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Abstract: The 3D printing process allows complex structures to be obtained with low environmental
impact using biodegradable materials. This work aims to develop and acoustically characterize
3D-printed panels using three types of materials, each manufactured at five infill densities (20%, 40%,
60%, 80% and 100%) with three internal configurations based on circular, triangular, and corrugated
profiles. The highest absorption coefficient values (α = 0.93) were obtained from the acoustic tests for
the polylactic acid material with ground birch wood particles in the triangular configuration with
an infill density of 40%. The triangular profile showed the best acoustic performance for the three
types of materials analysed and, from the point of view of the mechanical tests, it was highlighted
that the same triangular configuration presented the highest resistance both to compression (40 MPa)
and to three-point bending (50 MPa). The 40% and 60% infill density gave the highest absorption
coefficient values regardless of the material analyzed. The mechanical tests for compression and
three-point bending showed higher strength values for samples manufactured from simple polylactic
acid filament compared to samples manufactured from ground wood particles. The standard defects
of 3D printing and the failure modes of the interior configurations of the 3D-printed samples could
be observed from the microscopic analysis of the panels. Based on the acoustic results and the
determined mechanical properties, one application area for these types of 3D-printed panels could be
the automotive and aerospace industries.

Keywords: 3D printing; acoustic properties; mechanical properties; bio-degradable panels

1. Introduction

In recent times, with the development of modern industry and air and road traffic,
noise has become one of the countless factors affecting human health and the environment
worldwide. Noise has become a major problem that causes harmful effects on human
health, and combating it requires urgently finding the best solutions through increasingly
restrictive regulations and legislation [1,2]. Lately, the improvement of living conditions by
regulating noise in the fields of aviation (by reducing the interior noise of passenger aircraft),
railways, automobiles and buildings is a requirement forced on industrial companies [3].

In modern industry, noise is one of the most urgent issues to be addressed, researched,
and reduced using sound-absorbing materials. For sound reduction, structural design
and testing of sound absorption and sound transmission loss of industrial products is
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challenging and of great interest [4–6]. Nowadays, various types of natural materials [7–9],
composite materials [10–13] and composite sandwich structures [14–17] are acoustically
researched because of their low production cost and often environmentally friendly compo-
sitions. The application of 3D-printed materials in the aerospace and automotive industry
involves higher expenses that are especially justified for prototypes and customized compo-
nents. In general, the materials used with the FFF process have much lower costs compared
to classic technologies (plastic mass injection of components) or additive technologies such
as SLS. When sound reaches a barrier, depending on the sound absorption performance
of the material, six phenomena can occur: absorption, transmission, reflection, refraction,
scattering and diffraction [18].

The main coefficients that evaluate the acoustic performance of materials are the sound
absorption coefficient and sound transmission loss [19]. The sound absorption coefficient
reflects the ratio between reflected and incident sound intensity (W/m2). The proper
physical quantity is sound intensity, and it varies as a function of the frequency [20,21]
and angle [22] at which a sound or sound wave reaches the material under test. Sound
transmission loss is the ratio of the transmitted sound energy to the amount of sound
energy remaining on the incident side of the material under test. For the design and
manufacture of industrial products requiring high acoustic performance, material selection
and acoustic testing of selected materials are two very important activities. From the
reviewed studies [23–27], the most important factor influencing the acoustic performance
of materials is the porosity value.

Currently, additive manufacturing processes using plastics, composites and metallics
are considered the most developed and researched processes, which, in the near future,
could play a role in traditional manufacturing processes in many industries (aerospace,
automotive, marine engineering, medical and many others). Thus, the most used manufac-
turing process for the development of porous structures subject to acoustic performance
studies is fused filament fabrication (FFF) or 3D printing. In a recent study [28] the acoustic
performance of a 3D-printed biodegradable material with bubble holes of different sizes
was analysed. The results showed improved performance for different sizes of spherical
bubbles and different types of hole patterns in the low-frequency range up to 1000 Hz.

