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Abstract: The integration of wearable sensor technology and machine learning algorithms has
significantly transformed the field of intelligent medical rehabilitation. These innovative technologies
enable the collection of valuable movement, muscle, or nerve data during the rehabilitation process,
empowering medical professionals to evaluate patient recovery and predict disease development
more efficiently. This systematic review aims to study the application of wearable sensor technology
and machine learning algorithms in different disease rehabilitation training programs, obtain the best
sensors and algorithms that meet different disease rehabilitation conditions, and provide ideas for
future research and development. A total of 1490 studies were retrieved from two databases, the
Web of Science and IEEE Xplore, and finally 32 articles were selected. In this review, the selected
papers employ different wearable sensors and machine learning algorithms to address different
disease rehabilitation problems. Our analysis focuses on the types of wearable sensors employed, the
application of machine learning algorithms, and the approach to rehabilitation training for different
medical conditions. It summarizes the usage of different sensors and compares different machine
learning algorithms. It can be observed that the combination of these two technologies can optimize
the disease rehabilitation process and provide more possibilities for future home rehabilitation
scenarios. Finally, the present limitations and suggestions for future developments are presented in
the study.

Keywords: wearable sensor; machine learning; disease rehabilitation; rehabilitation training

1. Introduction

With the rapid development of information technology, traditional medical rehabil-
itation methods combined with various disciplines and technologies, such as wearable
sensors and machine learning algorithms, are widely used in clinical diagnosis, rehabili-
tation medicine, and other fields [1,2]. Cervical spine diseases, musculoskeletal diseases,
stroke, cerebral palsy, hand paralysis, lower-limb paralysis, Parkinson’s, and other diseases
require long rehabilitation periods. Wearable sensors and machine learning technology can
assist clinicians in monitoring and predicting the prognosis and rehabilitation of patients.
For example, Vijay placed the IMU (inertial measurement unit) on the chest and thighs of a
patient to collect data on walking activities, such as standing, climbing stairs, cycling, etc.,
to complete the monitoring of the patient’s rehabilitation process [3]. Wearable sensors are
an important technology for gait analysis, diagnosing walking disorders in patients with
gait disorders, and gait analysis is very important for the clinical assessment of patient
rehabilitation [4]. Patients with hemiparesis, such as apoplexy, usually must observe and
evaluate hand-movement performance during the rehabilitation training period. Therefore,
wearable sensors that do not affect limb movement can be worn for tracking and monitor-
ing purposes. The feedback on joint movement information is crucial for the adjustment
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of and change in the rehabilitation treatment process [5]. Machine learning technology
can integrate and predict the data obtained by sensors used for disease rehabilitation,
thereby improving the accuracy of diagnoses of stroke and other diseases and assisting
rehabilitation personnel in predicting the patient’s disease recovery trajectory [6–8].

Wearable sensors first appeared in the mid-20th century. As a hardware device,
they can perform data interactions. According to different needs, users wear devices
with specific functions to collect behavior or health records [9]. Wearable devices include
a device body and sensor components, which are mechanically connected. They have
different functions, principles, and forms, and are widely used in the fields of medicine
and health [10]. Wearable sensors have the characteristics of convenience and a low
price, providing researchers with a variety of possibilities and solutions [11]. Wearable
sensors help rehabilitation patients to exercise at home, relieve travel pressure, and reduce
psychological burden [12,13]. A variety of sensing devices are used to monitor patients’ vital
signs and physiological responses, such as electromyography (EMG), electrocardiogram
(ECG), and electroencephalogram (EEG), which can monitor the patient’s physical condition
in real time. Electromyography (EMG) can determine the functional status of peripheral
nerves, neurons, and muscles by receiving electrical activity signals when the muscles are
at rest or contracting [14]. Electrocardiography (ECG) records the electrical activity of the
heart by detecting the potential activity between cardiomyocytes and is commonly used
to rapidly check for signs of arrhythmia [15]. An electroencephalogram (EEG) typically
involves placing electrodes on a person’s scalp to detect changes in biological potential
caused by brain activity. Brain waves contain a large amount of physiological and disease
information. Through the processing of brain waves, doctors can perform the rehabilitation
identification of patients’ brain diseases [16]. Gait analysis using wearable sensors, such as
inertial sensors, gyroscopes, accelerometers, pressure sensors, etc., is widely used in many
fields, such as neurorehabilitation and sports medicine. An inertial sensor is a sensor that
detects and measures acceleration, tilt, vibration frequency, rotation angle, and multiple
degrees of freedom (DOF) motion. They can convert motion signals into electrical signals,
which are amplified and processed by electronic circuits [17]. A gyroscope is an angular
motion-detection device that measures the angular velocity around multiple axes [18].
Accelerometers are sensors that measure changes in velocity in a single direction. Due
to their low cost and strong reliability, they are often used in combination with various
sensors [19]. A pressure sensor is generally composed of a pressure-sensitive element and
a signal processing unit. It is a device that can sense the pressure on an object and convert
the pressure signal into an electrical signal according to a certain rule. It is usually placed
on the sole of the foot in gait recognition systems to obtain pressure information during
movement [20].

