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Abstract: Self-regulation of food intake is necessary for maintaining a healthy body weight. One of
the characteristics of self-regulation is calorie compensation. Calorie compensation refers to adjusting
the current meal’s energy content based on the energy content of the previous meal(s). Preload
test studies measure a single instance of compensation in a controlled setting. The measurement of
calorie compensation in free-living conditions has largely remained unexplored. This paper proposes
a methodology that leverages extensive app-based observational food diary data to measure an
individual’s calorie compensation profile in free-living conditions. Instead of a single compensation
index followed in preload–test studies, we present the compensation profile as a distribution of days a
user exhibits under-compensation, overcompensation, non-compensation, and precise compensation.
We applied our methodology to the public food diary data of 1622 MyFitnessPal users. We empirically
established that four weeks of food diaries were sufficient to characterize a user’s compensation profile
accurately. We observed that meal compensation was more likely than day compensation. Dinner
compensation had a higher likelihood than lunch compensation. Precise compensation was the least
likely. Users were more likely to overcompensate for missing calories than for additional calories.
The consequences of poor compensatory behavior were reflected in their adherence to their daily
calorie goal. Our methodology could be applied to food diaries to discover behavioral phenotypes of
poor compensatory behavior toward forming an early behavioral marker for weight gain.

Keywords: MyFitnessPal; calorie compensation; food diary; preload; mhealth; statistical analysis;
nutrition

1. Introduction

Uncontrolled weight gain leads to obesity, increasing the risk of cardiovascular dis-
eases and diabetes [1]. Food regulation is essential to maintaining a healthy weight [2]. One
of the critical behaviors in food regulation is the compensation of energy content (calories),
i.e., adjusting the current meal’s energy content based on the energy content of the previous
meal(s) [2,3]. A light dinner salad after a heavy brunch is an example of meal compensation.
Compensation may also occur across days. An example of day compensation is eating
lower calories after overindulging on a cheat day. Poor compensatory behaviors could
be an early behavioral marker for weight gain. However, there is scant research on the
methodologies that characterize compensatory behaviors in free-living conditions.

Past research studying compensatory behaviors in adults predominantly adopted a
preload–test design [2–6]. Preloads with fixed food attributes are provided to participants.
Their effect on a subsequent eating occasion called the test meal is measured in a controlled
environment, e.g., in a laboratory. However, preload–test studies provide a limited view
of assessing compensatory behavior restricted to controlled laboratory conditions. First,
the preload and test meals may not be items the participants consume in their habitual
diet. Second, the studies determine compensation only at the next meal. However, com-
pensation may occur later in the day or across days in free-living conditions. There are
two opportunities for meal compensation on a given day, i.e., lunch and dinner. Since food
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habits significantly differ across meal occasions, one may expect different compensation
patterns at lunch and dinner.

In this paper, we take a different approach to characterizing the compensatory be-
haviors of adults in free-living conditions. We leveraged a large public food diary dataset
from users of the MyFitnessPal app [7] to apply our proposed methodology. We make the
following contributions to further the knowledge of compensatory behaviors exhibited by
individuals in real-life conditions.

A computational measure of compensatory behavior: We developed a methodology to
determine compensatory behavior at lunch, dinner, and across days. Thus, the methodology
allows us to study meal and day compensation. Our methodology characterizes the change
in calories at a meal occasion relative to the change in calories at preceding meal/s to assess
meal compensation. In contrast, the change in total calories consumed on a day relative
to the change in total calories on the preceding day is examined for day compensation.
In both cases, change is measured as a deviation from the median calories consumed
in the past seven days, assuming that resting metabolic energy expenditure and routine
activities would be similar in the past seven days. The preceding meal or preceding day is
collectively referred to as a free-living preload. The current meal or day under consideration
is collectively referred to as a free-living test. Our methodology classifies each instance
of meal or day compensation into one of the four classes: precise compensation, under-
compensation, overcompensation, and non-compensation. A compensation profile is constructed
for each person that summarizes their likelihood for each class of compensatory behavior.
By comparing compensation profiles estimated over varying lengths of food diaries, we
empirically observed that four weeks of food diary records were sufficient to build an
accurate compensation profile of the individual.

