1B 18 15
SOD1 14 13
TGFB1 14 14
TNF 14 11
IL6 13 10
VEGFA 13 11
IL4 9 7
NOS2 9 7
PARP1 9 9
CAT 7 5
CCL2 6 6
CCL5 6 6
HMOX1 6 5
ICAM1 6 6
DNMT1 5 5
IL10 5 5
NQO1 5 5
CYP2E1 4 2
GSTM1 4 4
MMP9 4 4
CD14 3 2
CXCL14 3 3
GSTP1 3 3
BGLAP 2 2
IL1RL1 1 1
PDE4B 1 1
RAD50 1 1
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Table 2. Phenotypes from 203 CGPD-tetramers connecting PFAS exposure with asthma, manually grouped into phenotype modules

Phenotype
No. associated

tetramers
No. associated

genes Phenotype module

Cellular response to xenobiotic stimulus 8 8 Cell response to stimulus
Cellular response to DNA damage stimulus 3 3 Cell response to stimulus
Response to tetrachloromethane 1 1 Cell response to stimulus
Cell redox homeostasis 3 3 Oxidative stress events
Peroxisome 3 3 Oxidative stress events
Superoxide dismutase activity 2 2 Oxidative stress events
Positive regulation of reactive oxygen species biosynthetic process 1 1 Oxidative stress events
Regulation of gene expression 4 4 Cell signaling
Positive regulation of p38MAPK cascade 2 2 Cell signaling
Positive regulation of protein import into nucleus 2 2 Cell signaling
Positive regulation of SMAD protein signal transduction 2 2 Cell signaling
Positive regulation of cytosolic calcium ion concentration 1 1 Cell signaling
Positive regulation of protein export from nucleus 1 1 Cell signaling
Progesterone secretion 1 1 Cell signaling
Inflammatory response 14 9 Immune/inflammatory response
Immune response 8 8 Immune/inflammatory response
Negative regulation of inflammatory response 3 3 Immune/inflammatory response
Microglial cell activation 2 2 Immune/inflammatory response
Positive regulation of cytokine production involved in inflammatory

response
2 2 Immune/inflammatory response

Positive regulation of innate immune response 1 1 Immune/inflammatory response
Apoptotic process 9 9 Cell death
Positive regulation of apoptotic process 9 9 Cell death
Positive regulation of cell death 2 1 Cell death
Activation of cysteine-type endopeptidase activity involved in apoptotic

process
1 1 Cell death

Positive regulation of neuron death 1 1 Cell death/nervous system
Positive regulation of cell migration 6 6 Cell migration
Cell chemotaxis 4 4 Cell migration
Cell migration 4 4 Cell migration
Chemotaxis 3 3 Cell migration
Cell adhesion 3 3 Cell process
Cell-cell adhesion 3 3 Cell process
Positive regulation of epithelial to mesenchymal transition 3 3 Cell process
Establishment of endothelial barrier 1 1 Cell process
Establishment of Sertoli cell barrier 1 1 Cell process
Positive regulation of cell population proliferation 13 7 Cell proliferation
Negative regulation of cell population proliferation 7 7 Cell proliferation
Cell population proliferation 5 3 Cell proliferation
Negative regulation of mitotic cell cycle 3 3 Cell proliferation
Cell growth 2 1 Cell proliferation
Stem cell proliferation 2 2 Cell proliferation
Mitotic cell cycle 1 1 Cell proliferation
DNA methylation 1 1 DNA methylation
DNA methylation involved in embryo development 1 1 DNA methylation
DNA methylation on cytosine within a CG sequence 1 1 DNA methylation
Cholesterol metabolic process 4 2 Metabolism
Lipid metabolic process 4 3 Metabolism
Triglyceride metabolic process 4 2 Metabolism
Glutathione metabolic process 3 3 Metabolism
Glucose homeostasis 2 1 Metabolism
Glutathione derivative biosynthetic process 2 2 Metabolism
Metabolic process 2 2 Metabolism
Negative regulation of protein catabolic process 2 2 Metabolism
Aerobic respiration 1 1 Metabolism
ATP biosynthetic process 1 1 Metabolism
Negative regulation of ATP biosynthetic process 1 1 Metabolism
Regulation of mitochondrial membrane potential 2 2 Mitochondrial
Mitochondrion organization 1 1 Mitochondrial
Cognition 2 1 Nervous system
Sensory perception of sound 2 2 Nervous system
Locomotory behavior 1 1 Nervous system
Memory 1 1 Nervous system
Regulation of blood pressure 6 3 Physiology/development
Determination of adult lifespan 2 2 Physiology/development
Bone mineralization 1 1 Physiology/development
Developmental growth 1 1 Physiology/development
Negative regulation of adipose tissue development 1 1 Physiology/development
Ovarian follicle development 4 4 Reproduction
Decidualization 1 1 Reproduction
Ovulation 1 1 Reproduction
Spermatogenesis 1 1 Reproduction
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intermediate biological phenotype that ultimately can be linked
to a disease outcome (Davis et al., 2018). This framework is com-
plementary to the AO pathway (AOP), a conceptual module that
connects a molecular initiating event (MIE) with a linked series of
ordered key events (KEs) that ultimately lead to an AO. The KEs
often reflect broad molecular, cellular, or tissue/organ level con-
cepts, and are assumed to have underlying causal subnetworks
involving gene products and biological reactions that define
them. AOPs have become an increasingly useful method to for-
malize a series of mechanistic steps leading to any adverse end-
point (Ankley and Edwards, 2018), and the AOP-Wiki (https://
aopwiki.org/) is an official resource for researchers to construct,
store, and publish their designed AOPs for the scientific commun-
ity. Currently, AOP-Wiki contains 423 AOP records; however, 224
of them (53%) have the status of “Do Not Cite” (as they are either
under development or not open for comments), and only 161
(38%) are open to citation or are still under development but
open to comments, suggesting that many of these stored AOPs
still need valuable input, validation, and refinement from the sci-
entific community. While AOPs are defined as being chemical-
agnostic, some include prototypical chemical stressors, and inte-
grating extraneous chemical exposure data to defined AOPs is a