Machine learning is a mechanism that uses computers to simulate human learning
activities, enabling machines to learn autonomously without explicit programming, or
researching how to effectively use information to obtain hidden and effective knowledge
from big data [21]. Machine learning algorithms have been applied in different fields,
such as finance, environmental protection, social media, and healthcare industries. In
the medical field, machine learning is continuously upgraded and optimized in terms
of disease analysis and data prediction [22–24]. With the advent of the era of big data,
machine learning technology can efficiently acquire knowledge, conduct an in-depth
analysis of complex and diverse data, and improve the accuracy of prediction results [25].
The commonly used algorithms of traditional machine learning mainly include the support
vector machine algorithm (SVM), decision tree algorithm (DT), random forest algorithm
(RF), artificial neural network algorithm (ANN), and so on. The support vector machine
(SVM) algorithm is a supervised learning method that can be widely used in statistical
classification and regression analysis [26]. Support vector machines are mainly used for face
detection, image classification, and biological data mining. It is unlike the traditional way
of thinking. It simplifies a problem by inputting the space and increasing the dimension, so
that the problem can be reduced to a linearly separable classic problem [27]. The decision
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tree (DT) algorithm is an important classification and regression method in data mining
technology, and its predictive analysis model is generally expressed in a tree structure [28].
The understandability of a decision tree model is affected by the size of the tree, its depth,
and the number of nodes in the leaves. Decision tree has the characteristics of small
levels of calculation and high accuracy [29]. The random forest algorithm (RF) integrates
multiple trees through the idea of ensemble learning. The output category is determined
by the mode of the output category of each tree and is mainly used for classification
predictions [30]. This algorithm has the advantages of high precision, wide applicability,
strong nonlinear data analysis ability, and overfitting difficulty [31]. The artificial neural
network algorithm (ANN) is an algorithmic model that imitates the structure and function
of biological neural networks [32]. Inspired by the neural organization of the human brain,
the algorithm designs computing nodes similar to neurons and connects them to form a
network. It transmits information rapidly and has strong generalization and nonlinear
mapping abilities [33].

The review of wearable sensors and the machine learning algorithms in the literature
mainly focuses on stroke rehabilitation [34], gait monitoring [35], fall prevention [36], and
lower-limb movement [37,38]. For example, Jourdan et al. [39] focused on researching the
application of commercial sensors, aiming at data collection of how sensors are applied,
and seldom elaborated on the data processing that requires the application of machine
learning technology. Usmani et al. [40] analyzed and compared the basic information of
the participants, data sets, machine learning algorithms, sensor types, and where on the
body they are worn and other parameters, and described the latest application of machine
learning in fall monitoring and prevention systems. Boukhennoufa et al. [41] summarized
the latest research progress in the field of stroke rehabilitation and compared the data
processing of wearable sensors and machine learning algorithms.

