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ABSTRACT: A common strategy to simulate mixed quantum-classical dynamics
is by propagating classical trajectories with mapping variables, often using the
Meyer−Miller−Stock−Thoss (MMST) Hamiltonian or the related spin-mapping
approach. When mapping the quantum subsystem, the coupled dynamics reduce
to a set of equations of motion to integrate. Several numerical algorithms have
been proposed, but a thorough performance comparison appears to be lacking.
Here, we compare three time-propagation algorithms for the MMST Hamiltonian:
the Momentum Integral (MInt) (J. Chem. Phys., 2018, 148, 102326), the Split-
Liouvillian (SL) (Chem. Phys., 2017, 482, 124−134), and the algorithm in J. Chem.
Phys., 2012, 136, 084101 that we refer to as the Degenerate Eigenvalue (DE)
algorithm due to the approximation required during derivation. We analyze the
accuracy of individual trajectories, correlation functions, energy conservation,
symplecticity, Liouville’s theorem, and the computational cost. We find that the
MInt algorithm is the only rigorously symplectic algorithm. However, comparable accuracy at a lower computational cost can be
obtained with the SL algorithm. The approximation implicitly made within the DE algorithm conserves energy poorly, even for small
timesteps, and thus leads to slightly different results. These results should guide future mapping-variable simulations.

1. INTRODUCTION
Theoretical methods for simulating nonadiabatic dynamics are
crucial for understanding charge and energy transfer in
materials such as organic light-emitting diodes, solar cells,
and photosynthetic systems.1−7 Experimental spectroscopic
techniques have successfully been developed to probe
nonadiabatic processes within photovoltaic materials.8−10 To
analyze the complex dynamics observed, accurate and efficient
numerical models are of great importance.3,9

Since the 1930s, when Landau and Zener first investigated
nonadiabatic dynamics,11,12 accurate calculation of non-
adiabatic dynamics has been a challenge due to the large
computational expense associated with full-quantum solu-
tions.13−15 This led to the development of approximate
classical-like dynamical frameworks, motivated by the classical
linear scaling with degrees of freedom (DoF) compared to the
exponential scaling of quantum methods.16 Unlike most
transformations, discrete quantum DoF do not have an
obvious classical counterpart.16 Consequently, approximate
methods have been developed to recast the quantum system to
look classical whilst retaining some quantum properties, often
requiring a compromise between accuracy and cost for large
systems.

Many methods exist to incorporate discrete quantum DoF
into classical frameworks including Ehrenfest dynamics,17

approximations to the quantum-classical Liouville equa-
tion,18−20 the symmetrical quasi-classical windowing method,21

surface hopping,22,23 and mapping methods such as methods

inspired by the Meyer−Miller−Stock−Thoss (MMST) map-
ping24−28 and spin-mapping,29,30 including the mapping
approach to surface hopping (MASH).31 The simplest
nonadiabatic method, proposed by Mott (1931), evaluates
the quantum electronic dynamics along the classical path of the
nuclei, known as the “classical path” approach.16,18,19,32

However, this does not include the “back reaction” on the
nuclei.16 Surface hopping models, originally developed by
Tully and Preston (1971), propagate along one adiabatic
surface before “hopping” to another.16,22,23,33,34 “Hopping” is
possible at any point along a trajectory, not just where surfaces
cross, destroying the state coherence.23,26

In this article, we focus on mapping approaches utilized in
various semiclassical methods, where the discrete quantum
DoF are mapped onto continuous classical DoF propagated by
classical mechanics. The Meyer−Miller mapping developed in
1979,25 and later put on a rigorous footing by Stock and Thoss
in 1997,26 constructs a set of classical variables for the discrete
electronic DoF and propagates them with the nuclear DoF
using an effective Hamiltonian, the MMST Hamiltonian.25,26,35
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The electronic dynamics are consistent with the time-
dependent Schrödinger equation, and the force exerted on
the nuclei is given by the instantaneous values of the electronic
variables.25,35 The mapping introduces electronic position and
momenta, sometimes expressed as action−angle variables, to
describe the nuclear motion on coupled potential energy
surfaces.16,26 This approach maps the time-dependent
Schrödinger equation for an N-level system to a classical
analogue of N-coupled harmonic oscillators following Hamil-
ton’s equations of motion.16,26

The recently derived spin-mapping approach employs a
different mapping formalism but gives a Hamiltonian almost
identical to that of the MMST methods.29,30,36 The MMST
Hamiltonian algorithms compared in this work are thus also
applicable to spin-mapping methods. Compared to MMST-
based methods, spin-mapping uses a different value of the so-
called zero-point energy (ZPE) parameter, introduced by
Stock and Müller as a fitting parameter to mitigate ZPE-
leakage.37,38 Spin-mapping leads to a ZPE as a function of the
number of states, with values close to what was previously
found optimal when tuned as a free parameter. A partially
linearized spin-mapping method has been found to improve
accuracy compared to the fully linearized mapping,39,40 in
particular for spectroscopy.41

One application of the MMST Hamiltonian is to calculate
dynamical properties at thermal equilibrium by approximating
equilibrium time-correlation functions

= [ ]C t
Z

e A B t( )
1

Tr (0) ( )AB
H

(1)

where the partition function Z is given as

= [ ]Z eTr H (2)

and the quantum Boltzmann operator at inverse temperature β
= 1/kBT is e H . Semiclassical methods can be used to
calculate quantum time-correlation functions, often by utilizing
an “Initial-Value Representation” (IVR), resulting in a phase-
space integral.1,26,42 The semiclassical phase-factor makes
correlation function convergence challenging.1,27,43 Various
versions have been developed to attempt to overcome this,
including linearized semiclassical (LSC)-IVR1,27,44−47 and
Mixed Quantum-Classical (MQC)-IVR.28,47−51 However,
semiclassical methods often fail at describing nuclear quantum
effects.52

An alternative method that can capture nuclear quantum
effects is to use a ring of multiple classical system replicas
(beads) attached by harmonic springs, known as a ring
polymer.53−56 While the path-integral representation leads to
an exact method for static equilibrium properties, the dynamics
of the ring polymer can yield short-time approximations to
quantum real-time dynamics through methods such as ring-
polymer molecular dynamics (RPMD),53,57−59 centroid
molecular dynamics (CMD),60−63 and thermostatted (T)-
RPMD.64−66 Specifically, RPMD provides, for a single
(adiabatic) potential, an approximation to Kubo-transformed
time correlation functions while preserving the Boltzmann
distribution and is exact in the short-time and classical
limits.58,59,67 The Kubo-transformed correlation functions
allow short-time quantum effects to be included, although
the long-time quantum coherence effects are neglected. RPMD
can be derived from exact quantum dynamics through a series
of approximations via Matsubara dynamics,59,68 and RPMD

transition-state theory is equivalent to true quantum transition-
state theory.67,69−71 Many extensions have been suggested for
multiple states, including mean-field RPMD,72 nonadiabatic
RPMD (NRPMD), and mapping-var iable RPMD
(MVRPMD).3,53,54,73−77 As NRPMD utilizes the Meyer−
Miller Hamiltonian, the algorithms discussed in this work are
directly applicable. However, none of these methods alone
fulfils the three important criteria of: replicating Rabi
oscillations, preserving the quantum Boltzmann distribution,
and reducing to classical dynamics in the adiabatic limit.13,29,78

While a recently developed ellipsoid spin-mapping fulfils all
these limits, its mean-field dynamics was found to be often less
accurate for short times than the original spin-mapping.78

Further work is still required to find an accurate trajectory-
based approach to replicate the true quantum dynamics.