widely used practice to help inform and provide potential insight
into environmental diseases, chemical safety assessment, and
human health risk management (Bajard et al., 2023; Edwards
et al., 2016; Kan et al., 2022; Lambert, 2022; Li et al., 2022;
Mortensen et al., 2018; Paini et al., 2022; Perkins et al., 2022;
Pogrmic-Majkic et al., 2022; Saarim€aki et al., 2023). CTD Tetramers
is a valuable tool to identify and provide literature-based evi-
dence for potential gene and phenotype intermediates that can
help inform, refine, and provide evidence for mechanistic causal
subnetworks for AOPs, especially with respect to environmental
influences on human health.

Integrating environmental exposure information often first
requires harmonization across a variety of data type platforms
(Davis et al., 2019; Holmgren et al., 2021; Thessen et al., 2020). To
facilitate using AO terms as input queries in the CTD Tetramer
tool, we manually mapped the 179 official AO terms from the
AOP-Wiki to corresponding CTD phenotype and disease terms
used for curation and construction of CGPD-tetramers
(Supplementary Table 2).

To demonstrate how CTD tetramers can be used to help inform
AOPs in various ways, we used Aop:38 (“Protein alkylation leading
to liver fibrosis”; https://aopwiki.org/aops/38) as a test case. This

Figure 5. Use case 1: computing mechanistic framework to fill knowledge gaps for PFAS and asthma. The CTD Tetramers tool generated 203 CGPD-
tetramers connecting 2 PFAS chemicals to asthma (Supplementary Table 1). Similar phenotypes were manually grouped and binned into modules
(Table 2), such as “oxidative stress events” made up of 4 distinct phenotypes. Here, 4 modules are shown (“cell response to stimulus,” “oxidative stress
events,” “cell signaling,” and “immune/inflammatory response”), composed of 23 total genes and 20 unique phenotypes. These modules are connected
by shared genes (arrows). Importantly, additional modules (eg, “cell death” and “triglyceride metabolism” from Table 2) can be incorporated to further
expand the chemical-disease pathway. The computed molecular mechanisms offer potential solutions that fill knowledge gaps between PFAS and
asthma.
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Figure 6. Use case 2: surveying 3 diseases for bisphenol A exposure. Three tetramer datasets were independently generated using the CTD Tetramers
tool for bisphenol A (BPA) and the metabolic diseases obesity, T2D, and hypertension. The relationships between the resulting (A) 447 genes, (B) 554
phenotypes, and (C) 3612 gene-phenotype dimers were compared. Venn analysis can help develop schematic and hypothetical pathways as a starting
point to explore and understand the commonality and uniqueness of potential mechanisms for each outcome. For example, the 18 genes, 261
phenotypes, and 286 gene-phenotype dimers shared by all 3 diseases might be hypothesized as representing common processes, while elements shared
by 2 diseases might be involved in predisease events, and other unique mechanisms might potentially be more disease-driven processes.