At present, some reviews have summarized the latest research progress of wearable
sensors and machine learning technology; however, a summary of disease rehabilitation
training is lacking in the research. Many studies in the literature discuss the application
of various sensors and machine learning techniques in the treatment and rehabilitation
of certain diseases. For example, force sensors and bending sensors are added to stroke
rehabilitation gloves to measure the grip strength and bending degree of the hand, and
use machine learning technology to recognize gestures to promote the completion of the
rehabilitation training process for patients [42]. Facciorusso et al. [43] used CiteSpace
6.1.R6 software to review the research status of sensor-based rehabilitation in neurological
diseases, and to conduct a visual analysis of the research hotspots, authors, and journals.
Yen et al. [34] reviewed the application trends of sensors in the remote monitoring and
rehabilitation of neurological diseases, and discussed the functional evaluation elements
that sensors should simulate. The abovementioned reviews are based on different perspec-
tives of neurological diseases. According to the survey, there is no review summarizing the
application and trend of the use of wearable sensors and ML technology in rehabilitation
training for different diseases, which prevents researchers from making horizontal and
vertical comparisons in this regard. Therefore, it is necessary to summarize the status
of the use of wearable sensors and machine learning technology at present in different
rehabilitation training scenarios for different kinds of diseases. The focus of the research
should be on sensor location, sensor type, etc., as well as comparing the types and accuracy
of machine learning algorithms to obtain the optimal algorithm. Sensors and machine
learning-related information should be visualized to provide references for scholars to
facilitate additional research. The research objectives of this review are as follows:

• It outlines the application of wearable sensors and machine learning technology in
rehabilitation training;

• It specifically analyzes the sensor type, sensor location, and feature extraction applied
in the recovery process of different diseases;

• It evaluates the type and accuracy of machine learning algorithms applied in different
rehabilitation exercises;
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• It discusses the limitations, trends, and directions of sensors and machine learning
algorithms in rehabilitation applications.

The purpose of this study is to review the application of wearable sensor technology
and machine learning algorithms in rehabilitation training for different diseases. The
research results include the best sensors and ML algorithms that meet the rehabilitation
conditions of different diseases, providing researchers with a choice of research directions
and ideas for future research and development purposes.

2. Methods

This review used the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) for the paper selection [44].

2.1. Search Method

The literature search used the Web of Science database and IEEE Xplore to retrieve all
the literature published during the ten-year period from 1 January 2013 to 4 July 2023.

2.2. Document Retrieval

Firstly, the basic keywords used for the literature search were “wearable sensor”,
“machine learning”, and “rehabilitation training”. Then, more relevant keywords were
selected. The search formats of the two databases are shown in Table 1.

Table 1. Keyword strings used in database searches.

Academic Library Search String

Web of Science

((TS = (wearable OR wearable sensor OR wearable device OR
wearable sensing device OR accelerometer)) AND TS = (machine

learning OR intelligent system OR deep learning OR SVM OR
support vector machines OR random forest algorithms OR neural
network algorithms OR multilayer perceptron OR artificial neural
networks OR ANN)) AND TS = (rehabilitation OR recovery OR

rehabilitation training)

IEEE Xplore

(“All Metadata”: wearable OR “All Metadata”: wearable sensor
OR “All Metadata”: wearable device OR “All Metadata”:

wearable sensing device OR “All Metadata”: accelerometer) AND
(“All Metadata”: machine learning OR “All Metadata”: intelligent

system OR “All Metadata”: deep learning OR “All Metadata”:
SVM OR “All Metadata”: support vector machines OR “All

Metadata”: random forest algorithms OR “All Metadata”: neural
network algorithms OR “All Metadata”: multi-layer perceptron

OR “All Metadata”: artificial neural networks OR “All Metadata”:
ANN) AND (“All Metadata”: rehabilitation OR “All Metadata”:

recovery OR “All Metadata”: rehabilitation training)

Through the search, potentially relevant articles published between 1 January 2013
and 4 July 2023 were identified. Figure 1 presents the number of potentially relevant
articles published per year between 1 January 2013 and 31 December 2022, after excluding
duplicates. It can clearly be observed in Figure 1 that the number of published papers is
clearly on the rise.
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2.3. Screening Criteria

This review only included peer-reviewed journals or conference papers written in
English between 1 January 2013 and 4 July 2023. The article research content was required
to meet all of the following criteria:

