Table 1.
Ref./Year | Gas | Temperature (°C) | Pressure | Technology Frequency |
Power (W) | Coating/Substrate | Main Conclusions |
---|---|---|---|---|---|---|---|
[23]/2019 | CH4/H2 | 625 | 400 mTorr | RF-PECVD (13.56 MHz) | 20–80 | VGNWs/Ge<111> | VAGNAs can be used as an efficient SERS substrate |
[7]/2023 | CH4 | 575 to 900 | 400 mTorr | ICP-CVD (13.56 MHz) |
400 | VGNWs/Stainless-steel SS310 | Impact of temperature on morphology and structure of VGNWs |
[52]/2020 | Ar/H2/C2H2 | 700 | 10–150 Pa | PECVD | 300 | VGNWs/SiO2, SiO2/Ti, SiO2/Ti/Pt | cross-section micrograph about 18 μm, width of edges less than 10 nm. |
[19]/2022 | CH4 | 750 | 400 mTorr | ICP-CVD (13.56 MHz) |
440 | VGNWs/Stainless-steel SS310, Polycrystalline-Cu,Papiex© |
growth of VGNWs in a variety of metallic and non-metallic substrates insights on morphology and crystalline quality |
[21]/2023 | CH4 | 750 | 400 mTorr | ICP-CVD (13.56 MHz) |
400 | Mo2C/Papiex© | VGNWs as template with abundant defects favoring bonding of ns-Mo2C |
[24]/2020 | CTAB/deionized water | 200 (24 h) | - | hydrothermal process | - | MoS2@rGO | Fabrication of MoS2@rGO nanowall structure |
[25]/2016 | CH4/N2 + CH4 | - | 20 mTorr to 760 Torr | MW plasma torch (MPT) (2.45 GHz)/PECVD | 500–1500 | GNW/Ti NGNW/Ti |
GNW/Ti and NGNW/Ti electrodes extend upper potential limit of a positive electrode of EDLCs from 0.1 V to 1.3–1.5 V |
[9]/2021 | - | - | - | PEALD | - | GNWs/Si | GNW-Si Schottky junction-based selfpowered IR PD with high responsivity |
[53]/2015 | C2H2/Ar/H2 | 550–750 | 200–400 Pa | PECVD | 150 | CNWs/SiC | field emission properties of the CNWs |
[34]/2023 | - | - | - | PECVD | - | VGNWs/textured c-Si | PEDOT doped textured VGNWs/Si Schottky junction |
[49]/2018 | Al acetylacetonate | 350–425–500 | 8 Pa | ICP-PECVD | 500 | CNWs | CNWs morphologies depending on process |
[40]/2019 | Glucose/ureaAr | 850 | 70 kPa | Spin-coating/CVD | - | N:VGNs/304SS | growing intrinsic and nitrogen-doped VGNs on stainless steel |
[15]/2019 | C precursor | - | - | MW-PECVD/ALD | - | VGNWs/ZnO nanorods | Hierarchical Graphene/Nanorods-Based H2O2 Electrochemical Sensor |
[28]/2020 | H2/C2H4 | 450–620 | 29 Pa | CC-PECVD 13.56 MHz |
- | VGNWs | Growth VGNWs by CC-PECVD at low temperature (450 °C), using Ni catalyst |
[10]/2020 | CH4/H2 | 650 | - | (ns)-RI-PECVD | 400 | CNWs | isolated carbon nanowalls via high-voltage ns pulses (ns)-RI-PECVD |
[54]/2013 | CH4/H2 | - | - | ICPCVD | - | VGNWs | Synthesis of VGNWs for field emitters |
[50]/2022 | C precursor | 700 | - | PECVD | - | VGNWs/c-Si VGNWs/3C-SiC |
VGNWs/SiC interfacial layers for heterojunction devices |
[48]/2009 | C2H6/H2 | 930 | 160 Pa | RI-PECVD 2.45 GHz |
250–270 | CNWs/Si,SiO2,Al2O3,Ni | CNWs growth by RI-PECVD |
[55]/2022 | C precursor | 450 | - | PECVD | - | VGNWs | VGNWs growth at low temperature plasma |
[43]/2021 | C precursor | 600 | 500 mTorr | MW-PECVD | 1300 | CNWs/SiO2/p-Si | CNWs/SiO2/Si gas sensor |