Patterns of compensatory behavior in MyFitnessPal users from free-living food di-
ary records: Using the proposed methodology, we computed compensation profiles of
1622 users in the MyFitnessPal food diary dataset. We observed that dinner compensation
was more likely than lunch compensation. We found that 90% of users compensated at
dinner, and 72% compensated at lunch for more than 50% of the days. There was significant
evidence of day compensation, such that 41% of users compensated across consecutive days
for more than 50% of the days. Diving deeper into the classes of compensatory behavior,
we found that precise compensation was extremely rare. The average likelihood for precise
compensation was 6% for lunch, 10% for dinner, and 6% for day compensation. People
tended to undercompensate at dinner and overcompensate at lunch. We investigated
whether compensation was more for missing calories than additional calories. We found
that overcompensation was significantly more likely for negative changes than positive
changes in preceding intake. It was 4% more likely at lunch, 4% at dinner, and 5% across
days. Not compensating after an increase preceding meal intake and overcompensation
after a decrease in preceding calorie intake are poor compensatory behaviors that may lead
to a high overall calorie intake. We observed that 41% of users did not meet their calorie
goal on the days when they did not compensate at dinner for the increase in lunch and
breakfast intake. We found that 34% of users did not meet their calorie goals on the days
when they overcompensated at dinner for decreases in lunch and breakfast intake.

With the growing acceptability of smartphone diet monitoring apps, food diary infor-
mation for a long duration and from a large sample size can be gathered [8,9]. Publicly
available food diary datasets, such as the MyFitnessPal dataset [7], allow a unique oppor-
tunity to study compensatory behavior in hundreds of free-living individuals with food
diaries spanning across weeks. However, food diary data generated via diet monitoring
apps remains untapped for building insights into eating behavior patterns. The behavioral
patterns discovered in the analyzed dataset give us clear insights into the state of compensa-
tion exhibited by diet logging app users. Quantifying their compensation profile with four
weeks of diet logs may spark the design of recommendations or just-in-time interventions
to modify their compensation profile for higher adherence to their calorie goals.
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2. Related Work

Calorie Compensation Studies: Calorie compensatory behavior has been traditionally
studied with a preload–test study design. The test meal is often provided to all participants
after a fixed time period after the preload meal. The preloads are designed to evaluate
the impact of different energy content, densities, and macronutrient compositions on the
test meal intake [2,4]. Participants of varying age, gender, and BMI are considered to
understand the impact of these variables on energy compensation [2,5,6]. Such preload–test
studies found that adults often failed to adjust food intake accurately to preloads of various
energy densities. The compensation ability declined with age [5]. The findings also suggest
that individuals compensate more easily for missing energy instead of the additional energy
provided in the preload [5]. However, preload–test studies assess only a single instance
of compensatory behavior in a controlled setting. An observational study [10] inspected
short-term compensatory behaviors in free-living conditions over 7-days with 24-h recall
food diaries. The study found a negative correlation between energy intake on consecutive
eating occasions, suggesting the presence of substantial meal compensation in free-living
conditions. The compensation was, however, imprecise, leading to considerable variation
in total daily intake across the seven days. The study did not investigate whether the
imprecise compensation was due to under-compensatory or over-compensatory behaviors.
It also did not investigate compensation across days. Additionally, the study duration was
limited to 7 days.

Analysis of App-based Food Diaries: Computational studies of app-based food diaries
have focused on the recommendation of food substitutes [11] or predicting next day food
items [12]. A few recent studies used app-based food diary datasets to assess population-
level dietary behaviors, such as consumption of different food groups (e.g., fruits and
vegetables) [13,14] or habitual consumption [15]. Other works have identified clusters of
users with similar dietary behaviors using text analysis methods on food diaries [16,17].
While previous studies have shed light on certain aspects of dietary behavior, to our
knowledge, there has been no study of calorie compensation behaviors using app-based
food diary data.

3. Materials and Method

Our objective was to extract patterns of compensation from the calorie intake sequence
constructed from longitudinal app-based food diaries. Hence, the input “signal of in-
terest” for our method is the individuals’ calorie intake at different meal occasions. We
used a public self-reported food diary dataset of MyFitnessPal [7] users to study their
compensation patterns.