1. The paper should include research conducted on wearable sensors, machine learning,
and disease rehabilitation;

2. The paper should provide a detailed analysis of the performance characteristics, where
the sensor is worn, and the accuracy of the wearable sensor;

3. The paper should elaborate on the application of the machine learning algorithm
involved in data processing;

4. The paper should include research conducted on the treatment and rehabilitation of
one or more diseases.

In addition, the abovementioned criteria should be followed for paper selection, the
exclusion criteria were as follows:

1. Exclude all review papers, review articles, and papers that lack specific research results;
2. If the research exists in both academic journals and conference papers, select the former;
3. Exclude papers that briefly mention wearable sensors or machine learning or dis-

ease recovery.

2.4. Article Screening Process

The investigator (WSY) entered the data exported from the two databases into a table,
which included information on the author, title, keywords, abstract, DOI number, etc.
After excluding duplicate records according to the title and DOI number of the article, the
investigator (WSY) then excluded the papers that did not meet the requirements according
to the screening criteria based on the title, keywords, and abstract. Finally, the investigators
(WSY and WZH) checked whether the specific content of the paper met all the screening
requirements. The final screening was conducted and the selected papers were summarized.

3. Results

A total of 1490 documents were retrieved from the database, including 527 from Web
of Science and 963 from IEEE Xplore. First, after removing 111 duplicates, 1379 papers
were retained. Then, 1064 articles were excluded according to the title, keywords, and
abstract. Then, 57 reviews were excluded. Subsequently, the full-text content was reviewed
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according to the screening criteria, 226 articles were excluded, and finally 32 articles were
obtained. The whole process of document retrieval shown in Figure 2 was based on the
screening results at each stage obtained by the method steps of PRISMA.
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We sorted and summarized the 32 selected papers by year, and the results are shown
in Figure 3. There were fewer papers in 2023 due to the deadline for the scope of the article
search being 4 July 2023.
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3.1. Wearable Sensors

Wearable sensors have the characteristics of light weight, flexibility, stability, and
comfort. They are widely used for pulse and heartbeat monitoring purposes, gait analysis,
and other health monitoring systems, disease diagnosis, and rehabilitation fields [45]. In
the process of the diagnosis and rehabilitation of different diseases, different sensors are
required to detect the physiological information required. In order to comprehensively
evaluate the recovery of human health, it is sometimes necessary to work with multiple
sensors. For example, a gait recognition system based on pressure and inertial sensors
can obtain pressure information from the soles of the feet during exercise; inertial sensors
can obtain dynamic information, such as acceleration and angular velocity, from different
positions, such as on the thighs and ankles [20]. Based on the detected information, the
recovery status of stroke patients can be evaluated and subsequent interventions can be
performed.

Table 2 summarizes the specific results of the 32 screened documents on sensor type,
wearable sensor location, sampling frequency, exercise, disease types, and other information.

Table 2. Wearable sensors used for rehabilitation training in selected papers.

References Wearable
Sensors Type Participants Sensor

Location Feature Sampling Rate Exercise Disease Type Methods

[46] Nine-axis sensor
(non-invasive)

10 post-stroke
hemiplegic-
simulated
subjects
Male: 7

Female: 3

Wrist

Mean
value/standard
deviation/root
square mean

value of motion
tasks

100 Hz

Hand to lumbar
spine/shoulder

flexion 90 de-
grees/forearm

pronation

Post-stroke
hemiplegia

Upper-limb
evaluation

method in the
Fugl–Meyer

scale

[47] Accelerometer
(non-invasive)

Two
individuals

without spinal
cord injuries

Wrist/ankle

Time domain
feature:

mean/mean
absolute devia-

tion/peaks;
frequency
domain

features: total
power between

a band of
frequen-

cies/energy/entropy

32 Hz

Wheelchair
propul-

sion/walking/
walking using

crutches

Spinal cord
injury

Framework that
uses a

combination of
machine
learning

models and
wearable
sensors to

capture and
track assistive

technology-
based mobility
and function in

individuals
with SCI

[48]
MMG/IMU/force

sensor
(non-invasive)