Sailesh et al. [29] used polylactic acid (PLA) granules to manufacture perforated
samples with different cross-sections via the FFF process for the purpose of determining
acoustic indicators. It was found that the maximum values of the sound absorption
coefficient are obtained in the range 500–1000 Hz. Other studies [30,31] have shown a
significant influence of pore shape, volume ratio, material thickness, and air gap size of 3D-
printed acrylonitrile butadiene styrene filament (ABS) structures on acoustic performance.
Zielinski et al. [32] proposed and acoustically analyzed a sound-absorbing material, whose
acoustic performance resulted not only from the designed pore network but also from the
microporosity of the material used during the additive manufacturing process. In this
way, a dual porosity material was successfully designed, modelled, and manufactured
based on the imperfections of the materials in the manufacturing process to obtain high
acoustic performance. Errico et al. [33] studied the vibro-acoustic behaviour of 3D-printed
panels using periodic structure theory over a wide frequency range (1000–10,000 Hz).
Boulvert et al. [34] 3D printed micro-lattices to study the manufacturing accuracy and
prediction of its absorption characteristics using the Johnson–Champoux–Allard–Lafarge
(JCAL) model in order to draw conclusions about the defects of the 3D printing process.
Thus, the accuracy was affected by the nozzle cross-section shape, which was about 8%,
but there were also deviations attributed to thermal shrinkage and micro-grooves of the
nozzle. Reentrant auxetic structures are used in various noise reduction applications (in
the automotive and aerospace fields). Hence, such cellular structures were modelled and
fabricated [35] using keratin-reinforced polylactic acid, which were 3D printed and were
able to reduce noise as they reduce the voids and airflow.

With the development of additive manufacturing processes, there is a trend towards
the development of acoustically absorbent metamaterials capable of controlling, guid-
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ing, and manipulating low- and medium-frequency acoustic waves. Gao and Hou [36]
researched the sound absorption coefficient of a 3D-printed polylactic acid microhelix
metamaterial. Their research found that the sound absorption coefficient values improve
as the gap between the micro-helices increases.

Other studies [37,38] have researched the acoustic properties of multi-layer perforated
panels manufactured by additive manufacturing processes (selective laser sintering and
stereolithography). The SLA additive process was used to manufacture porous polycar-
bonate samples to study the effects of hole angle and air gap on sound absorption [39].
The results revealed that increasing the angle of inclination of the pores reduced the value
of the sound absorption coefficient when the porosity was kept constant. Jiang et al. [40]
researched the feasibility of manufacturing materials by the MultiJet 3D printing process
and determined the sound absorption capability of materials with different geometrical
parameters (porosity, hole diameter, sample thickness and effect of aspect ratio). The results
indicated that the maximum absorption coefficients ranged from 0.24 to 0.99, and for the
samples to have good sound absorption performance, they were tested at high frequencies
from 4800 Hz to 6400 Hz.

In the research [41], the sound absorption of a micro-perforated panel (MPP) manufac-
tured by the 3D printing process was investigated, and the sound absorption coefficient of
a 3D-printed MPP layer supported with a porous material was measured and theoretically
predicted using the transfer matrix method (TMM). Moreover, another study available in
the literature argued for the use of microstructures with relatively simple pores, such as
parallel, identical, and inclined apertures, for the analysis of broadband sound absorption
through analytical and additively manufactured models [42]. Sekar et al. [43] focused on
the study of micro-perforated panels (MPP) made of polylactic acid (PLA) reinforced with
wood fibres fabricated using the FFF process. Acoustic test results indicated that changing
the perforation volume affects the acoustic absorption of the MPP. MPP with a thickness
of 2 mm and a perforation diameter of 0.2 mm presents a maximum sound absorption
coefficient value of 0.93 at a frequency of 2173 Hz.

Currently, numerous studies are aimed at developing sustainable and high-performance
materials for manufacturing perforated panels from natural resources. However, obtaining
complex holes with different geometries from different materials is an issue that requires
detailed acoustic studies and analysis. Therefore, in this study, the acoustic behaviour of
perforated panels consisting of three types of materials (PLA with a mixture of 40% ground
coconut wood particles, PLA with a mixture of 40% ground birch wood particles and plain
PLA) manufactured via the FFF process and were tested using plane rolling waves with
an incident perpendicular to the tested surface (tube method). Acoustic analysis of the
panels was carried out for five values of infill density (20%, 40%, 60%, 80% and 100%), with
three internal configurations (circular profile, triangular profile and corrugated profile).
The panel configurations with the best acoustic performance were manufactured via the
FFF process and were mechanically tested (compression and bending). Figure 1 briefly
describes the organisation of this study.
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2. Materials and Methods
2.1. Design of the Panels