3.1. Preprocessing MyFitnessPal Food Diary Dataset

We used the MyFitnessPal food diary dataset created by Weber and Achananuparp [7,14].
The dataset contains 587,187 days of food diary entries collected from 9896 individuals
spanning six months from September 2014 to April 2015. The participating individuals
belonged to an online weight loss community and used MyFitnessPal to log their food. The
dataset contains demographic information on gender and age group for most users. Female
users comprise 73% of the dataset, and male users comprise 16%. The age group from 18 to
44 years comprise 71% of the dataset and greater than 44 years comprise 18%.

A typical food diary entry of a day consists of textual and nutritional descriptions of
the meals consumed. The descriptions contain the following information: (i) de-identified
participant number, (ii) date of a food log, (iii) the meal occasion label input by the user
or default set by the MyFitnessPal application (e.g., breakfast, lunch), (iv) the names of
dishes consumed in the meal, (v) nutrition of each dish (e.g., calories, protein, fat), and
(vi) MyFitnessPal app provided calorie goal for the day. The calorie intake is a signal of
interest in this work. Therefore, we preprocessed the data to analyze each user’s calorie
information in the kcal units.
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The default labels in MyFitnessPal for meal occasions are breakfast, lunch, dinner,
and snacks. However, the app allows users to customize the labels. As a result, some
users changed their labels, leading to nonuniform labels in the dataset. To enable user
comparison, we excluded individuals with non-default meal occasion labels.

We excluded days that consisted of dishes with calorie information that was negative
or more than 3000 calories, as it could be a result of erroneous logging [12]. Self-reported
data commonly suffers from missing information in the dataset due to irregular logging. We
included users who were complete and consistent in their food records. We excluded days
that did not have an entry for each meal occasion (breakfast, dinner, lunch, and snacks).
Furthermore, individuals that had recorded complete days consistently were included,
i.e., the average number of missing days between the three complete days (less than half
a week).

For the purposes of our analysis, we set lunch intake to be a combination of logged
lunch and snack calories since we did not have the time information on the consumption of
the snacks. After preprocessing the dataset, we conducted an analysis on 4778 users.

3.2. Computational Measure of Compensatory Behavior
3.2.1. Notations

The key information of interest is an individual’s daily calorie intake sequence at each
meal occasion, namely breakfast, lunch, and dinner. Midday intake is the combination
of breakfast and lunch intake. Total intake is the combination of breakfast, lunch, and
dinner intake. Let the label for breakfast be b, lunch be l, dinner be d, midday be m,
and day be y. The calorie intake sequence of a single user is denoted as ko[n] where
o ∈ {b, l, d, m, y} is the meal occasion. The variable n refers to the n day in the food records
of the user. The midday intake for day n is km[n] = kb[n] + kl [n]. The total intake for day
n is given as ky[n] = kb[n] + kl [n] + kd[n]. The median of past 7 days of calorie intake is
given as median (ko[i])

i=n−1
i=n−7. The deviation from usual intake on a given day n is denoted

as ∆o[n] = ko[n] −median(ko[i])
i=n−1
i=n−7. The daily goal is denoted as g[n], and the daily

adherence is denoted as a[n] = g[n]− ky[n], which is the difference between the goal and
total calories.

3.2.2. Definitions

In this section, we introduce key terms computed from the calorie intake sequences
to quantify compensatory behavior. Previous literature defined calorie compensation
as the adjustment of the current meal’s energy content based on the energy content of
previous meal(s) [2,3]. The previous meal(s) is referred to as a preload, and the current
intake is referred to as a test. Past works [2–6] measured compensation with a controlled
preload–test study design. A pair of preload meals are specifically designed for contrast, for
example, low energy density vs. high energy density meals. The test meal intake after each
preload meal is measured. The difference in test intakes is compared with the difference
in preload intakes to compute compensatory behaviors [2–6]. In this work, we computed
compensation behavior across meals and days to capture both free-living meal-to-meal and
day-to-day fluctuations in calorie intake.