23 Parkinson’s
disease patients

Male: 12
Female: 11
10 healthy

subjects
Male: 8

Female: 2

Upper
arm/forearm/

wrist/hand

Rigidity
features: mean
and standard

deviation of the
calculated

torque/standard
deviation of the
joint angle and

angular
velocities, etc.
Bradykinesia
features: root

mean square of
prona-

tion/supination
motion speeds,

etc.
Tremor features:

means and
standard

deviations of
processed

rates-of-turn
and

accelerations

100 Hz
Pronation
supination
movements

Parkinson’s
disease

Establish a new
PDD model

and evaluate it
using Unified
Parkinson’s

Disease Rating
Scale scores
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Table 2. Cont.

References Wearable
Sensors Type Participants Sensor

Location Feature Sampling Rate Exercise Disease Type Methods

[49]

Force
sensor/angular
displacement
sensor/sEMG
(non-invasive)

Fifteen healthy,
right-handed
male subjects

aged
between 22 and

30 years old

Hinge mecha-
nism/trapezius

muscle

RMS of the
force

sensor/RMS of
the angular

displacement
sensor

-

Side-to-side
reaching/back

and forth/
up and down

Stroke

By combining
force, angular
displacement,

and electromyo-
graphic signals

with torso
constraints as
the main body,

automatic
detection of

compensated
motion is
achieved

[50]
Accelerometer/flex

sensor
(non-invasive)

24 stroke
patients
Male: 16
Female: 8

Shoulder/elbow/
wrist/fingers

AMP /MEAN
/RMS/JERK/ApEn 20 Hz

Shoulder
anteflex-

ion/shoulder
exten-

sion/forearm
pronation and

supina-
tion/lumbar
touch/wrist

flexion and ex-
tension/lateral
pinch/finger

touch

Stroke

A novel remote
quantitative
Fugl- Meyer
evaluation

(FMA)
framework that

maps sensor
data to clinical

FMA scores

[51] Pressure sensor
(non-invasive)

13 young
participants

Male: 7
Female: 6

Plantar

Means and
standard

deviations of all
the pressure

data

100 Hz Standing/
walking/siting

Alzheimer’s
disease/Parkinson’s
disease/chronic
ankle instability

Long-term
center of
pressure

monitoring
system in a
smart-shoe

form

[42]
Force sensor/flex

sensor
(non-invasive)

8 subjects with
normal hand

motor functions
Male: 5

Female: 3

Knuckle/
finger-

tips/palm

MAV/ RMS/
WL/VAR
/standard
deviation

200 Hz Finger flexion Hand paralysis

Hand
rehabilitation
system that

supports both
mirror therapy

and
task-oriented

therapy

[52]
Piezoresistive

sensor
(non-invasive)

18 healthy
subjects
Male: 9

Female: 9

Knee - 18.75 Hz Open-chain
knee flexion Gonarthrosis

Instrumented
knee sleeve and
modeled using

an adaptive
enhanced RFR

model

[53]

Accelerometer/
gyroscope/

magnetometer
(non-invasive)

20 patients
Male: 8

Female: 12
Shoulder

Time domain
features:

mean/root
mean

square/standard
deviation, etc.

Frequency
domain
features:

maximum
frequency com-
ponent/mean

frequency com-
ponent/energy
spectral density,

etc.

100 Hz
(accelerometer)

100 Hz
(gyroscope)

25 Hz
(magnetometer)

Shoulder
abduc-

tion/shoulder
flexion/wall
slide/wall

press/shoulder
rotation

Musculoskeletal
disorders

Using a single
inertial sensor

and supervised
machine
learning

technology to
identify and

classify
shoulder

rehabilitation
activities

[54]

Accelerometer/
gyroscope/

magnetometer
(non-invasive)

48 patients
Male: 26

Female: 22

Dorsal side of
the elbow

Root mean
square/mean/standard

devia-
tion/energy/spectral

en-
ergy/absolute

differ-
ence/variance/SMA/SV

256 Hz
Elbow flexion
and extension

movements

Stroke/multiple
sclero-

sis/cerebral
palsy/spinal
cord injury

Machine
learning

algorithms and
inertia signals

collected
during passive
stretching are
used to grade

spasms

[55] IPMC sensor
(non-invasive) - Throat Raw voltage

data - Cough/hum/
nod/swallow

Oropharyngeal
dysphagia

Self-powered
IPMC sensor

that can
distinguish
between the

different
pressures
exerted by

throat
movements
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Table 2. Cont.