Figure 7. Use case 3: discovering shared molecular mechanisms for multiple chemical exposures. CTD Tetramers is used to independently generate
tetramers that connect the phenotypes “spermatogenesis” and “apoptotic process” to male infertility. Comparing the data types from these 2 sets of
tetramers discovers 50 shared chemicals and 3 shared genes. Many of the chemicals can be grouped into different sources of exposure, including
cigarettes, phthalates, pesticides, and arsenics; yet these diverse chemicals have interactions with shared genes that modulate the 2 phenotypes
apoptosis and spermatogenesis, suggesting that different exposures from different sources can potentially converge upon the same molecular
mechanisms toward the same potential disease outcome. Note: for simplicity, not all genes or shared chemicals are shown.
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established AOP is composed of 1 MIE, 5 KEs, and an AO, with
several prototypical stressors proposed, including carbon tetra-
chloride (Figure 8). Since the associated AO “Liver fibrosis”
(AO:344) maps to the CTD disease term “Liver Cirrhosis”
(MESH:D008103), we queried CTD Tetramers with “carbon tet-
rachloride” and “liver cirrhosis” to return 236 tetramers com-
posed of 75 genes and 68 phenotypes. Many of the computed
phenotypes from these CGPD-tetramers map to similar concepts
denoted by the KEs in the AOP (Figure 8), providing users with a
plethora of specific gene-phenotype molecular mechanisms that
provide literature-based evidence to support the causal subnet-
works of KEs (Perkins et al., 2022). This approach can aid the
development of new or unpublished AOPs by providing
literature-based evidence and support for creating new KE rela-
tionships (Jeong and Choi, 2022; Jeong et al., 2023). This is impor-
tant because the quality of an AOP depends upon the strength of
the underlying evidence used to support the KE relationships,
and, since AOPs are chemical-agnostic, the evidence to build an
AOP can come from any type of chemical stressor (Chauhan et al.,
2021). Additionally, this approach furnishes a list of potential
genes for subsequent analysis regarding environmentally
induced AOs (Virolainen et al., 2023).

Next, the molecular mechanisms identified can be used sub-
sequently to query CTD Tetramers for other environmental chemi-
cals that might act as additional stressors for the same AOP. For
example, a multiparameter query of CTD Tetramers using the phe-
notype “collagen biosynthetic process” (part of a computed
causal subnetwork for KE:68, “collagen accumulation”; Figure 8)
and the disease term “liver cirrhosis” returns over 190 tetramers
(https://bit.ly/ctdcollagenLC). These tetramers are composed of
more than 40 additional environmental chemicals, including
acetaminophen, particulate matter, dimethylnitrosamine, and

dietary fats that can be explored for influencing this same AOP
for liver cirrhosis.

Finally, the KE terms can be used to discover other CTD dis-
eases, enabling interconnected AOP networks to be proposed. We
selected 4 CTD phenotypes that reflect 4 of the KEs for this AOP:
CTD phenotype “cell death” (GO:0008219) for KE “cell injury/cell
death” (KE:55), CTD phenotype “cell activation” (GO:0001775) for
KE “tissue resident cell activation” (KE:1492), CTD phenotype
“inflammatory response” (GO:00006954) for KE “pro-inflamma-
tory mediators” (KE:1493), and CTD phenotype “collagen biosyn-
thetic process” (GO:0032964) for KE “collagen accumulation”
(KE:68). These 4 CTD phenotypes were independently used to
query CTD Tetramers to generate tetramers with 130, 162, 641, and
30 diseases, respectively (Figure 9). We identified 10 diseases
shared by all 4 phenotypes/KEs, including hypertension, malig-
nant mesothelioma, and prostate cancer, some of which can be
mapped to official AOP events (Supplementary Table 2). This
method allows users to formulate sets of interconnected AOP
networks that use shared KEs but result in different disease out-
comes (Figure 9), and could be used to help compute and model
possible comorbidities (Hidalgo et al., 2009).

Caveats, limitations, and potential future considerations

An important caveat to our methodology lies in the requirement
that CGPD-tetramers generated by the tool CTD Tetramers must
have 5 statements of supporting evidence (Figure 1A). Because of
this requirement, the computed tetramers represent only a sub-
set of all CTD data relationships found in the database. For exam-
ple, currently in CTD, there are 288 unique chemicals that affect
the phenotype “spermatogenesis” (http://ctdbase.org/detail.go?
type=go&acc=GO%3A0007283&view=phenotype); however, in
use case 3 (Figure 7), only 62 chemicals were retrieved as part of