Although mapping Hamiltonians have become increasingly
popular for simulating nonadiabatic dynamics, numerical
integration of the equations of motion is not straightforward
due to coupling between the electronic momenta and nuclear
positions. Over the years, various algorithms have been
suggested to solve this problem,1−3 but as far as we are
aware, there has been no published computational comparison
of MMST algorithms to determine their properties and
accuracy. To address this, in this paper, we compare the
symplectic Momentum Integral (MInt) algorithm by Church
et al. (2018), the Split-Liouvillian (SL) algorithm by
Richardson et al. (2017), and the algorithm outlined by
Kelly et al. (2012), referred to here as the Degenerate
Eigenvalue (DE) algorithm.1−3 Other algorithms exist for this
problem, such as Runge−Kutta or the Adams−Bashforth
Predictor−Corrector algorithm, which are known to be non-
symplectic. We note that even though velocity-Verlet is widely
considered to be symplectic for classical systems, directly
utilizing velocity-Verlet for the MMST Hamiltonian may not
result in a symplectic integration scheme. Individual
propagation steps of momenta or position are unlikely to
correspond to exact sub-Hamiltonian propagation due to the
algebraic form of the MMST Hamiltonian and coupling
between the nuclear positions and the mapping momenta. To
avoid integrating stiff equations of motion, Wang et al.
suggested an intelligent canonical transformation.27 However,
even with this transformation, these approaches are not ideal
for propagating mapping variables and will still require short
timesteps. We will not consider these algorithms further and
instead focus on algorithms which attempt to propagate the
mapping variables exactly for an arbitrary timestep.

We seek to compare the algorithms for the simplest possible
system for which they can all be compared on an equal footing
and for which there already exists results in the literature for
qualitative comparison. To this end, we compute position and
state autocorrelation functions for a two-state linear vibronic
potential with the MMST Hamiltonian (corresponding to the
single-bead limit of NRPMD) using these three algorithms.53

As many of the methods discussed share similar Hamiltonian
forms to that of the MMST, including NRPMD, spin-mapping,
Ehrenfest, and some surface hopping models, the results are
widely applicable and should inform future computational
studies using mapping variable methods.

The article is structured as follows. In Section 2, we provide
theoretical background for the three algorithms investigated. In
Section 3, we investigate the symplecticity, satisfaction of
Liouville’s theorem, accuracy of trajectories and correlation
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functions, computational cost, and energy conservation. We
conclude in Section 4.

2. BACKGROUND THEORY
Here, we present the algebraic forms of the three algorithms on
an equal footing, such that we can compare properties
including the accuracy, symplecticity, and if they satisfy
Liouville’s theorem.

Note that a brief theoretical analysis of the MInt and SL
algorithms, determining the symplecticity in particular, was
previously carried out in the study in ref [1]. We extend the
work in ref [1] to a more thorough computational
investigation where we compare the algorithmic performance
utilizing a model for which there exists results in the literature
and include the DE algorithm. As far as we are aware, the
symplecticity has not been rigorously determined for the DE
algorithm.
2.1. Symplectic Integrators. The Hamiltonian for an N-

level electronic system in the diabatic representation is

= + | |
=

H n mp p V x1
2

( )
n m

N

nm
T 1

, 1 (3)

where the nuclear position and momenta are x and p,
respectively, V(x) is an N × N diabatic electronic potential
energy matrix in the basis of the electronic states, {| }n , and μ
is a diagonal matrix of nuclear masses. The classical MMST
mapping Hamiltonian in the diabatic representation is25,26

= { + + [ ]}H p p P V x P X V x X V x
1
2

( ) ( ) Tr ( )T 1 T T

(4)

where X and P are the electronic position and momenta,
respectively. Classical evolution under this Hamiltonian refers
to the equations of motion16,26

= = = =t
H

t
H H H

X
P

P
X

x
p

p
x

( ) , ( ) , ,
(5)

that constitute a time-dependent Hamiltonian system

=
t

H tz J z
d
d

( , )z (6)

where = [ ]z x X p P, , ,T T T T T, the ∇z operator contains the
partial derivatives, and J is the structure matrix

Ä

Ç
ÅÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑÑ

=J
(7)

and / are the identity and zero matrices, respectively.1,25,79

A Hamiltonian integrator is said to be symplectic if it fulfils the
condition1,79,80

=M J M JT 1 1 (8)

where M is the monodromy matrix. The monodromy matrix is
a matrix of differentials that expresses how the time-evolved
phase-space variables depend on the initial phase-space
variables81

= t
M

z
z

M
X
Y

where
( )
(0)

.t
XY

0 (9)

The monodromy matrix is computed for each timestep and
multiplied with the previous timestep matrices to obtain the
monodromy matrix for the overall trajectory

=t t t tM M M(2 ) ( 2 ) (0 ). (10)

If the Hamiltonian is split, H = H1 + H2, then the monodromy
matrix is calculated for each timestep according to the
algorithmic flow map.79 Calculation of the monodromy matrix
is not needed for algorithm propagation, only to determine
symplecticity and if the theoretical framework requires it. For
example, in some SC-IVR methods, the phase-factor can be
calculated using elements of the monodromy matrix, where
utilizing a symplectic algorithm can improve the stability,
aiding convergence and partially mitigating the “sign”
problem.1,82,83

The symplecticity criterion, eq 8, is a much stricter condition
than the conservation of volume phase-space (Liouville’s
theorem), which only requires the monodromy matrix
determinant to be unity.1,80,84 Volume phase-space preserva-
tion is a consequence of symplecticity, but this relationship
does not necessarily hold the other way around,79 i.e., volume
phase-space preservation is necessary but not sufficient for
symplecticity. Instead, symplectic integrators can arise from
exact time-propagation of a Hamiltonian system.79 Splitting
the Hamiltonian into sub-evolutions will also result in a
symplectic integrator, provided that each sub-evolution is the
exact time-propagation of the relevant sub-Hamiltonian.1,79

For example, velocity-Verlet is a classical symplectic algorithm
as splitting results in two sub-Hamiltonians that are
independent of each other, such that both can be integrated
exactly.80 The MMST Hamiltonian contains coupling between
the electronic momenta and nuclear position, making
symplectic time-evolution of the equations of motion
challenging and, in general, results in nonlinear dynamics.1,26