References Wearable
Sensors Type Participants Sensor

Location Feature Sampling Rate Exercise Disease Type Methods

[56] IMU
(non-invasive)

10 healthy and
12 post-stroke

volunteers
Fingertip/hand

Mean value of
movement

inten-
sity/smoothness
of MI/average

acceleration
and rotation
energy, etc.

100 Hz Arm
movements Hemiparesis

IMUs used to
recognize the

purposeful and
non-purposeful
movements in

ADLs for
identifying and
promoting the

use of the
impaired limb
during daily
life in people
affected by

stroke

[57] IMU
(non-invasive)

25 PD patients
and 28 healthy

subjects
Ankle/shank

SL/GD/PSP/MH/
RL/RSZ/RSY/
RSX/MPV/MVV/

MSV/MHD
100 Hz Walk Parkinson’s

disease

Novel method
for automatic
assessment of
the gait task in
UPDRS based
on only two

shank-mounted
IMUs and 12 m

straight
walking test

[58]
IMU/accelerometer/

gyroscope
(non-invasive)

44 clinical
and 10 healthy

subjects
Shin

Mean/median/
standard

deviation/
variance, etc.

102.4 Hz

Heel
slide/seated
knee exten-
sion/inner

range quadri-
ceps/straight

leg raise

Knee disorders

System that
provides

patients with
automatic

feedback on
knee

rehabilitation
exercises

[59] EMG
(non-invasive)

4 healthy male
subjects Lower leg EMG data - Walk Stroke/multiple

sclerosis

New approach
for spastic

detection in
hemiplegia-

affected EMG
data using the

IPANEMA BSN
in combination

with SVM

[60]
Accelerometer

/gyroscope
(noninvasive)

36 pediatric
patients

Trunk/
sacrum/shank

Mean
frequency/the

first 5 DFT
coefficients/the
first 5 maxima

of DFT
coefficients and

their
corresponding

frequencies

75 Hz Walk Idiopathic toe
walking

Using wearable
sensors and ML,

real-time step
detection can be
combined with

assistive
devices for

intervention
and motor

rehabilitation
purposes

[61] IMU/EMG
(non-invasive) - Arm

Mean absolute
value/standard

deviation/
variance/root

mean
square/waveform

length/
zero cross-

ing/integrated
EMG

50 Hz (IMU)
200 Hz (EMG)

Thumb and
index finger
movements

Stroke

Pattern
recognition of

thumb and
index finger

gestures using
EMG signal
recording

obtained from
Myo armband

[62] EMG
(non-invasive) 22 subjects Forearm

Mean/variance
of EMG/MAV,

etc.
1000 Hz Hand

movement
Musculoskeletal

disorders or
injuries

An off-line
classification
approach for

the 26
upper-limb

ADLs included
in the

KIN-MUS UJI
dataset

[63] Triboelectric sensor
(non-invasive) - Neck - - Neck

movement
Cervical spine

diseases

A neck motion
detector

comprising a
self-powered
triboelectric

sensor set and a
deep learning

module to
recognize neck

motion
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Table 2. Cont.

References Wearable
Sensors Type Participants Sensor

Location Feature Sampling Rate Exercise Disease Type Methods

[64] Accelerometer
(non-invasive)

49 healthy
volunteers Shoulders/back/elbows/forehead- 32 Hz

Place hands
behind the head
with ten fingers
crossed/push

the elbows back
to the

body/stretch
both hands up

with ten fingers
crossed/bend

over to the
left/right

Joint disease

Multi-path
convolutional

neural network
(MP-CNN)

based on sensor
data for

rehabilitation
training

recognition

[65]
IMU/accelerometer/

gyroscope
(non-invasive)