[13]/2018 | p-xylene | 415 | 4.7 Pa | ICPCVD | 150 | Hierarchical CNW | hCNW synthesized by a PECVD |
[17]/2020 | - | - | - | - | - | (Li3O)n,(Na3O)n,(K3O)n @GDY | Design of Graphdiyne-based materials for optoelectronic applications |
[35]/2023 | C precursor + Nafion | - | - | - | - | VGNWs/Si | VGNWs/Si Schottky junction solar cells with Nafion doping |
[41]/2020 | Ar/H2/CH4 | 800 | 7 Pa | PECVD | 200 | VGNWs/VO2(B) | VGNWs/VO2(B phase) for IR detector |
[5]/2023 | PDMS | 400 | - | HF-CVD | - | VGNWs | VGNWs for flexible pressure sensor |
[56]/2020 | CH4 | 750 | 50 to 60 Pa | ICP-CVD | 440 | CNSs/SS304 | Photoluminescence from CNSs |
[27]/2019 | PAN+DMF CH4/H2 |
600 | 600 Pa | Electrospinning MW-PECVD |
350 | G-CNFs | G-CNFs-MnO2 electrodes for supercapacitors |
[33]/2020 | CH4/H2 | 750 | - | PECVD | 50 | VGNH/Si | VGNHs/c-Si Shottky junction solar cells |
[22]/2018 | Ar/H2/CH4 | 1050 | 800 Pa | Mesoplasma, MPCVD | 10 kW | VGN/Ni@Li foam | VGN/Ni@Li foam for pseudocapacitance induced fast Li+ ion transfer |
[26]/2017 | Ar/CH4 | 800 | - | (ECR)-PECVD | 375 | VGNWs/Ni | VGNWs/Ni for supercapacitor application |
[51]/2022 | C2H2 | - | - | PECVD | - | VGNWs/GaN-NWVGNWs/np-SiO2 | Growth of VGNWs/GaN-NW and VGNWs/np-SiO2 by PECVD |
[57]/2020 | Ar | 350 | 14.5 Pa | PECVD 13.56 MHz |
500 | np-Pt/CNWs | synthesis of Pt/CNW sheet electrocatalysts |
[58]/2017 | Ar/H2/C2H2 | 700 | 10 to 150 Pa | Ar plasma jet | - | CNWs | wettability of plasma deposited CNWs |
[37]/2022 | C2H2 | 150 | - | HF-CVD | - | VGNWs | Synthesis of VGNWs on dielectrics |
[42]/2019 | gaseous camphor | 600 | 30 Pa | CVD | - | Graphene/ZnO/Graphene | Graphene/ZnO-NWs/Graphene Heterojunction for NO2 Gas Sensor |
[38]/2022 | ChloroformC precursor | 650 | - | Electric field assisted PECVD | 250 | VG arrays | Rapid growth of VG arrays for TIM |
[36]/2020 | methane, ethanol, methanol | 650 | - | AEF-PECVD | 250 | VG arrays/Cu, glass, c-Si | Vertical Graphene Arrays for TIM |
[39]/2023 | C precursor | - | - | PECVD | - | VGNs/CF/ss | VGNWs/C fibers for TIM |
[59]/2019 | Ar/H2/CH4 | 750–900 | - | CC-PECVD | 550–770 | VGNWs | VGNWs for Li-ion batteries |
[60]/2023 | C precursor | - | - | RF and RI-PECVD | - | CNWs/Al2O3 nanopores | Creation of CNWs/Al2O3 nanopores |
[61]/2021 | Ar/CH4 | 800 | - | ICP-PECVD | 140 | CNWs | Properties of CNWs |
[31]/2022 | C precursor | - | 500 Pa | HF-CVD | - | VGNWs/substrate | VGNWs for hydrovoltaic power generation |
[62]/2023 | C precursor | - | - | CVD | - | ns-G/W/dielectric | Multimode THz absorber based on ns-G |
[63]/2023 | C precursor | - | - | CVD on Cu catalyst | - | SLG/SiO2/Au | SLG/SiO2/Au for absorber on SPR |
[64]/2022 | - | - | - | - | - | PIT/ns-G/dielectric subst. | Theoretical study of PIT/ns-G/substrate |
[65]/2023 | C precursor | - | - | CVD on Cu catalyst | - | SLG/SiO2/Au | SLG/SiO2/Au for THz absorber on SPR |