Compensation: Compensation may occur across meals and across days. We defined
meal compensation as the change in intake at a meal occasion relative to the change
in intake at preceding meal occasion(s). Compensation may occur at lunch and dinner.
Compensation at lunch is a change in intake at lunch relative to a change in intake at
breakfast. Compensation at dinner is the change in intake at dinner relative to the change
in combined breakfast and lunch intake. We defined day compensation as the adjustment
in overall intake on a day relative to the change in intake on the preceding day.

In the dataset, there are no preload meals or test meals. The free-living meals are not
controlled, blinded, or consistent across participants. However, inspired by the conceptual
framework of past works, we introduce the concept of a free-living preload–test pair
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and present a new approach to calculating compensation patterns from the free-living
preload–test pairs.

Free-living preload and free-living test: For calculation of meal compensation, the
free-living preload–test pair needs to be meals. Thus, calories consumed in any meal is a
free-living test meal intake, and the calorie intake consumed before that meal is the free-
living preload meal intake. For calculation of day compensation, the total calorie intake of
any day is the free living test day intake, and the total calorie intake of the previous day is
the free living preload day intake. We denoted preload on day n as kp[n] and the test on day
n as kt[n]. Note that the preload kp[n] and test kt[n] intake correspond to meal intakes in
meal compensation computation and total daily intake in day compensation computation.

We calculated deviation from the median intake over the past 7 days to quantify the
change in preload and change in test intake. Our intuition behind using the median of the
past 7 days as a reference is that we are comparing deviations from usual intake for the
preload and test.

Change in free-living preload and test: The change in preload on day n is denoted
as ∆p[n], and the change in test is denoted as ∆t[n]. The change in preload ∆p[n] is

calculated as kp[n]—median
(
kp[i]

)i=n−1
i=n−7. Similarly, the change in test ∆t[n] is calculated

as kt[n]−median(kt[i])
i=n−1
i=n−7. We compared the magnitude and direction of change in the

test to the change in preload to identify the class of compensatory behavior.
Compensation classes: We introduce four classes of compensation behaviors, namely

under-, over-, precise, and non-compensation. Compensation for each preload–test pair
is classified into one of the four classes: under-, over-, precise, and non-compensation.
Under-compensation occurs when the change in the test meal is in the opposite direction of
the change in preload meal, and the magnitude of change in preload is less than the change
in test by 20%. Overcompensation occurs when the change in the test is in the opposite
direction of the change in preload, and the magnitude of the change in test intake is greater
than the change in the preload by 20%. Precise compensation occurs when the change in
the test is in the opposite direction of preload, and the magnitude of change in the test
and magnitude of change in the preload differs by less than 20%. Finally, if the change in
test intake is in the same direction as the change in preload intake, then it is referred to as
non-compensation. We chose a threshold of 20% because nutrition labels can be up to 20%
inaccurate by FDA regulations.

ct[n] =



under if − 0.8 < ∆t [n]
∆p [n]

< 0

over if ∆t [n]
∆p [n]

< −1.2

precise if − 1.2 ≤ ∆t [n]
∆p [n]

≤ −0.8

not if ∆t [n]
∆p [n]

>= 0

(1)

The compensation behavior sequence was calculated for each lunch, dinner meal
and each day. We collectively denoted the compensation behavior sequence as ct[n],
where t ∈ {l, d, y} indicate lunch, dinner, and day compensation, respectively. The el-
ements in the compensation behavior sequence belong to the compensation class set
S = {under, over, precise, not}.

For lunch compensation analysis, lunch is treated as a test meal, and breakfast is
treated as the preload meal. For dinner compensation, dinner is considered the test meal,
and breakfast with lunch together is considered as the preload meal. In day compensation,
a test day is any specific day, and the corresponding preload day is the previous day.

Since food logging is a burdensome activity [18], missing days are prevalent in the
sequence. While computing day compensation, we only consider the days for which we
have complete information for the previous day. Additionally, we ignore days with missing
values while calculating the median intake of the past seven days. Our definition requires
a non-zero change in preload. We calculated the class of compensatory behavior only for
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non-zero changes in preload. The number of days when ∆p[n] = 0 was extremely limited
in the dataset.