The sample design was carried out in the SolidWorks 2016 software system considering
the standards specific to acoustic testing [44,45] and compression and bending testing of
sandwich panels [46,47]. The 3D-printed samples for acoustic testing have the following
dimensions (Table 1): the upper and lower parts have diameters of 50 mm, thicknesses of
8 mm and holes of 4.2 mm required for the assembly of the two parts. These dimensions
are in accordance with the standard as well as with the technical characteristics of the
impedance tube. The stages of the acoustic tests and the three-dimensional models of the
samples are presented in Table 1 as follows: in the first stage the double panels were tested;
the second stage consisted of testing the single panels; the third stage was dedicated to
testing the single panels on which holes were drilled by means of a 3D-printed template;
and in the last stage, the panels were 3D printed with a triangular internal configuration
and a rhombic profile. A side of 1.8 mm was chosen for the holes.

Table 1. The 3D-printed samples used for acoustic testing.

Acoustic Test Specimens

Double panel Single panel
Panels with

drilling holes
(Drill gage)

3D-printed panels
with holes

Circular profile
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Table 1. Cont.

Acoustic Test Specimens

Double panel Single panel
Panels with

drilling holes
(Drill gage)

3D-printed panels
with holes

Corrugated profile
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2.2. Materials Properties

The samples for the experimental tests (acoustic and mechanical) were manufactured
from three types of materials: standard PLA [45], PLA with a mixture of 40% ground
coconut wood particles [48] and PLA with a mixture of 40% ground birch wood particles.
According to the information provided by the filament manufacturer, the particle size of
birch and coconut is between 70 and 140 µm [48].

PLA material is one of the most used thermoplastic polymeric materials suitable for
the FFF process. PLA has the following advantages [49–51]: it is a low-cost biodegradable
polymer; it is very easy to manufacture via the FFF process; it is the best material in terms
of dimensional accuracy (it does not undergo deformation during the FFF process nor after
cooling); it has good adhesion to the bed plate but also between the extruded layers of
material and during the manufacturing process, unpleasant smells are not emitted. PLA
reinforced with 40% ground wood particles as a filament very easy to manufacture via
the FFF process as it uses the PLA as base (matrix) material and has several important
advantages [48,52]: it is a biodegradable material that is easy to manufacture; it has a
wood-like smell and appearance; it has good adhesion in the first layer of manufacturing.

2.3. Manufacturing Process of the 3D-Printed Panels

The three types of filaments (PLA coconut, PLA birch and PLA) with different mechan-
ical properties were used for the FFF manufacture of 3D-printed bio-degradable perforated
panels. The 3D-printed panels were manufactured via the FFF process with the CreatBot
DX-3D double-nozzle printer (Henan Suwei Electronic Technology Co., Ltd., Zhengzhou,
China). The manufacturing parameters settings were selected according to the filament
type and were controlled via the 3D printing slicing software CreatBot V6.5.2. The main 3D
printing parameters of printed panels with the 3 types of filaments are presented in Table 3.

Table 3. FFF parameters of the 3D-printed panels.

Parameter Value

PLA Coconut PLA Birch PLA

Filament diameter 2.85 [mm] 2.85 [mm] 2.85 [mm]
Layer height 0.2 [mm] 0.2 [mm] 0.2 [mm]
Infill density 20; 40; 60; 80; 100 [%] 20; 40; 60; 80; 100 [%] 20; 40; 60; 80; 100 [%]
Print speed 50 [mm/s] 50 [mm/s] 40 [mm/s]

Travel speed 120 [mm/s] 120 [mm/s] 120 [mm/s]
Printing temperature 240 [◦C] 240 [◦C] 240 [◦C]

Building plate
temperature 50 [◦C] 50 [◦C] 60 [◦C]

Infill pattern cubic cubic cubic
Hotend 0.4 [mm] 0.4 [mm] 0.4 [mm]

2.4. Acoustic Testing

The sound absorption behaviour of samples manufactured via the FFF process was re-
searched using a Holmarc HO-ED-A-03 acoustic impedance tube (Holmarc Opto-Mechatronics
Ltd. Kochi, India), which was equipped with the following: hollow tubes, two pairs of micro-
phones, sample holders, a data acquisition system and measurement software. The impedance
system contains an anodised aluminium tube with an internal diameter of 50 mm, which can
measure in the frequency range 500–3150 Hz.