Symplectic integrators are an advantage for Hamiltonian
integration as they have little to no energy drift with time
and tend to be more stable at long simulation times.1 We also
note that the Cayley transform can improve the symplectic
stability of algorithms with no additional algorithmic complex-
ity and computational cost, and can be implemented for any
path-integral-based scheme.85

2.2. Algorithmic Overview. The MInt algorithm, by
Church et al. (2018), was developed to help extend the MQC-
IVR method to simulate nonadiabatic dynamics using the
MMST mapping.1 The name arose as the MInt algorithm
exactly solves the Momentum Integral with time and as we will
show, is the only known symplectic algorithm propagating the
MMST Hamiltonian.1 The MInt algorithm splits the MMST
Hamiltonian into two sub-Hamiltonians, each of which is
propagated exactly

= +H H H ,1 2 (11a)

=H p p
1
2

,1
T 1

(11b)

= { + [ ]}H P V x P X V x X V x
1
2

( ) ( ) Tr ( ) .2
T T

(11c)

The exact evolution of the sub-Hamiltonians results in
symplecticity, and the sub-evolution of H1 is split into two
half-timesteps to improve the time-order error, such that the
algorithm is at least a second-order method.1,79 Hamilton’s
equations of motion are obtained for H1 and H2, with the latter
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being more complicated due to coupling between the nuclear
and quantum DoF.1 The MInt algorithm can be used on any
Hamiltonian containing a sum of Meyer−Miller-like terms and
has algebraically been shown to be symplectic, symmetric,
second-order in time, and time-reversible.1 Fortran code of the
MInt algorithm is available in the SC-IVR package on the
Ananth Group website.86 Recently, the MInt algorithm was
utilized by Gardner et al. in NQCDynamics.jl, a Julia
package for condensed phase nonadiabatic quantum dynam-
ics.87 To be able to compare the three algorithms on an equal
theoretical footing, we use the D5 form of the MInt algorithm
where instead H2 is split into two half-timesteps1

=:H t H t H t H t,
MInt

, /2 , , /22 1 2 (12)

where ΨH,Δt
MInt is the approximate flow map comprising exact

evolutions of the relevant sub-Hamiltonians, ΦH,Δt, and
propagation is done from right to left. In our notation, Φ
refers to exact evolution and Ψ refers to approximate
evolution, which may or may not comprise of exact sub-
evolutions, consistent with the notation of Leimkuhler and
Reich.79

The SL algorithm, by Richardson et al. (2017), uses the
Liouvillian formalism to construct an integrator.3 The
Liouvillian operator can be generated from the Hamiltonian
using a Poisson bracket

= { ·}H , (13)

where the solutions to time-evolution are of exponential
form.84 We follow the convention in the Matsubara dynamics
article59 and by Zwanzig88 and define the Liouvillian to be real
with no factor i (the imaginary unit). The MInt algorithm D5
form, eq 12, is equivalent in Liouvillian notation to1

= e e e:H t
t t t

,
MInt /2 /22 1 2 (14)

where evolution requires propagation of the Liouvillians from
the right to the left and 1/2 are the Liouvillians of H1/2,
respectively. The SL algorithm further symmetrically splits 2
into electronic (el) and nuclear (p) contributions. Hence, the
flow map for this algorithm is

= e e e e e:H t
t t t t t

,
SL /2 /2 /2 /2p pel 1 el (15)

where

= ·p
p

,
i

i
i

p
.

(16a)

= P x
X

X x
P

V V( ) ( )
i j

ij i
ij

ij i
ij

el
T T

(16b)

are the electronic and nuclear Liouvillians of H2, respectively,
where i is the nuclear index and j is the electronic index.1,3 This
uses the approximation

=

=

+

+

e e e e

e e e e

t t t t

t t t t

( )

( )

p p

p p

2 el el

2 el el (17)

which is valid in the limit Δt → 0.3 Hence, the flow map can
also be represented as

=:H t t H t t,
SL

SL , /2 , SL , /2b a
1 (18)

where SLa b/ represents the approximate propagation of H2.
Due to symmetric splitting, the two half-timesteps are not

equal and are labeled with the superscripts a for e ep el and b
for e e pel . For an integrator to be symplectic, it is sufficient
but not necessary that the integrator is a sequence of exact sub-
Hamiltonian evolutions. Evolution under Liouvillians is not
guaranteed to be symplectic but will be if each Liouvillian
corresponds to the exact propagation of a Hamiltonian or sub-
Hamiltonian.79 For an arbitrary timestep, the splitting of H2
into electronic and nuclear contributions results in holding the
electronic position and momenta constant while propagating
the nuclear momenta. Hence, the propagation of H2 is no
longer exact or guaranteed to be symplectic.1 Church et al.
(2018) derived the SL monodromy matrix and using the
symplecticity criterion, eq 8, confirmed that the SL algorithm is
not symplectic.1 They stated that there is likely to be an energy
drift associated, but this may be small if the adiabatic states are
close in energy and weakly coupled.1 However, the algebraic
proof does not indicate if the SL algorithm will result in
unreasonable dynamics such as a very large energy drift when
compared to the MInt for a given timestep.

Kelly et al. (2012) have also developed an integrator that we
refer to as the DE algorithm due to the approximation needed
to obtain the final algebraic form. The DE algorithm also splits
the Hamiltonian into H1 and H2, where the motivation is to
enhance stability and minimize the difference between the
exact and approximate dynamics.2 The algorithm uses MInt-
like equations but makes an implicit approximation equivalent
to assuming that the diabatic potential matrix eigenvalues are
degenerate,89 simplifying the calculation of the potential matrix
derivative and making the DE algorithm unlikely to be
symplectic.1,2 The flow map cannot easily be expressed in a
Liouvillian form but can be written as

=:H t t H t t,
DE

DE, /2 , DE, /21 (19)

where ΨDE is the approximate DE propagation of H2. The
degenerate eigenvalue approximation has previously been
utilized in Poisson bracket mapping equation (PBME)
simulations of coherent dynamics in photosynthetic systems.90

However, the DE approximation is known to cause the state
populations to deviate from the exact results for systems with
large energy biases.89

The three algorithms use equivalent propagation equations
for the nuclear position, electronic position and momenta, only
differing in the nuclear momenta propagation.1−3 The DE
algorithm has a similar form to that of the SL algorithm, but
the DE algorithm does not hold the electronic position and
momenta stationary while propagating the nuclear momenta
and has a different diabatic potential matrix differential with
respect to the nuclear position.2,3 As far as we are aware, the
DE algorithm monodromy matrix has not been algebraically
determined or tested for symplecticity and Liouville’s theorem.
All three algorithms are derived in the diabatic basis; however,
as the Meyer−Miller Hamiltonian is known in the adiabatic
basis,91 it may be possible to re-derive the algorithms in the
adiabatic basis.
2.3. Propagation of H1. For simplicity, we will consider

only one nuclear DoF and two electronic DoF throughout as
the generalized multi-dimensional form is known.1−3 All three
algorithms propagate H1 in the same way using Hamilton’s
equations of motion1−3

= = = =x
p
m

pX P0, 0, , 0
(20)
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where m is the nuclear mass, such that integration provides the
propagation equations

