Skip to main content
. 2023 Sep 11;23(18):7793. doi: 10.3390/s23187793
Algorithm 1 Optimal phase shift using Wiener filter
  • Input:

  • S: the number of samples

  • N: the number of reflecting elements

  • I: the number of receiver antennas

  • R: array of shape (S, I, I) representing the auto-correlation of the received signal

  • Heff: array of shape (S, N, I) representing the channel gain matrix

  • Output:

  • W: array of shape (S, N, I) containing the optimal phase shift vectors

  • Algorithm:

  • 1: Initialize an array W of shape (S, N, I) with complex zeros.

  • 2: For i = 0 to S − 1:

  • Compute the optimal phase shift vector for sample i:

  • (i). Compute the inverse of the matrix R[i].

  • (ii). Compute the complex conjugate transpose of the matrix Heff[i].

  • (iii). Multiply the inverse of R[i] with the complex conjugate transpose of Heff[i].

  • (iv). Assign the resulting matrix to W[i].

  • 3: Return W.