In this study, the frequency dependencies of the sound absorption coefficient (α)
and the sound transmission loss (STL) of 3D-printed samples were investigated by the
transfer function method according to the current standards [44,45]. Figure 2a shows the
components of the impedance tube system used for acoustic testing. Figure 2b shows the
two schematic configurations of the impedance tube system by means of which the acoustic
performance of 3D-printed samples can be determined: for the determination of the sound
absorption coefficient, the system also contains the anechoic termination component, and
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for the sound transmission loss, this anechoic termination component has been removed.
For each tested sample, the geometric parameters of the samples (50 mm), microphone
spacing (30 mm), temperature and humidity recorded at each current test were entered.
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coefficient and of the sound transmission loss.

2.5. Mechanical Testing

Mechanical tests were carried out using the W-150 S universal testing machine (Jinan
Testing Equipment IE Corporation, Jinan, China). Compression testing (Figure 3a) was
carried out at a loading speed of 5 mm/min according to the current standards [46,47] and
highlights the behaviour and response of the 3D-printed bio-degradable panels under a
compressive load by measuring the fundamental characteristics (compressive strength and
load–displacement curves). The 3D-printed samples were tested in three-point bending
according to the requirements of the standards [46,47] in order to determine the key char-
acteristics (bending strength and load–displacement curves). Five samples were tested
according to the standards for testing sandwich structures for both types of tests (compres-
sion and three-point bending).
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2.6. Microscopic Analysis

Electronic Nikon Eclipse MA 100 microscopes (Nikon Corp., Tokyo, Japan) were used
to examine the condition of the 3D-printed structures after compression testing in order to
detect typical defects and specific failure modes.



Polymers 2023, 15, 3695 8 of 20

3. Results and Discussion
3.1. The Effect of Filling Density on the Acoustic Performance of 3D-Printed Double Panels

Double panels have been designed as consisting of two half-panels (demountable
assembly), dedicated to repairs when necessary (damage of only one surface) thus achieving
a reduction in manufacturing time and costs associated with their manufacture by replacing
only the damaged half-panel. Ultimately, the panels are designed and manufactured in
mirror image to each other, thus obtaining as large internal voids as possible, which causes
a decrease in the mass of the panel and implies an economy of material and reduced costs.

Analysing all the experimental data obtained for the 3D-printed panels, graphs are
drawn for all the samples to observe the differences and variations of the sound absorption
coefficient and loss transmission as a function of frequency.

In the first stage of the study, a design was made of the three types of filaments (PLA
coconut, PLA birch, and PLA) and with the five types of infill density (20%, 40%, 60%,
80% and 100%) in order to characterize the acoustic performance of those three types of
materials. Since the sound absorption coefficient is a ratio of reflected to incident sound
energy, a value of 0 indicates complete reflection with no absorption [53]. On the other hand,
the value of 1 of the absorption coefficients shows that all the sound energy is absorbed
without reflection [53].

For the first acoustic tests (Figure 4), double panel assemblies were used, where
the fill density varied as follows: 20%, 40%, 60%, 80% and 100%. These fill density
variations were analysed on three types of filaments (PLA–birch, PLA–coconut and PLA)
using the three profiles (circular, triangular, and corrugated/undulated). Thus, a total of
45 acoustic tests were carried out for the 3D-printed double panels, where the two most
important parameters were determined: sound absorption coefficient (SAC, α) and the
sound transmission loss (STL).

For each type of material, the curves for the highest values of sound absorption
coefficient (α) were plotted. The markings on the figures are as follows: 20%, 40%, 60%, 80%
and 100%. These represent the infill densities for circular, triangular, and corrugated; they
are the internal configurations used and PLA–birch, PLA–coconut and PLA represent the
materials from which the samples are made. In the case of the double panels, manufactured
via the FFF process, the following can be noticed: for the PLA–birch filament, the highest
value of sound absorption coefficient (α = 0.4) was for the 100% corrugated sample at low
frequencies (500 Hz), and the highest value for sound transmission loss (STL = 63 dB) was
for 60% corrugated; for the PLA–coconut filament, the highest value of sound absorption
coefficient (α = 0. 33) was for the 40% triangular sample at low frequencies (500 Hz), and
the highest value for sound transmission loss (STL = 64 dB) was for 80% triangular; for
the PLA filament, the highest value for sound absorption coefficient (α = 0.36) was for
the 80% triangular sample at low frequencies (500 Hz), and the highest value for sound
transmission loss (STL = 62 dB) was for 20% circular.