+ = + =t t t t t tX X P P( ) ( ), ( ) ( ) (21a)

+ = + + =x t t x t
p t
m

t p t t p t( ) ( )
( )

, ( ) ( ).
(21b)

We define our monodromy matrix as
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

=M

M M

M M M M

M M

M M M M

M M

M M

xx x xp x

x p

px p pp p

x p

X P

X XX X XP

X P

P PX P PP (22)

such that the monodromy matrix for the propagation of H1 is a
triangular matrix of the form

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

=

t
m

M

0 0

0 0

0 0
0

1

0 1
0

H

T T

T T
1

(23)

where 0 = [0,0]T and the determinant is unity, | | =M 1H1
. The

propagation of H1 is symplectic for all three algorithms as
=M J M JH H

T 1 1
1 1

.
2.4. Propagation of H2. Here, we present and compare

the propagation of H2 for the three algorithms. The diabatic
potential matrix is split into a state-independent term, U, and a
traceless state-dependent matrix, Ṽ, such that V(x) =
U(x)+Ṽ(x). This is as the DE algorithm requires a traceless
state-dependent matrix, previously being seen as an advantage
as it renders the dynamics invariant to any constant shift of the
coupling potential.2,92 This gives

= + { + [ ]}H U x x x xP V P X V X V( )
1
2

( ) ( ) Tr ( )2
T T

(24)

where = [ ]X XX , ..., n1
T and similarly for P. Although the

splitting of a traceless state-dependent matrix results in
[ ] =xVTr ( ) 0, we have included this term in the derivation

for completeness as the MInt and SL algorithms can be used
for any choice of splitting, likely resulting in a non-zero trace
term. The SL and DE algorithms use approximations to
propagate H2, resulting in different, non-exact nuclear
momentum propagation equations.1−3

The propagation of H2 is split into two half-timesteps that
sandwich H1

, allowing a fair algorithmic comparison with the
original SL form and the equivalent MInt form. We have
swapped the order of H1 and H2 to test the DE algorithm and
in Figures S5 and S6 in the Supporting Information, we show
that this has no effect on the symplecticity or energy
conservation.
2.4.1. The MInt Algorithm. The MInt algorithm exactly

propagates H2 with time, taking into account the electronic
dependence of the nuclear momentum.1 Using Hamilton’s
equations of motion for half a timestep, following the approach
of Church et al., we derive propagation equations

= = =xX VP P VX, , 0 (25a)

= { + + [ ]}p U i iX P V X P V
1
2

( ) ( ) TrT
(25b)

where the prime denotes the derivative with respect to x and
the matrix dependence on x has been dropped for notational
simplicity. To find solutions through integration, the MInt
algorithm relies on the fact that X and P are independent of p
but ṗ is dependent on X and P.1 Therefore, solving for

+( )tX t
2

and +( )tP t
2

and substituting into eq 25b allows

+( )p t t
2

to be found. The electronic position and momenta
are found through integration, resulting in
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which can be recast to be entirely real by diagonalizing Ṽ into
eigenvectors, S, and a diagonal eigenvalue matrix, Λ, such that

=S VST .1 This results in

i
k
jjj y

{
zzz+ =t

t
t tX CX DP

2
( ) ( ),

(27a)

i
k
jjj y

{
zzz+ = +t

t
t tP CP DX

2
( ) ( )

(27b)

for the propagation of X and P, where C and D are1
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By defining the derivative of the potential in the adiabatic basis
to be =G S V ST and inserting =SST identities into the
integration of eq 25b, an intermediate equation for the
propagation of p can be found
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which can be solved by element-wise integration of
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where λnm = (Λ)mm − (Λ)nn , such that

=E S S: ,T (32a)

=F S S: T (32b)
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where E is symmetric and F is skew-symmetric. The nuclear
propagation, where x is unchanged, is therefore
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The extended form for multiple states can be found in
Appendix B of ref [1]. Church et al. have also shown that the
MInt algorithm is second-order and exact in the Δt → 0 limit,
deviating on t( )3 . A higher order of accuracy may be
obtained through a different splitting of H1 and H2.

93

The MInt monodromy matrix for the propagation of H2
satisfies Liouville’s theorem and can be found by defining

= +a P E X F,T T (34a)

= +
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(34b)

=e X E P F,T T (34c)

= +f C P D X, (34d)

=g C X D P (34e)

such that the monodromy matrix is1
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Propagation under H2 is symplectic as M H2
satisfies the

symplecticity criterion, eq 8, derived by Church et al. and
shown in Appendix A. As propagation under both H1 and H2 is
symplectic, the overall propagation for the MInt algorithm is
symplectic.1,79

2.4.2. The SL Algorithm. The SL algorithm propagates H2
using the Liouvillian formalism by splitting further into an
electronic and nuclear momentum propagation, where eqs 16a
and 16b become1,3
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The electronic propagation resulting from el is equivalent to
the MInt algorithm, eqs 27a and 27b, and leaves the nuclear
variables unchanged.1 p results in the following propagation
of p and leaves all other variables unchanged
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The difference between the two algorithms arises in the
nuclear momentum, where due to the SL symmetric

propagation of H2, the electronic variables are always the
half-timestep evolved values for propagation of p.1,3 This
algorithm is exact in the Δt → 0 limit, differing on terms of

t( )2 as discussed in Appendix B.
The SL monodromy matrices for the propagation of H2 obey

Liouville’s theorem and are
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where1

= + [ ]b
t

U
t

X V X P V P V
2 4

( Tr ).T T

Neither Mp and Mel satisfy the symplecticity criterion
individually, seen in Appendix A.1 The combination of Mp
and Mel was shown by Church et al. to only be symplectic in
the Δt → 0 limit, not for an arbitrary timestep.

2.4.3. The DE Algorithm. The DE algorithm defines Ṽ to be
traceless, such that the last term of H2 is ignored.2 Here, we
will re-frame the algorithm into a MInt-like form using vector
notation and outline the degenerate eigenvalue approximation
used. We will also investigate the symplecticity and satisfaction
of Liouville’s theorem through defining the monodromy
matrix, which as far as we are aware has not been done before.

The electronic Hamiltonian equations are the same as above
for the MInt and SL algorithms and solved to provide the same
overall propagation equations, eqs 27a and 27b. The nuclear
momentum propagation equation is

= +p U X V X P V P
1
2

( ).T T
(39)

To solve eq 39, we define an integral, A, that requires the
degenerate eigenvalue assumption to arrive at the final form by
Kelly et al.2
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This can be written in a MInt-like form

= [ ] [ + ]A i iX P V X P1
2

d ( ) ( ) ( ) ( )
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(41)

such that using eq 26
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A i e e
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/2 T / /
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A transformation is defined into the adiabatic basis using the
following overlined variables2

= =X S X P S P,T T (43)

such that, conversion into the adiabatic basis utilizing the
decomposition of Ṽ results in
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where V is determined by

= + +
= + +

V S S S S S S

S V S S S S Ssuch that

T T T

T T T (45)

We can arrive at the form shown by Kelly et al. by making the
degenerate eigenvalue approximation, which appears to be
made between eqs C18 and C19 in ref [2]. This approximates
that the eigenvalues are equal, . Kim and Rhee
determined that this algorithm requires assumption of the
degenerate limit agreeing with our DE approximation.89

Therefore, the differential of the eigenvalues can be
approximated as such that the derivative of V in
the adiabatic basis is obtained through differentiating the
identity, = = + =SS S S S S( ) 0T T T

= = + +
+ + =

G S V S S S S S
S S S S( ) .

