Skip to main content
. 2023 Sep 11;23(18):7793. doi: 10.3390/s23187793
Algorithm 3 Bi-LSTM model training with simulation data
  • 1: Training and validation data samples are loaded.

  • 2: Initialize the parameter of the model, like minibatch size, learning rate, maximum epoch, and Bi-LSTM layer.

  • 3: Actively train the model network

  • 4: Calculate the accuracy error of the model.

  • 5: Compute the corrective parameter using the Adam optimization algorithm and adjust the parameters while looking for the optimal solution.

  • 6: Outcomes: Trained model.

  • 7: Saved the model.