It can therefore be concluded that the variation of the filling density influences the
acoustic performance, and samples with lower filling density result in a higher absorption
coefficient. Decreasing the filling density improves the passage of acoustic waves entering
the panel, and the air inside the voids can now move easily, which increases the viscous
friction, causing a loss of acoustic wave energy and, thus, the sound is absorbed more
efficiently [54].

Also, acoustic analyses cannot clearly establish a filling density that shows superior
performance compared to the others for all filament types analysed. This finding is based
on the typical defects (voids, inter-track voids between the layers) that occur in the parts
manufactured via the FFF process [55,56]. In contrast, at this stage, when analysing
double panels, it can be concluded that the PLA–birch filament showed the highest sound
absorption coefficient (α = 0.4). At the same time, the sound transmission loss presented
the highest value (STL = 64 dB) in the PLA–birch–triangular configuration at 80% filling
density. On the other hand, when analysed in terms of internal configurations, it can be
deduced that the triangular configuration type shows the highest values of absorption
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coefficient and sound transmission loss in two of the three configurations. The triangular
configuration shows higher absorption due to the cell walls interacting with the ultrasonic
wave along the in-plane direction [57].
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The highest sound absorption coefficient was at the frequency of 500 Hz, namely 0.4 for
the PLA–birch–triangular configuration at 80% infill density. The results obtained indicate
that approximately 60% of the sound energy is reflected without penetrating the surface
of the test specimen. From the results of the acoustic tests, the highest sound absorption
coefficient is found at low frequencies (500 Hz), which indicates that the specimen acts as a
deflector that transfers the vibro-acoustic energy, providing some damping [53].
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Also, the difference between the highest and lowest values of the absorption coefficient
was 0.07, which indicates a low absorption of the three types of materials manufactured
via the FFF process. The sound absorption coefficient represents an important result in
the acoustic tests of the materials (PLA–coconut, PLA–birch, and PLA), but it is not the
only significant result. Increased importance is also given to the sound transmission loss
parameter for 3D-printed specimens, through which a characterization of a specimen’s
ability to block sound can be performed.

In the case of these double panels, the alpha coefficient decreases with increasing
frequency and the LTR increases very slightly with increasing test frequency.

3.2. Mechanical Performance of 3D-Printed Double Panels

From the results of the acoustic tests, two basic criteria were set for determining the
samples to be subjected to mechanical tests: the samples with the highest absorption coeffi-
cient depending on the material and the samples with the highest absorption coefficient
depending on the profile configuration. Thus, for the three-point compression and bending
mechanical testing, four sample configurations were manufactured and tested: 60% circular
PLA–birch, 100% corrugated PLA–birch, 40% triangular–PLA–coconut, 80% triangular–PLA.
Two configurations (80% triangular–PLA and 100% corrugated PLA–birch) showed the best
acoustic performance on both criteria analysed. Five samples were tested for each type of
test (compression and three-point bending).

The results of the compression tests were presented below as load–displacement
characteristic curves (Figure 5a) for each type of 3D-printed structure. Analysing Figure 5a
and considering the numerical results provided by the testing machine in the test report,
the maximum breaking force of the 80% triangular–PLA sample reached the maximum
value of 90 kN at a displacement of 2.75 mm during the compression process. On the other
hand, the 40% triangular–PLA–coconut sample showed the lowest maximum compression
force of about 23 kN. For the five samples tested, in each configuration, the average values
of compressive strength and compressive modulus of elasticity were calculated and plotted
(Figure 5b). The average compressive strength value of the 80% triangular–PLA samples
showed the highest value of about 40 MPa. From the analysis of the tested samples, it can
be deduced that the parts with a mixture of 40% ground birch and coconut wood particles
show close values of compressive strength, but not exceeding 13 MPa.
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This was due to the lower mechanical performance of the ground wood introduced in
this type of filament, i.e., the weaker adhesion between the matrix (PLA) and the ground
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wood. Another important aspect is the choice of the configuration type for the 3D-printed
samples. It is observed that the triangular profile absorbs the compressive stress much
better compared to the other two profiles (circular and corrugated) due to the high-stiffness
inner walls.