T T T

T T
(46)

Inserting this into eq 44 results in

=e e e e .i i i i/ / / / (47)

Hence, the integral below is obtained
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The final form seen in ref [2] has an additional [ ]Trt
4

term
when written in matrix form, however, this is just a dummy
term. The fact that Ṽ is traceless requires that the sum of the
eigenvalues is zero, therefore, Λ and Λ′ are traceless. The
overall nuclear propagation in the diabatic basis, having made
the DE approximation, is then
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The DE approximation discards terms to reach eq 49 resulting
in the DE algorithm not being exact in the Δt → 0 limit,
instead being a zero-order algorithm as derived in Appendix B.

Comparison with the SL and MInt algorithms can determine
whether the DE algorithm is likely to be symplectic, where the
propagation of x, X and P are equivalent.1−3 It can be seen that
in the case where the DE approximation holds such that,

=V S ST, the propagation of p would be similar to the SL
algorithm. However, the DE algorithm uses the initial

electronic variables when the SL algorithm uses the half-
timestep evolved values. Due to the similarities prior to the DE
approximation being made, the DE algorithm is unlikely to be
symplectic. To rigorously check the symplecticity, we derive
the monodromy matrix by defining

= = + +
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The determinant of MDE can easily be shown to be unity,
satisfying Liouville’s theorem. However, the approximate
propagation of H2 is not symplectic as MDE does not satisfy
the symplecticity criterion, shown in Appendix A. The MInt
algorithm is the only algorithm considered here that is both
symplectic and satisfies Liouville’s theorem.1

In Table 1 below, we present the theoretical results for easy
algorithmic comparison. In Appendix C, we prove that all three
algorithms conserve electronic probability.

3. RESULTS AND DISCUSSION
The algorithms discussed here have been utilized in the
literature but not for the same system to allow direct
comparison. We seek to test the algorithms computationally
on an equal footing using the same system. Hence, we use a
simple two-state linear vibronic potential, also known as a one-
dimensional spin-boson model, discussed in this section with
the MMST Hamiltonian (corresponding to the single-bead
limit of NRPMD) to test the symplecticity, satisfaction of
Liouville’s theorem, energy conservation and accuracy of
correlation functions. The models defined here also allow
qualitative comparison with literature.
3.1. Theoretical Models. To compare the approximate

dynamics produced by the MInt, SL and DE algorithms, we

Table 1. Summary of the Theoretical Results Obtained Here
and Ref [1]a

Theoretical Results MInt SL DE

H1 propagation Exact Exact Exact
H2 X/P propagation Exact Exact Exact
H2 p propagation Exact Approx. Approx.

H2 approximation None
Split into el

and p

Approx. degenerate
eigenvalues of V(x)

Satisfies Liouville’s
theorem

√ √ √

Symplectic √ × ×
Exact in Δt→ 0 limit √ √ ×
Conserves electronic
probability

√ √ √

aThe H2 electronic propagation for all algorithms is equivalent. The
approximations made in the SL and DE algorithms result in inexact
nuclear momentum propagation. However, the SL algorithm is exact
in the Δt → 0 limit whereas the DE is not.
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use the three potential models introduced in ref [53]. For these
models the potential diabatic matrix is
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such that splitting to obtain a traceless Ṽ gives
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Reduced units are used where m = ℏ = ω = 1, so energy is
measured in units of the frequency, ω. The models represent
bound potentials, defined in Table 2, where Δ is the electronic

coupling, 2α is the energy bias between the potential energy
surfaces (the asymmetry) and κ is the vibronic coupling,
chosen to be 1. Model 1 represents strong electronic coupling,
where the nuclear dynamics occur on a longer timescale than
the electronic oscillations and nuclear motion occurs in a mean
field of the diabatic surfaces. Model 2 has a strong energy bias
and the system is in the inverted Marcus regime. Model 3 is a
challenging intermediate regime in which the timescales of the
electronic and nuclear dynamics are similar.

Models 1−3 were utilized to compute correlation functions
using the following distribution, ρ, in the N-bead form in refs
[3 , 53]. Here, for simplicity, we use the single-bead form

= | | | | +e4 U p mX P
2

( /2 )2 2 2

(53)

such that the partition function is

=Z W (54)

where W = PTMXXTMP and = eM V /2. Note that W is
positive definite for the single bead case. Monte Carlo
importance sampling is utilized as detailed in Appendix D.
Time-independent equilibrium properties are calculated, for
example, the population of state n3,53
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Z

e n n
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W
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(55)

The derivation is similar to that of eq C4 in Appendix D by
summing over all indices except n,3,53 resulting in
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This approach for obtaining population information is only
valid at t = 0, whereas the electronic populations can be found
at time t using3

= +B X P
1
2

( 1).n n n
2 2

(58)

Correlation functions are calculated through finding an
approximation to eq 1, where for the position auto-correlation
function = =A B x and for the population auto-correlation
function =A An and =B Bn

C t
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W
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where W(Xi(0), Pi(0)) and initial conditions are sampled from
eq D14 for J trajectories. The correlation functions are then
averaged over J trajectories
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where index i refers to the ith trajectory. We can directly
compare the three algorithms and qualitatively compare our
results with ref [53]. We sample the same distribution, with
our method outlined in Appendix D, as in ref [53]. However,
we choose to split the potential matrix such that Ṽ is traceless
as the DE algorithm requires this. In ref [53], the matrix was
instead split such that the lowest eigenvalue of Ṽ is zero, which
in general results in a non-zero trace. To ensure we can
compare all three algorithms for the same Hamiltonian, we
have used the traceless form leading to small quantitative
differences between the results here and in ref [53].
3.2. Algorithmic Properties. First, we consider the

symplecticity and conservation of Liouville’s theorem using
Model 1. Church et al. determined that the MInt algorithm is
symplectic whilst the SL algorithm is not.1 In Appendix A, we
algebraically show that the DE algorithm is not symplectic. To
numerically determine the symplecticity, we define an error
matrix, Er, to be

=E M J M Jr
T 1 1 (61)

where for a symplectic integrator the elements of Er, aij, will all
be zero.94 The Frobenius Norm is used to track the size of Er

= | |
= =

aE F
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j

n

ijr
1 1

2

(62)

where the matrix size is n × n.94 To average over many
trajectories, we weight by W

=
[ ]=

=
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W
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F i i

i
J

i
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1 (63)

where i refers to the trajectory index. To determine if
Liouville’s theorem is satisfied, we evaluate

Table 2. Values for the Potential Matrix Constants for
Models 1−3 from Ref [53]

Model α Δ Regime

1 0 4 Adiabatic limit
2 2 1 Inverted Marcus regime
3 0 1 Intermediate regime
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which will be zero if it is satisfied.1,80 By squaring the deviation,
we ensure no error cancellation when averaging over
trajectories. Satisfaction of Liouville’s theorem is quite a “low
bar” for an algorithm, as it is equivalent to the Liouvillian
associated with the dynamics being divergenceless.95 This can
be easily shown for the MInt and SL algorithms but as the DE
algorithm cannot easily be expressed in a Liouvillian form, it is
still useful to investigate numerically.