The pipeline for computation of the calorie compensatory behavior sequence at dinner
for an example user is shown in Figure 1. The lunch and breakfast calorie intake is combined
and considered as the free-living preload intake. The dinner calorie intake is considered
as the free-living test intake. The changes in preload and test are computed for each day.
The compensation class for each day is computed with Equation (1). We used the proposed
pipeline for each user and constructed the lunch compensation behavior sequence cl [n],
the dinner compensation behavior sequence cd[n], and the day compensation behavior
sequence cy[n].
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Figure 1. Overall pipeline for the computation of the calorie compensatory behavior sequence. Food
diaries of MyFitnessPal users are parsed to construct calorie consumption sequences for breakfast,
lunch, and dinner. Computation of compensatory behavior sequence at dinner is shown for an
example user. The user’s breakfast and lunch calorie intake sequence is combined as the midday
intake sequence. The midday intake is considered as the preload meal, and the dinner intake as
the test meal. Compensatory behavior at dinner for each day is identified by comparing changes
in test intake to changes in preload, where change refers to deviation from median intake. Based
on the relative changes, the day is labeled one of the four classes of compensatory behavior (under,
precise, over, not). Finally, a compensatory behavior sequence is constructed, which is then used to
summarize the compensation profile of the user.

3.2.3. Compensation Behavior Measures

Next, we propose computational measures that summarize the behavior sequence
and allow comparison among users in the dataset. Comparison among users allows the
discovery of population-level trends.

Compensation profile of a user: We computed the compensation profile as the proba-
bility distribution function constructed from the samples of calorie compensation behavior
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sequence. We modeled the calorie compensation sequences cl [n], cd[n], cy[n] as discrete time
and discrete space random processes that take one of the following values S = {under, over,
precise, not} for every day n. From the samples of the calorie compensation behavior se-
quence, we empirically estimated the probability mass function of the compensation behav-
ior for each user. Probability mass functions (pmf) are denoted as Pct , where ct ∈

{
cl , cd, cy

}
corresponds to lunch, dinner, and day compensation profiles. The compensation profile of
the user represents the fraction of days the user exhibited a class of compensatory behavior.

Based on the direction of change in the preload, the four classes of compensation had
varying significance. For example, for the positive change in preload, non-compensation may
lead to overall high calorie intake, but for a negative change in preload, non-compensation
may signify low daily calorie intake. High calorie intake could result in exceeding the daily
calorie goal budget.

Compensation profile conditioned on direction of preload change: We computed the
conditional compensation profile for positive

(
∆p[n] > 0

)
and negative changes in preload(

∆p[n] < 0
)

separately. Thus, we estimated two conditional probability mass functions (pmf),
Pct |∆p>0 and Pct |∆p<0, to investigate the differences in the likelihood of compensation classes
for positive and negative changes in preload. All conditional compensation profiles were
computed for lunch, dinner, and day compensation separately by substituting

(
ct[n], ∆p[n]

)
as

each of the tuple elements in
{
(cl [n], ∆b[n]), (cd[n], ∆m[n]),

(
cy[n], ∆y[n− 1]

)}
, respectively.

Median adherence conditioned on the direction of preload change and compensa-
tion class: Adherence measure for each day n denoted as a[n] quantifies if the user is
within or above their designated calorie goal for the day. A positive value for a[n] implies
that the user was within the goal, and a negative value implies that the user exceeded
their goal. To understand the impact of each class of compensation given a direction
of preload change on the adherence to the calorie goal, we computed the median ad-
herence conditioned on the direction of preload change and compensation class. Given
the compensatory behavior sequence ct[n] and the preload change sequence ∆p[n], we
computed the median adherence for positive preload changes denoted as ãct ,s,∆p>0. The
median adherence ãct ,s,∆p>0 is computed as median

{
a[n] | ct[n] = s, ∆p > 0

}
. Similarly,

we computed the median adherence for negative preload changes denoted as ãct ,s,∆p<0. The
adherence computation is performed for every compensation class s ∈ S and each tuple(
ct[n], ∆p[n]

)
∈
{
(cl [n], ∆b[n]), (cd[n], ∆m[n]),

(
cy[n], ∆y[n− 1]

)}
corresponding to lunch,

dinner, and day compensation.