17 participants
in the HBR

group and 6
participants in

the control
group

Wrist - 10 Hz

Bilateral
shoulder

flexion with
both hands
interlocked/

wall push
/move the

scapula /towel
slide

Chronic stroke

Home-based
rehabilitation
(HBR) system
that identifies

and records the
type and

frequency of
rehabilitation

exercises
performed by

the user

[66] Pressure sensor
(non-invasive)

12 healthy
subjects Foot - 300 Hz Walk

Diabetes/
peripheral

arterial disease

Method based
on the artificial
neural network

to classify
walking speed
and walking
time by using

plantar
pressure images

[67]
Accelerometer

/gyroscope
(non-invasive)

21 healthy male
volunteers Waist - 50 Hz

Walk/walk
upstairs/walk

down-
stairs/sit/stand/lay

Mobility
disorder

Device
consisting of a
single-board

computer (SBC)
and a six-axis

sensor that
recognizes
activities

through deep
learning

algorithm

[68]
EMG/muscle

sensor
(non-invasive)

5 healthy male
subjects. Arm - -

Hand
open/hand

close/pinch/pointing
finger

Stroke/absence
of hand

Method for
controlling a 3D
prosthetic hand

using elec-
tromyographic

data of basic
gestures and
manipulating
the prosthetic

hand using
classified data

[69]
IMU/pressure

sensor
(non-invasive)

20 hemiplegic
patients and 10

healthy
individuals

Bilateral
feet/bilateral

calves/bilateral
thighs/waist

Gait
line/regional
pressure/gait

phase/
accelera-
tion/step

length/joint
angle

200 Hz Walk Stroke

Method for
interpretable

BRS-L
evaluation of

lower extremity
motion data
and plantar

pressure data
collected using

IMUs and
pressure
sensors

[70] IMU
(non-invasive)

12 stroke
patients
Male: 7

Female: 5

Wrist

Mean of the
signal/variance

of the signal/
RMS, etc.

20 Hz Arm movement Stroke

Arm
rehabilitation

monitor system
using an IMU
sensor placed

on a single
wrist to acquire

arm motion
information

and process the
data using a

machine
learning
classifier
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Table 2. Cont.

References Wearable
Sensors Type Participants Sensor

Location Feature Sampling Rate Exercise Disease Type Methods

[71] IMU
(non-invasive)

12 patients
with hip
unilateral

arthroplasty

Foot/lower
leg/upper

leg/lower back
- 60 Hz Walk Hip disorder

Method used to
monitor the
progress of

rehabilitation
using kinematic
data obtained

from a wearable
sensor system

and a deep
convolutional

neural network

[72] EMG
(non-invasive)

5 healthy
subjects
Male: 4

Female: 1

Hand/arm - 13.33 Hz
Wrist/elbow/

shoulder
flexions

Stroke

Flexible
cable-driven

full-hand
exoskeleton to

aid the
rehabilitation of
stroke patients

[73] IMU
(non-invasive)

10 subjects
Male: 5

Female: 5

Chest/thigh
(close to the
knee)/shank

(close to ankle)
of the

working leg

Angle of shank
for SAE and

QSM/angle of
thigh for SLR

-

Short-arc
exercise

(SAE)/straight
leg raise

(SLR)/quadriceps
strengthening
mini-squats

(QSM)

Knee
osteoarthritis

Online
segmentation

method for
knee OA

rehabilitation
monitoring that

can provide
real-time

feedback to
patients and

physical
therapists

[74] sEMG
(non-invasive)

Laryngectomee
volunteer

Articulatory
muscles on
hemiface

Vector of all 0
values,

except for 1 in
elements where

the target
sEMG feature is

represented

250 Hz

Specific facial
expres-

sions/palpating
face

Absence of
larynx

Method used
for applying the

machine
learning

algorithm to
electromyo-

graphic signals
of joint muscles

to identify
silent speech in

patients
undergoing a

total
laryngectomy

[75]

Accelerometer/
gyroscope/

magnetometer
(non-invasive)

4 healthy
subjects

and 4 stroke
patients

Wrist/arm

Standard
deviation/

RMS/
information
entropy, etc.