In Figure 1a, the logarithmic plot of ∥Er∥F against time for
Model 1 with Δt = 0.1 can be seen. The MInt algorithm (cyan)

remains below 10−12 for the entire simulation time and is
therefore symplectic, with a small build-up of floating-point
errors that arise in numerical calculations, in agreement with
the literature.1 The SL algorithm (purple) increases rapidly to
around 10−2 and continues to increase indicating that it is not
symplectic. The DE algorithm (red) is the least symplectic,
being on the order of 1 by the end of the simulation time. In
Appendix A, we show the timestep dependence of this error
and derive the deviation from symplecticity, using the flow
map discussed earlier, to be zero- and second-order for the DE
and SL algorithms respectively. Although the SL and DE
algorithms are not symplectic, all three algorithms satisfy
Liouville’s theorem and conserve volume phase-space, as seen
in Figure 1b. We believe that the very slight increase seen for
the MInt algorithm is due to additional floating-point error
accumulation arising from the more complicated propagation
equations.

We now look at energy conservation, Figure 2, where (a)
depicts the energy of a single trajectory and (b) averages the
energy conservation criterion

[ ] =
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t
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i
J

i

i
J

i

2 1
2

1 (65)

over trajectories until convergence was observed. We calculate
the energy, ε, by evaluating the MMST Hamiltonian, eq 4, at
each timestep. Under perfect energy conservation, the criterion
should be zero. For a single trajectory, we observe that the DE
algorithm has much larger oscillations and does not conserve
energy well when compared to the MInt and SL algorithms.

In Figure 2b, we average over many trajectories and consider
different timestep sizes. It is seen that the MInt and SL
algorithms are second-order as changing the timestep by a
factor of 10 increases the criterion by ∼104 as expected.79 This
agrees with the algebraic determination of the order by Church
et al.1 However, the DE algorithm remains the same magnitude
for Δt = 0.01 and Δt = 0.1, appearing to not be affected by the
smaller timestep. The very coarse Δt = 1.0 is so large that it
breaks the trends. The DE algorithm’s poor energy
conservation is due to the discarded terms when the DE
approximation is made; when these terms are large, the
propagation of the nuclear momentum is affected significantly,
which then affects all other variables through the propagation
equations. The MInt and SL energy conservation is very
similar although the SL algorithm is seen to have the smallest
energy fluctuations throughout and appears to have a longer
period of oscillation for Model 1. This is surprising as one

Figure 1. (a) The Frobenius Norm of the symplecticity error matrix
and (b) the determinant criterion as a function of time using Model 1
and Δt = 0.1, averaged over a million trajectories using the SL
(purple), the MInt (cyan) and the DE (red) algorithms. In (a) the
MInt algorithm is seen to be symplectic whereas the DE and SL are
not, whereas in (b) all algorithms satisfy Liouville’s theorem. Further
detail of (a) with respect to a range of timesteps is presented in Figure
A1 in Appendix A.

Figure 2. The energy conservation for Model 1 with (a) a single
trajectory and Δt = 0.1 (solid) and (b) averaged using Δt = 0.1
(solid), Δt = 0.01 (dotted) and Δt = 1.0 (dashed) with the SL
(purple), the MInt (cyan), and the DE (red) algorithms. The DE
algorithm has the worst energy conservation and, for this system, the
MInt has slightly worse conservation than the SL. The SL and MInt
algorithms show improved energy conservation upon decreasing the
timestep, unlike the DE.
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would expect a symplectic algorithm to have better energy
conservation compared to a non-symplectic algorithm.
However, we note that conservation of energy is not always
a good judgement of the algorithm quality. For a symplectic
algorithm, the approximate evolution of the exact Hamiltonian
is equivalent to the exact evolution of an approximate
Hamiltonian that deviates from the exact Hamiltonian on the
order of the algorithm.1,79 Evolution of a symplectic algorithm
results in the energy of the approximate Hamiltonian being
exactly conserved, also described as being on the shell of the
shadow Hamiltonian. For the MInt, this results in the energy
being conserved at exponentially long times with fluctuations
on t( )2 . For Models 2 and 3, we observe that the MInt and
SL algorithms have almost identical energy conservation while
the DE algorithm is worse, seen in Figures S1 and S2 in the
Supporting Information.
3.3. Correlation Functions. The nuclear position and

electronic population autocorrelation functions, eqs 60a and
60b, were calculated for the three models. The fast oscillations
of C11 in Figure 3a indicate that the strong electronic coupling
is close to the adiabatic limit and the dynamics tend toward
classical evolution on the lower adiabatic surface as U is
approximately harmonic.53 For Models 2 and 3, the weaker
electronic coupling reduces the electronic oscillation fre-
quency, producing curves that deviate from the adiabatic
result.53 In Model 2, the equilibrium population of the first
electronic state is quickly lost to the lower energy second state,
indicating that the system is almost always on one diabatic
surface. The correlation functions obtained using the MInt and
SL algorithms qualitatively replicate the dynamics expected
from the single-bead calculation in Figure 1 of ref [53] for all
models. Comparing the three algorithms tested in Figure 3
provides the interesting discovery that the DE algorithm is very
accurate for Model 1, despite the lack of energy conservation.
This is likely due to averaging with fast electronic oscillations
providing the correct convergence. However, for the other
models, the DE algorithm predicts the same initial drop in the

electronic population autocorrelation functions as the MInt
and SL algorithms but starts to deviate from the expected
behavior after the minima. The correlation functions have the
same shape, indicating a systematic error that likely arises due
to the DE approximation. This assumes that the off-diagonal
elements of V in the adiabatic basis, G, are zero and that the
diagonal elements are equal, which is not the case for the SL
and MInt algorithms.1

While testing energy conservation, we observed that the DE
algorithm has more trajectories with poor energy convergence
for models with weaker electronic coupling and was
particularly poor in the intermediate regime given by Model
3. The MInt and SL algorithms produce the same correlation
functions for all the models tested with small timesteps. When
testing different timesteps, as seen in Appendix A, both the
MInt and SL algorithms are tolerant of a coarse timestep. For
Δt = 1.0, we observe that the MInt and SL correlation
functions start to differ, with the MInt being closer to the small
timestep results. However, the electronic oscillations are not
captured well due to aliasing. The MInt and SL algorithms are
limited by the model used rather than the algorithmic accuracy.