Following the three-point bending tests of the 3D-printed samples, the characteristic
curves of the four types of samples and the bending performance (bending strength and
modulus of elasticity) were determined. In this case, the 80% triangular–PLA samples
also showed the best three-point bending performance. This is due to the specific bending
behaviour: during loading, both tensile (on the lower shell) and compressive (on the upper
shell) stresses occur simultaneously in the 3D-printed sample, and the core, in this case,
is shear stressed. Core shear occurs quite late because the triangular configuration has
very strong walls that maintain the structure during loading. The tests showed that the
maximum breaking force of the 80% triangular–PLA sample reached a maximum value
of 1.58 kN at a displacement of 6.3 mm during the stretching process (Figure 6a). The
maximum value of the bending strength was obtained for the 80% triangular–PLA samples.
Analysing the other types of samples made of ground wood, it can be observed that the
highest bending strength (Figure 6b) is shown by the 100% corrugated PLA–birch samples
due to the 100% filling density, which was confirmed in other recent studies [58,59].
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3.3. Microscopic Analysis of 3D-Printed Double Panels

For the microscopic analysis of the samples, the 3D-printed double panels (Figure 7)
were cross-sectioned, embedded into resin, and polished using a 1 µm grit and 0.5 µm
Al2O3 suspension.

The microscopic analysis of 3D-printed double panels was carried out to exemplify the
deformations of the internal configurations and at the same time to verify the deposition
behaviour of the extruded material at different filling densities. The samples that were
microscopically analysed were subjected to plane compression tests. In Figure 7a, the
sample underwent a deformation in the middle of the part, followed by a crack with
propagation in the middle of the part. Interlayer voids are also observed on the left and
right sides. In Figure 7b, the following can be observed: uniform distribution of birch
ground wood particles, interlayer crack defects, and a reduced number of defects when
adding layers of extruded material.
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Following the compression tests (Figure 7c), the walls of the 40% triangular–PLA–
coconut samples were deformed by lateral buckling. At the same time, a closer analysis
of these samples (Figure 7c) reveals end layer voids, defects with different configurations
(triangular and parallelepipedal) and porosity defects (voids) between the successive beads,
also found in other studies and specific to the FFF process [60–62].

Analysing the 80% triangular–PLA sample (Figure 7d), inter-layer voids and porosity
defects were identified, which led to higher performance of acoustically tested samples [32].

3.4. Acoustic Analysis of 3D-Printed Single Panels

For the next acoustic analysis, only half of the previously tested 3D-printed double
panel samples (8 mm thick) were used to determine whether the thickness of the tested
sample influenced the acoustic performance. Regarding the sound absorption coefficient
(Figure 8a,c,e), the acoustic tests showed the same types of configurations, as with the
double panels with the highest values (40% triangular–PLA–coconut, corrugated PLA–
birch and 80% triangular–PLA). The increase in the absorption coefficient for the three types
of samples, compared to the results obtained for the double panels, was as follows: 39% for
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the single 40% triangular–PLA–coconut samples; 20% for the single 100% corrugated PLA–
birch samples and 33% for the single 80% triangular–PLA samples. Therefore, it can be
stated that sample thickness is very important in acoustic tests, as previously found in
other studies [40,54,63].
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Regarding the sound transmission loss (Figure 8b,d,f), as found in other studies [53,64],
the STL value decreases as the thickness of the tested samples decreases, and the maximum
value is obtained at a higher frequency (in the case of these samples, at about 2500 Hz).
Thus, the values of sound transmission loss for 3D-printed single panels decreased by about
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13% compared to 3D-printed double panels. It can also be observed that the corrugated
configuration shows the highest STL values for all three material types.

Figure 8 shows that the decrease in the thickness of the specimen, from 16 mm to 8 mm
increased the ability to absorb sound at frequencies between 1000 Hz and 2500 Hz. As the
thickness of the 3D-printed specimens increases, the acoustic absorption decreases due to
the low and mid frequency because the waves have a harder time penetrating the thicker
panels. If the thickness of the specimens is too large, the air inside the voids becomes
harder to move, and there will effectively be no friction. It can be concluded that the sound
absorption coefficient improved at lower frequencies (500 Hz) and, at the same time, an
increase was observed when the frequencies were increased (3150 Hz). The decrease in the
filling density in most of the tested specimens improves the passage of the acoustic waves
to enter the analysed structure, and the air inside the voids can move easily, which provides
an increase in the viscous friction, ultimately causing the loss of the energy of the acoustic
waves, causing higher sound absorption [51]. By decreasing the thickness of the specimen
(from 16 mm to 8 mm), the values of the sound transmission loss parameter decreased, but
the specimens still offer good acoustic insulation with values between 30 dB and 55 dB.