4. Analysis Results

In this section, we present the analysis of the proposed compensatory behavior mea-
sures observed in MyFitnessPal users. We first examined the minimum number of recorded
days needed to estimate the compensation profile of the users accurately. Then, we in-
vestigated the patterns of the lunch, dinner, and day compensation profiles. Next, we
studied the relationship between the direction of preload change and the class of compen-
satory behavior. Finally, we compared the adherence to calorie goals for different classes
of compensation.

4.1. Duration for Measurement of Compensatory Behavior

The compensation profiles were constructed from repeated measures data observed
over a period of time. The number of days logged varied from user to user. The number of
days influenced the accuracy of the estimated profiles. However, we did not know the true
underlying behavior distribution to compute its divergences from the estimated profiles.
However, we can fairly assume that a greater number of days enables a more accurate
representation of the user’s underlying behavioral distribution. Hence, we inspected the
dependence between the estimated profiles and the number of days of logs quantitatively.
Let N denotes the set of days for which the calorie intake is logged.

We performed the analysis on a subset of users with long consumption sequences.
We included a subset of individuals with N ≥ 84 for the analysis of lunch and dinner
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compensation profiles. There were 426 users with N ≥ 84 for dinner and day compensation
computation and 424 users with N ≥ 84 for lunch compensation computation. We used all
the days in their sequence to calculate Pcl , Pcd , and Pcy as the stable compensation profile.

Next, we estimated the compensation profiles with N̂ ranging from 14 to 84 days. For
each N̂, we estimated P̂cl ,N̂

, Pcd ,N̂ , and Pcy ,N̂ using any random continuous N̂ days of the
consumption sequence. Next, we computed the distance between the estimated profile
and the corresponding stable profile for varying N̂ using the Jensen–Shannon Divergence
equation [19]. The Jensen–Shannon Divergence between two probability distributions Q, R
is denoted as JSD(Q ‖ R). It measures the distance between two probability mass functions.
The measure has a range of 0 to 1. For each user, we found the average Jensen–Shannon
Divergence calculated as JSDct,N̂

= ∑
N̂∈N

JSD
(

Pct ,N̂ ‖ Pct

)
, where ct ∈ cl , cd, cy.

Figure 2 demonstrates that when we include more days in our analysis, our estimated
compensation profiles are closer to the stable profiles. We observed the same trend for
lunch, dinner, and day compensation. We empirically observed that 28 days appeared
as the elbow of the curve using the Kneedle algorithm [20]. As a result, for subsequent
analysis, we considered participants with N ≥ 28. There were 1622 users with N ≥ 28 in
the dataset.
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Figure 2. Relationship between the accuracy of the compensation profile and the number of logged
days. With the increase in the number of days (sequence length), we achieved a more accurate
compensation profile (lower Jensen–Shannon Divergence between estimated compensation profile
and stable compensation profile). We observed 28 days to be the elbow of the JSD vs. the number of
days curve.

Food diary records spanning a period of 28 days were sufficient to capture the com-
pensation profile of a user. We considered users whose length of calorie consumption
sequence was greater than or equal to 28 to minimize bias in our analysis that may result
from insufficient data.

4.2. Meal and Day Compensation Profiles

Figure 3 displays a comparison between meal (lunch, dinner) and day compensa-
tion across the four different compensation classes. We used the Friedman test [21] for
multiple group comparisons and the Wilcoxon signed-rank test [22] for pairwise post hoc
comparisons with Bonferroni correction. We observed significant differences in the lunch,
dinner, and day compensation profiles of users. The likelihood of non-compensation was
highest for the day, followed by lunch and dinner (p < 0.001). As a result, users showed
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compensatory behavior in the opposite direction of change in preload more at the meal
level than at the day level.
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Figure 3. Statistical comparison of compensation profiles of users in the MyFitnessPal dataset for
meals and days. The lunch, dinner, and day compensation likelihoods for different categories of
compensation are shown in the Figure.

We found that the likelihood of under-compensation was higher at dinner, followed
by day and lunch in order (p < 0.001). In contrast, overcompensation was most likely at
lunch, followed by dinner and day (p < 0.001). We found that the likelihood of precise
compensation was very low. The likelihood of precise compensation was the least compared
to other classes for meal and day compensation. The mean fraction of days that a user
exhibited precise-compensation was 6% (σ = 4%) for lunch, 10% (σ = 6%) for dinner and
6% (σ = 4%) for day compensation.