Figure 8. Use case 4: providing mechanistic insights for AOPs. Aop:38 relates how protein alkylation can lead to liver fibrosis (AO:344), which maps to
liver cirrhosis (MESH:D008102) in CTD, with several prototypical stressors, including carbon tetrachloride (AOP stressor:13). Querying CTD Tetramers
with carbon tetrachloride and liver cirrhosis generates 236 tetramers composed of 75 genes and 68 phenotypes, with many of the returned phenotypes
reflecting the individual KE modules, providing potential mechanistic insights and literature-supported evidence for the causal subnetworks for each
KE.
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the tetramer analysis that connects “spermatogenesis” to “male
infertility” because only those 62 of the 288 chemicals fulfill the
requirement of having all 5 evidence statements curated in CTD.
That is not to say the remaining 226 chemicals might not play a
role in male infertility, but only that, currently, all 5 of the
required evidence statements do not yet exist in CTD for those
additional 226 chemicals to become part of a tetramer.
Nonetheless, tetramers provide a quick and easy starting point to
initiate the construction of chemical-disease pathways, and this
new tool now helps to bring these datasets with the most evi-
dence to the forefront for users. If necessary, pathways derived
from tetramer analysis can be enhanced manually by the user
with additional genes, chemicals, and phenotypes that have
other relationships in CTD but do not show up in tetramers
because one or more of the required evidential statements is cur-
rently lacking. Importantly, every month CTD biocurators man-
ually curate over 250 new peer-reviewed articles, adding over
18 000 interactions into the database that can be leveraged as
new evidence statements by the CTD Tetramers tool to continually
expand the number of tetramer computations.

Another limitation, as demonstrated in many of the use cases,
is that the follow-up study of the computed tetramers often
requires manual analysis by the user. While querying for and
retrieving the computed CGPD-tetramers themselves does not
require any a priori knowledge about the data types, evaluating
the tetramer outputs can involve ancillary manual tasks. For
example, in use case 1 (Figure 5), tetramer-derived phenotypes
are first manually evaluated and binned into modules to help
construct a potential chemical-disease pathway. In use case 2
(Figure 6), Venn analysis is necessary to derive the shared and

unique molecular operations for different disease outcomes, and
in use case 3 (Figure 7), chemicals are manually surveyed and
grouped into categories to evaluate the shared molecular mecha-
nisms from different exposure sources. Future considerations to
facilitate these manual processes could include using network
models developed by GO-CAM (Thomas et al., 2019) that might
enable easier and automatic mapping and binning of CTD pheno-
types by their GO accession identifiers into structured GO path-
ways as well as help reduce potential bias introduced by manual
clustering. Constructing a chemical classifier, similar to the
MEDIC-Slim classifier developed for diseases (Davis et al., 2013),
would help group chemicals into broader categories for easier
meta-analysis of exposure sources.

We are appraising other potential functionalities to add to
CTD Tetramers. For example, since CTD curation of chemical-
phenotype interactions also include anatomy terms (Davis et al.,
2021), we are testing ways to add an optional filter to enable users
to explore tetramers from an anatomical perspective. As well, we
are investigating ways to incorporate visualization tools that
transform the extensive tetramer query outputs into more user-
friendly illustrations for users to export as a network graph. For
instance, the 203 tetramers depicting the complex PFAS-asthma
dataset from use case 1 can be visualized to help highlight the
salient relationships between certain key chemicals, genes, phe-
notypes, and diseases (Supplementary Figure 1). Finally, we are
considering ways to weight the 5 evidentiary statements neces-
sary for each generated tetramer, such as basing it upon the
number of curated scientific articles used to support each state-
ment; this type of weighted scoring could help rank, sort, and pri-
oritize the tetramers in the future.

Figure 9. Use case 4: proposing AOP networks. Four KEs (highlighted) used in Aop:38 are matched to corresponding CTD phenotypes, and these
phenotypes are used to query CTD Tetramers independently to return 4 sets of tetramers for each phenotype. The diseases associated with each
phenotype from the 4 sets of returned tetramers are compared in Venn analysis to discover 10 overlapping diseases shared by all 4 queries. Among the
10, hypertension corresponds to AO:952 and mesothelioma corresponds to AO:1090 in the AOP-Wiki; currently, there is no AO term for prostate cancer.
These 4 KEs may be used to create new or augment existing independent AOPs leading to 4 different diseases, allowing an interconnected AOP network
to be postulated. (Note: the additional MIEs and KEs necessary for each proposed independent AOP are not known/shown).
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Summary
Here, we describe a novel, user-friendly tool called CTD Tetramers
that enables scientists to quickly retrieve CGPD-tetramers, which
are 4-unit data modules computationally generated by integrat-
ing 5 lines of curated evidence from CTD. Importantly, this
method does not require a priori knowledge for any of the data
types: users simply enter any chemical, gene, phenotype, or dis-
ease of interest, and the tool automatically generates all possible
CGPD-tetramers and provides the supporting lines of evidence
from the literature. These tetramers, in turn, can be used in a
variety of ways to fill exposure knowledge gaps with potential
molecular mechanisms for chemical-disease pathways and form
testable hypotheses about environmental health.
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