In Table 3, we provide an overview of the properties tested.
The MInt algorithm is the only symplectic algorithm satisfying
the symplecticity criterion, providing exact propagation of H1
and H2.

1 The SL and DE algorithms have a non-zero error
matrix that increases with time, indicating that neither is
symplectic due to the approximations made.1−3,53 The lack of
symplecticity may result in an energy drift at long simulation

Figure 3. Nuclear position, C t( )xx , and electronic population, C t( )11 , autocorrelation functions for (a) Model 1, (b) Model 2, and (c) Model 3 using
Δt = 0.1 with the DE (red solid), SL (purple dashed), and MInt (cyan dotted) algorithms. The SL and MInt give identical results, but the DE
algorithm deviates from them in (b, c).

Table 3. Summary of the Computational Results, Which Are
Consistent with the Theoretical Results in Table 1

Computational Results MInt SL DE

Satisfies Liouville’s theorem √ √ √
Symplectic √ × ×
Energy conservation good good poor
Correlation function accuracy good good poor
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times, although this was not observed within the short
simulation time tested here.

The SL algorithm approximates that the electronic variables
can be held still while the nuclear momentum is propagated.3

The DE algorithm assumes that the eigenvalues of the
potential matrix are equal, such that the potential derivative
in the adiabatic basis is approximated as =S V ST .2 This
results in inaccurate nuclear trajectories that leads to poor
energy conservation. However, all three algorithms obey
Liouville’s theorem, preserving volume phase-space throughout
the trajectories. The MInt and SL have similar energy
conservation, where in some cases, the SL has better energy
conservation.1,79 However, as the MInt is symplectic, it will
always fluctuate to the second order, whereas the SL is likely to
drift for long simulation times.

The correlation functions produced for the MInt and SL
algorithms are very similar to those computed in ref [53], with
the small differences arising from the different choice of
splitting the potential. The DE algorithm converges to a
different result for models with weaker coupling, being a good
approximation only near the adiabatic limit.

Table S1 in the Supporting Information presents timings of
the computational algorithms. One should note that in this
case, the bottleneck is the evaluation of the algorithm itself
rather than the calculation of the potential matrix. When
calculating the monodromy matrix, we observed that the SL
algorithm has the lowest computational cost followed closely
by the MInt, with the DE algorithm taking the longest time to
run. Without calculating the monodromy matrix, the SL is
significantly faster, and the MInt and DE take similar times to
run.

4. CONCLUSIONS
In this article, we have tested symplecticity, Liouville’s
theorem, energy conservation, and computed correlation
functions using the MInt, SL, and DE algorithms for a range
of model parameters and timesteps. We find that the
computational results agree with our theoretical predictions.
If symplecticity is required, for accurate MMST Hamiltonian
dynamics with little energy drift, the MInt algorithm should be
used. As far as we are aware, the MInt is the only known
symplectic algorithm for a general form of the MMST
Hamiltonian. However, even though the SL algorithm is not
formally symplectic with a finite timestep, it becomes exact in
the limit of an infinitesimal timestep. In our tests, it gave
comparable accuracy to the MInt algorithm, but at a lower
computational cost. We would not recommend the DE
algorithm for these models, as it is not exact in the Δt → 0
limit, breaks energy conservation, and introduces errors into
the results. This indicates that for the models used here, the
degenerate eigenvalue approximation is not valid.

Further work includes integrating the Cayley transform to
extend these findings to stable NRPMD simulations.85

Additionally, one can apply the MInt algorithm to related
dynamical methods such as forward−backward IVR.51,82

Further development of the MInt algorithm would be of
great interest. For example, as the adiabatic form of the
Meyer−Miller Hamiltonian is known,91 extension of the MInt
algorithm to the adiabatic representation may be possible.
Also, one might be able to obtain a higher order of accuracy
with the MInt by employing an alternative splitting of H1 and
H2.
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■ APPENDICES A

Symplecticity
The symplecticity criterion can be algebraically determined for
the three algorithms, where the MInt and SL have already been
derived by Church et al. (2018). It is sufficient to say that
under the Hamiltonian splitting into H1 and H2, the
symplecticity criterion becomes1,79

= =M J M J M J M Jand .H H H H
T 1 1 T 1 1

1 1 2 2 (A1)

For example, following the method by Church et al.,1 MH1
is eq

23 for all three algorithms. This can be derived from the
propagation equations, eqs 21a and 21b, where MXX = Mxx =
Mpp = MPP = 1 and

i
k
jjj y

{
zzz= = + =x t

p p
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Evaluating the symplecticity criterion results in
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such that the propagation under H1 is symplectic.1

The symplecticity for H2 is derived separately for all three
algorithms due to the different nuclear propagation equations,
where the MInt and SL algorithms had previously been derived
by Church et al.1 For the MInt algorithm, MH2

is eq 35 where
the symplecticity criterion becomes
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with

= + +
= + +

h Cf e Dg
j Df a Cg

, (A5a)
(A5b)

T

T

where Church et al.1 previously determined that h ≡ 0 and j ≡
0 ∀ X, P.

For the SL algorithm, propagation of H2 is split further into
nuclear and electronic contributions for which the monodromy
matrices are eq 38. Evaluating the symplecticity criterion for
Mp
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which will only be symplectic if =V 0.1 Evaluating for Mel
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where eqs A5a and A5b have been used in conjunction with
the fact that h ≡ 0 and j ≡ 0 ∀ X, P.1

Church et al. note that a, e ≠ 0T so evolution under el and
p is not symplectic. The combined evolution under el and

p does not provide error cancellation that restores
symplecticity. We find that numerically the difference between
M H2

and MelMp is on t( )2 , in agreement with the
literature.1 The combination of MpMel also provides the
same result. This means that the propagation of MpMel will be
symplectic in the Δt → 0 limit, but it will not be for an
arbitrary timestep.

For the DE algorithm, the monodromy matrix, MDE, for the
approximate propagation of H2 has been derived for the first
time as eq 50. Using eqs 34a−34e with h ≡ 0 and j ≡ 0 ∀ X, P,
the symplecticity criterion becomes
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which will not be symplectic for the same reasoning as for the
SL algorithm.

To derive the order of the difference between M H2
and MDE,

following the approach of Church et al.,1 we define

= t
a S S X

2
,T

(A9a)

= t
e S S P

2
T

(A9b)

such that, the symplecticity criterion will be met if a ̅ ≡ a and e ̅
≡ e. Expanding in coefficients of X and P leads to
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2
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=F
? (A10b)

Rotating to the diabatic basis gives
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where Γ and Ξ are given in eqs 31a and 31b. Evaluating
element-wise in powers of Δt

i
k
jjj y

{
zzz

l
m
ooooo
n
ooooo

i
k
jjj y

{
zzz

l
m
ooooo
n
ooooo

i
k
jjj y

{
zzz

=
=

+

=
=

+

t
n m

t t n m

n m

t t n m

S S

G

2

0

( )
2

( )
(A12a)

0

2 2
( )

(A12b)

nm nm nm

nm nm
nm

T 3

2
4

Hence, the order of the difference between M H2
and MDE is

t( ). The SL algorithm, MelMp, is one order higher than the
DE algorithm, MDE, so the symplecticity is better as seen in
Figures 1 and A1.