Meal-level compensation was significantly more likely than day-level compensation.
Compensation at dinner was more likely than lunch. Precise compensation of calories was
extremely rare.

4.3. Relation between the Category of Compensatory Behavior and Direction Preload Change

We quantified the differences in compensation profiles for positive and negative
changes in preload. Figure 4 shows a statistical comparison between compensation profiles
for positive changes in preload Pct |∆p>0 and negative changes in preload Pct |∆p<0 for each
level of compensation i.e., lunch, dinner, and day. The compensation profiles Pct |∆p>0
and Pct |∆p<0 were significantly different for meal and day compensation. Overcompen-
sation was more likely for negative changes than positive changes by 4%[−4%, 11%] for
lunch compensation (1619 users, p < 0.001), by 4%[−3%, 11%] for dinner compensation
(1624 users, p < 0.001) and 5%[−4%, 15%] for day compensation (1623 users, p < 0.001).

Overcompensation was significantly more likely for negative changes than positive
changes in preload at all levels of compensation. Individuals tended to over-adjust for
missing calories compared to additional calories.

4.4. Relation between the Category of Compensatory Behavior and Adherence to Goal

In our analysis, we computed the median adherence of the individual for each class
of compensatory behavior for positive and negative preload changes for lunch, dinner,
and day compensation. Table 1 summarizes the percentage of users who had a positive
median adherence for the days they exhibited each class of compensatory behavior given
direction of change in preload and the level of compensation. Note that a positive median
adherence signified that the users were within their goal. For positive changes in preload,
the percentage of users with positive median adherence decreases from the overcompen-
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sation category to the non-compensation category. In contrast, for negative changes in
preload, the overcompensation category had the lowest percentage. The trend supports
our conclusion that overcompensation for negative changes in preload leads to the lowest
adherence to the calorie goal. For positive changes in preload, non-compensation led to the
lowest adherence to calorie goals.
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Table 1. Percentage of users who show a positive median adherence for each category of compen-
satory behavior given direction of change in preload and the level of compensation.

Percentage of Users (%)

Positive Change in Preload Negative Change in Preload

Lunch Dinner Day Lunch Dinner Day
(n = 1149) (n = 1444) (n = 1037) (n = 1047) (n = 1444) (n = 1021)

Over 88 89 94 73 66 55

Precise 78 80 88 78 80 66

Under 75 64 87 84 92 75

Not 67 59 62 91 96 93

For positive changes in preload, non-compensatory behavior led to the lowest adher-
ence to calorie goals. In the case of negative changes in preload, overcompensation led to
the lowest adherence to calorie goal.

5. Conclusions

Previous research has predominantly examined compensation behavior through con-
trolled studies conducted in a laboratory. To our knowledge, this is one of the first studies
to extensively define and analyze daily compensatory behavior from real-life longitudinal
food diary data collected using diet-tracking applications. We developed comprehensive
computational measures of compensatory behavior estimated from self-reported food
intake records. Our proposed measure distinguishes between meal and day compensa-
tion. We conducted a statistical analysis of the compensation profiles of MyFitnessPal
users via analyzing a publicly available MyFitnessPal dataset. We investigated how the
direction of the change in preload impacts the user’s compensation profile. We also ex-
amined the impact of various classes of compensation behavior on adherence to calorie
goals. We found population-level patterns that extend the understanding of free-living
calorie compensation.

Self-regulation via compensation profile: Poor self-regulation may be a marker of
weight gain. A recent study [23] measured self-regulation via calorie compensation indices
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(COMPX) in college students. We can compute compensation profiles from app-based food
diaries to identify gaps in individual-specific self-regulation behaviors. These measures
can act as behavioral markers for designing personalized diet management strategies for
improving self-regulation.