3.5. Acoustic Analysis of 3D-Printed Single Panels with Drilled Holes

In these tests, the 3D-printed single panels were perforated to determine the influence
of holes on acoustic performance. A template (Table 1) was used to make the holes, and
the 3D-printed single panels were then perforated. The holes were round, made with a
drill, and the diameter was 1.8 mm. They were made at right angles, as they have a higher
absorption coefficient compared to the holes made at inclined angles [39]. After acoustic
testing, 3D-printed single panels with holes showed superior performance compared to
3D-printed single panels. From the analysis of the acoustic test results, in comparison with
the results obtained on 3D-printed single panels and according to the highest absorption
coefficient values, the following was found: 40% triangular–PLA–coconut samples showed
a 73% increase in absorption coefficient; 40% triangular–PLA–birch samples showed a 122%
increase in absorption coefficient; 60% triangular–PLA samples showed an 82% increase
in absorption coefficient. The triangular configuration also had the highest absorption
coefficient values for all three material types. The filling densities which indicated the
highest absorption coefficient (Figure 9a,c,e) were 40% and 60%. Another important aspect
of the tests on 3D-printed single panels with holes was that with the use of the holes,
the peak sound absorption coefficients shifted to the value of 1000 Hz [65]. Concerning
the material, it can be concluded that PLA had the highest absorption coefficient of 0.86,
while for the birch material, a maximum absorption coefficient value of 0.78 was obtained.
Thus, it can be implied that the holes of the samples brought a significant increase in the
sound absorption coefficient, as observed in another research conducted [29,39,40,66]. The
absorption coefficient curves (Figure 9a,c,e) have stabilized, and their shape is similar for
all material types, with very small variations between them.

Regarding the sound transmission loss of 3D-printed single panels with holes, it can
be observed that the maximum value is found at 3150 Hz, so the sound wave energy
dissipation is directly proportional to the frequency [29]. As can be seen from the curves
of sound transmission loss (Figure 9b,d,f), they have a similar shape, with a maximum
of about 29 dB. Thus, a decrease in sound transmission loss of up to half is observed
compared to 3D-printed single panels, and the maximum value in this case was 29 dB for
the 60% triangular–PLA–coconut sample.
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3.6. Acoustic Analysis of 3D-Printed Single Panels with Holes

In the acoustic testing of 3D-printed single panels with drilled holes, the best per-
formance (in terms of absorption coefficient) was recorded for the following samples:
40% triangular–PLA–coconut; 40% triangular–PLA–birch; 60% triangular–PLA. For these
configurations, filling densities and material samples were manufactured via the FFF
process, and the results obtained were similar.

Therefore, to optimise the structures, the three configurations (40% triangular–PLA–
coconut; 40% triangular–PLA–birch and 60% triangular–PLA) were kept and samples
with rhombic holes of 1.8 mm side size were manufactured via the FFF process (Table 1).
From the absorption coefficient curves (Figure 10a) the maximum value is found for the
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40% triangular–PLA–birch sample of 0.93 at a frequency of 1000 Hz. In contrast, for the
60% triangular–PLA sample, the maximum value of the absorption coefficient is 0.84 at
1600 Hz.
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From this, it can be concluded that PLA with a mixture of 40% ground birch wood
particles can be used at high performance at frequencies up to 1000 Hz and PLA material
up to 1600 Hz for the configurations proposed in this study. The 40% triangular–PLA–
birch sample with 3D-printed rhombic holes showed a 16% increase compared to the
40% triangular–PLA–birch with drilled holes sample in terms of absorption coefficient
value. From the tests, it can be concluded that the triangular structure, at a filling density
of 40% and with rhombic holes showed the highest absorption coefficient (0.93).

As for the sound transmission loss (Figure 10b), using rhombic shaped holes increased
it by 10% compared to 3D-printed single panels with drilled holes. The maximum STL
value is 31 dB and is attributed to the 60% triangular–PLA sample at a frequency of 3150 Hz.
The shape of the curves for sound absorption coefficient and for sound transmission loss
for 3D-printed single panels with holes shows the same shape as 3D-printed single panels
with drilled holes.