We find that, numerically, when considering the whole
propagation of H using the SL algorithm, the initial difference
in symplecticity between the MInt and SL algorithms scale on

t( )3 . This is due to some error cancellation arising from the
symmetric splitting of H2. Hence, when propagating for a given
length of time, the order is =t t t( )/ ( )3 2 , seen in
Figure A1, where changing the timestep by a factor of 10
results in a change in the symplecticity by ∼102. For the DE
algorithm, the initial difference in symplecticity with the MInt
algorithm scales on t( ). Therefore, for a given length of
time, the order is =t t( )/ 1. Figure A1 corroborates this
as the DE algorithm appears to be zero-order for all the
timesteps tested. The symplecticity does not improve with
smaller timesteps.

We note that for symplectic methods, i.e., the MInt
algorithm, the Er matrix will be smaller for coarser timesteps

Figure A1. The Frobenius Norm of the error matrix averaged until
convergence with the SL (purple), the MInt (cyan), and the DE (red)
algorithms using timesteps of Δt = 0.1 (solid), Δt = 0.01 (dotted),
and Δt = 1.0 (dashed). The MInt algorithm is seen to be symplectic
and does not change with timestep. The SL algorithm is seen to be
second-order with respect to time and the DE algorithm is zero-order,
in agreement with the theoretical predictions.
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due to fewer computations where floating point errors
accumulate. We see this when comparing the Δt = 1.0 and
Δt = 0.1 results for the MInt algorithm. This trend is not seen
as clearly for Δt = 0.01 and Δt = 0.1 due to the log scale of the
plot, but it is present by the end of the simulation time. In
contrast, the Er matrix is typically larger for coarser timesteps
for non-symplectic methods as the deviation is an order of Δt,
as shown above with the zero- and second-order behaviour of
the DE and SL algorithms respectively.

■ B

Exactness in Δt → 0 Limit
The exact Hamiltonian propagation can be expressed as a
Liouvillian with the flow map

= e:H t
t

, (B1)

where using eq 13

{ }
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p
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The Maclaurin expansion of the exact dynamics is

= + + +e t tlim 1 ( ) ...
t

t

0

2
(B3)

such that, to obtain the short-time limit, we truncate the series
at t( )2 .

The MInt algorithm has previously been proved by Church
et al.1 to deviate from exact dynamics at terms on t( )3 and
is at least a second-order method. The MInt algorithm is
therefore exact in the Δt → 0 limit. As all three algorithms
have the same propagation of x, X, and P, the only step that
differs for the SL and DE algorithms is the propagation of
nuclear momentum. Hence, we focus on the deviation of this
propagation from the exact dynamics, where the short-time
propagation of p for a whole timestep is

+ = +t p p p t(1 ) (B4)

{ }= + [ + [ ]]p U i i tX P X P
1
2
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(B5)

{ }= + [ + [ ]]p U tX V X P V P V
1
2

Tr .T T

(B6)

If we stop here, this is the SL propagation of p, eq 37. The SL
algorithm is exact in the short-time limit, deviating by terms of
at least t( )2 and therefore is at least a first-order method.

To compare with the DE algorithm, we insert eq 45 into the
short time limit in the previous equation, and as the DE
requires a traceless Ṽ, we discard the trace term such that

+ = [ +

+ + +
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It can be seen that this is equivalent to the DE algorithm, eq
49, if the following terms are discarded
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These terms vanish when the DE approximation is made and
are t( ). One might argue that a prior nuclear position
propagation, eqs 21a and 21b, may restore these terms.
However, this would result in Λ′(x) being replaced with Λ′(x
+ pΔt/m). Using a Taylor expansion, we can show that

+ = + + +x p t m x p t m x t( / ) ( ) ( / ) ( ) ( ) ...2

(B9)

such that, any correctional terms would be at least t( )2 due
to the factor of Δt in eq B7. This same logic holds for X and P.
Hence, the DE algorithm differs from the exact evolution at

t( ), meaning it is zero-order and is not exact in the Δt→ 0
limit.

■ C

Conservation of Electronic Probability
To prove that all three algorithms conserve electronic
probability, we first define

= +X X P P: .T T (C1)

Taking the value at time t
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a translation back in time can be achieved with eq 26, resulting
in
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which is equivalent to eq C2. As all three algorithms propagate
eq 26 exactly, this derivation holds and all three algorithms
conserve electronic probability.

■ D

Sampling
Following a similar derivation of the partition function as in
refs [3] and [53], the sampling method used in this work is
derived. Instead of formulating in the limit of an infinite
number of ring-polymer beads, we derive the partition function
in the single-bead case. The wavefunctions of the singly excited
oscillator (SEO) states are known in the position and
momentum bases3

| = | |n X eX 2
n

X /22

(D1)

| = | |n i P eP 2
n

P /22

(D2)

where ⟨n|X⟩ = ⟨X|n⟩* and likewise for P. The partition
function, = [ ]Z eTr H , is expanded as a Trotter product
where N = 1 for the one-bead case
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Inserting the projection operator = | | == n n 1n 1
2 and

summing over the two electronic levels in our model
Ä
Ç
ÅÅÅÅÅÅ É

Ö
ÑÑÑÑÑÑ

| | | | |

× | | | | |

=Z k k l l e x

x e m m n n e x

X X

P P X P

Tr

d d d

k l m n

p m

V

V

, , , 1
2 /2

/2 /22

(D4)

where the imaginary-time free-particle propagator for N = 1 is3
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Separating out the state-independent potential, U
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The sum can be rewritten in matrix notation
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where = eM V /2 and using the cyclic properties of the trace

= [ ] =W P MXX MP P XMX MPTr T T T T (D9)

which is a scalar quantity. Using the Gaussian integral identity
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such that p can be inserted into the integral
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resulting in the probability distribution, ρ, eq 53, where W is
positive-definite in the single-bead case as

= = =e eM MV VT /2 /2T
(D12)

therefore

= =P MX X M P X MP( ) ( ) .T T T T T T T (D13)

This means that =W X MP( )T 2, which will always be positive.
We sampled Gaussian distributions for electronic variables
where μ = 0 and = 1/ 2 , and classical distributions for
nuclear variables where μx = 0 and = m1/( )x

2 , and μp =
0 and = m/p , such that the sampled distribution is

= | | | | +e
2

.U p mX P
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( /2 )2 2 2
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To obtain the required distribution, eq 53, the following
relationship is established

= × 8
.samp (D15)

Hence, we need to correct calculated observables to average
over the required distribution. We can thus define the average
of an observable over the distribution, A, that may be a
function of initial position and momenta, i.e., A x pX P( , , , )i i i i
as
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The integral over the sampled distribution can be replaced
with a sum over the number of samples taken, J,
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The partition function can be calculated as
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