Compensation across meals or days: The difference in meal and day compensation
profiles can be used to find which compensation strategy is attainable for everyone. Meal
compensation is necessary for adhering to the total daily calorie quota. Similarly, day
compensation may be important to achieve alternate-day modified fasting [24]. Based
on specific routines, some individuals might find it easier to compensate at meals, while
others may prefer to compensate across days. Among the MyFitnessPal users, we observe
a population-level pattern of higher meal compensation than day compensation. There is
a higher tendency of compensation at dinner than at lunch for meal compensation. The
prominence of meal compensation may be attributed to the daily calorie goal feature of the
app, where users aim to stay within their calorie goal every day.

From compensation indices to compensation classes: Contrary to previous studies
that measure a single compensation index for each individual, we measure a behavioral
distribution across compensation classes. Each class of compensatory behavior has a dif-
ferent implication, conditioned on the direction of change in preload. Overcompensation
after a negative change in preload may lead to a positive calorie balance that could accu-
mulate over time if an individual shows frequent overcompensation for negative changes
in preload—for example, overeating at lunch after skipping breakfast regularly. However,
under-compensation or not-compensation on the days of skipped breakfast could lead
to lower energy levels. On the other hand, under-compensation after a positive change
in preload could lead to a positive calorie balance—for example, the absence of under-
eating after a binge eating episode. Our analysis found that overcompensation behavior is
likely after a negative change in preload than a positive change in preload. The finding is
similar to prior evidence that individuals adjust more easily for missing than additional
energy [5]. We identified poor compensatory behaviors, such as overcompensation for
negative preloads or non-compensation for positive changes in preload that lead to low
adherence to calorie goals. Reducing the likelihood of such poor compensatory behaviors
can help individuals reach their calorie goals more effectively and attain weight goals faster.

A quantitative measure of intuitive eating: Intuitive eating is an adaptive eating strat-
egy defined as eating in response to internal cues of hunger and satiety [25]. Intuitive
eating is associated with a lower body mass index [25,26]. We propose that compensation
measures capture an individual’s intuitive eating behavior quantitatively. We hypothesize
that individuals who exhibit intuitive eating will also show less non-compensatory behav-
iors. Data on psychometric [27] and quantitative analysis via compensation profiles may
help to understand its barriers and effectiveness.

Missing physical activity: A limitation of our analysis is not taking into account
physical activity levels between meals. Energy expenditure between meals may influence
the compensation of energy intake at meals [28]. For example, non-compensation being
followed after a positive preload change could result from energy expenditure through
physical activity between preload and test meals. A recent finding states [29] that our
body compensates for an increase in levels of physical activity by reducing basal energy
expenditure. Hence, imprecise calorie compensation and eating back exercise calories,
coupled with the fact that our body internally adjusts for increases in physical activity may
affect weight gain adversely. A future direction would be to collect food diary information
and timed physical activity expenditures to understand the role of physical activity between
meals on compensatory behaviors. Another future step would be to collect datasets that
consist of both food diary records and weight measurements over time. Longitudinal
analysis to investigate the impact of compensation profiles on weight management goals
is needed to establish the significance of compensation profiles as behavior markers for
weight gain.
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Unblinded calorie information: As opposed to other works on calorie compensation,
the preload in our analysis was not blinded. The users of the diet-tracking app had
access to the preload’s calorie information. However, we observed significant imprecise
compensation and not-compensatory behavior. We acknowledge that our results may be
biased due to the calorie information being visible to users. Future study designs may
blind the calorie intake and goal information while employing digital diet-tracking tools
for capturing the compensatory behavior pattern.

Generalizability: Our dataset consisted of predominately female users and users in the
age group between 18 and 44 years. Thus, our findings may have limited generalizability.
The individuals in the MyFitnessPal dataset may be more health conscious. However,
previous works [13,14] found that individuals who use diet-tracking apps, such as MyFit-
nessPal, exhibit dietary behaviors comparable to the general population. Additionally, one
of the strengths of our study lies in the large sample size of 1622 individuals. Although our
analysis was on MyFitnessPal users, the proposed methodology and observed trends could
guide repeatability studies in different populations.

In summary, we developed measures to quantify compensatory behavior from free-
living food diary records. We then presented an extensive analysis of patterns of compen-
satory behaviors exhibited by users of the MyFitnessPal diet-tracking application. Future
studies should evaluate the role of free-living compensatory behaviors in weight.
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