Even though perforations of 3D-printed specimens can be seen to improve sound
absorption, this is due to the inherent disadvantage demonstrated by micro-perforation in
suppressing low-frequency (i.e., <1000 Hz) noise, as observed in other studies [53,67]. This
aspect was also validated in the study in this work, namely that in the case of perforated
panels, the peak values of the sound absorption coefficient were near the frequency of
1000 Hz (Figures 9 and 10). On the other hand, open porous structures could dampen sound;
this aspect is related to the airflow resistivity of these panels [31]. In general, increasing
airflow resistivity improves sound absorption properties [31] over the entire frequency
range, but only up to an intermediate value.

Because the research started from the analysis of demountable double panels and the
optimal one turned out to be a half-panel, this study has comparable results with those
obtained in other studies by other researchers.

4. Conclusions

Acoustic analysis and noise absorption are some important and research-intensive as-
pects of health and the environment that affect people’s psychological and biological states.

In this work, the sound absorption performance of samples manufactured from three
types of materials (PLA with a mixture of 40% ground coconut wood particles, PLA
with a mixture of 40% ground birch wood particles and plain PLA), with three internal
configurations (circular, triangular, and corrugated) and at five filling densities (20%, 40%,
60%, 80% and 100%), manufactured via the FFF process, was evaluated.
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The acoustic performance was measured for the double panels (designed as consisting
of two half-panels in a demountable assembly) and obtained a maximum value of α = 0.4
and STL = 64 dB. The acoustic results for the double panels (16 mm thickness) indicate excel-
lent sound transmission resistance for all types of materials used, which determines good
acoustic insulation, and these types of materials can be successfully used in the aviation,
automotive and construction fields for sandwich panels with the aim of sound attenuation.

After several tests, a compromise solution was reached that involved form iterations,
panel perforations, and porosity optimization to increase the acoustic performance of the
samples considerably, with values ranging from 72% to 122%.

For a complete characterization of the samples, mechanical tests were also carried out,
and the PLA material was clearly superior to the other two types of materials (PLA with a
mixture of 40% ground coconut wood particles, PLA with a mixture of 40% ground birch
wood particles) in both compression and three-point bending tests.

At the mechanical tests, the rhombic holes that presented the best sound absorption
results with α = 0.93 and STL = 31 dB also presented the maximum resistance to compression
(40 MPa) and to three-point bending (50 MPa).

Microscopic analysis of the samples tested in compression showed normal defects
(voids, interlayer voids) of the FFF process and lateral buckling as the main mode of failure
of the internal walls of the samples.

The analysis of the microstructure of the panels confirms that it has been possible to
produce samples with controlled morphology and oriented regular cell patterns that could
be attained and with high sound-absorbing properties.

In the 3D-printed samples with rhombic holes, an increase of 16% in the absorption
coefficient of the PLA material with a mixture of 40% ground birch wood particles (α = 0.93)
was obtained compared to the samples with round holes.

Predominant factors that influenced sound-absorbing properties in this study were
the triangular configuration model, which exhibited the highest performance for all three
material types, and filling density, which also played an important role in the acoustic
tests of the samples manufactured via the FFF process; thus, it was determined that the
highest acoustic performance was obtained at 40% and 60%. The effects of cell orientation
impact the acoustic properties as the un-oriented cell morphology leads to enhanced sound
absorption capacity compared to the samples with more regular and oriented morphology.

Depending on the field of application, the following are recommended:

- For very good sound absorption properties, the configuration with 40% infill, triangular–
PLA with coconut ground particles and 8 mm thickness is recommended.

- The physical–mechanical properties of the material (PLA with ground coconut parti-
cles) ensure their use for obtaining protective sound-absorbing panels (near highways
or heavily trafficked roads, various casings or covers of engines).

- Transmission loss coefficient (STL) decreases with panel thickness.

As a general observation, the initial idea to obtain highway sound protection panels
with the highest possible mechanical resistance and very good sound absorption properties
was achieved.

Even if the results obtained are very good from the point of view of the sound absorp-
tion coefficient (α = 0.93) and the mechanical resistances (40 MPa and 50 MPa), additional
scientific research is considered to increase the transmission loss coefficient and at the same
time to maintain the α coefficient.
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