50 Hz

Extension and
flexion of the

fore-
arm/rotation of

the forearm
about the

elbow/
rotation of the

wrist about
long axis of

forearm

Stroke

Method using
data collected

from a
wristband, a

wireless
three-axis

accelerometer,
and a three-axis
rate gyroscope
combined with
partial k-means

clustering to
identify basic
movements of
the upper body
in everyday life

[76] IMU
(non-invasive)

12 healthy
subjects with no
reported knee

pain

Right knee

MDF/power of
the spectrum/

peak fre-
quency/maximum
spectral ampli-
tude/output
range of the
signal in the
time domain

122 Hz

Walk/run both
indoors and
outdoors/

travel up and
down the stairs

Knee
osteoarthritis

Sensor system
capable of

monitoring
knee motion

and classifying
aspects of daily
living activities

to aid in the
rehabilitation of

patients with
knee OA

Abbreviations used in table: MMG (mechanomyography), IMU (inertial measurement unit), EMG (electromyo-
graphy), sEMG (surface electromyography), IPMC (ion-exchange polymer metal composite), IMMU (inertial
and magnetic measurement unit), RMS (root mean square), SMA (signal magnitude area), SV (signal vector
magnitude), MI (movement intensity), SL (stride length), GD (gait cycle duration), PSP (percentage swing phase),
MH (max ankle height), RL (range of lateral displacement), RSZ (range of shank Z-axis rotation), RSY (range of
shank Y-axis rotation), RSX (range of shank X-axis rotation), MPV (maximum progressive ankle), MVV (maximum
ankle vertical velocity), MSV (maximum shank Z-axis angular), MHD (ankle displacement at MH), DFT (discrete
Fourier transform), AMP (amplitude of sensor data), MEAN (mean value of sensor data), RMS (root mean square
value of sensor data), JERK (root mean square value of the derivative of sensor data), ApEn (approximate entropy
of sensor data), MAV (mean absolute value), RMS (root mean square), WL (waveform length), VAR (variance).
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3.2. Wearable Sensor Type

Figure 4 summarizes the types of sensors used in the selected 32 papers. Muscle,
IPMC, piezoresistive sensors, etc., have less applications and appear only once in all the
articles. The top three applications were IMU, accelerometer, and EMG and gyroscope.
Among them, IMU was the most widely used and appeared in 11 documents, accounting
for more than 34%. An IMU is an inertial sensor composed of an accelerometer, gyroscope,
and magnetometer. It can collect different types of data, such as acceleration and angular
velocity values during motion to obtain more accurate motion measurement values. The
researchers then evaluated and analyzed the motion processes based on the data [77].
An accelerometer presented the second highest number of applications and appeared in
10 studies. The accelerometer can detect the linear acceleration of the carrier and the
direction of the acceleration, and it can be worn on the wrist to detect the activity of the
arm. In the same way, when worn on the leg, it can detect the condition of the leg during
walking or running movements, and the obtained data can reflect the use of the limb when
playing sports [78]. The third most used sensor was the EMG and gyroscope, appearing
in seven studies. EMG can be used to monitor and record myoelectric signals generated
by skeletal muscle activity [79]. Gyroscopes can monitor angular velocity changes that
occur during motion for motion posture analysis [80]. A force sensor, magnetometer, and
pressure sensor are less frequently cited in the literature and were only mentioned in three
papers. The flex sensor only appeared in two papers.
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3.3. Disease Types

Among the 32 selected papers we examined, a total of 24 diseases were addressed. As
shown in Figure 5, the highest proportion is stroke, and 10 articles address this, accounting
for more than 25%. This was followed by Parkinson’s disease, there are three articles that
addressed rehabilitation treatment for this disease. Two articles were related to spinal cord
injury, musculoskeletal disorder, multiple sclerosis, and knee osteoarthritis, respectively.
The remaining 18 diseases, including chronic ankle instability, cerebral palsy, and knee
disorders, were addressed by fewer studies, all of which only had one article published on
the subject.
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3.4. Sensor Location

It can be observed in Table 2 that, among the locations where the sensors are worn,
the wrists, arms, and legs are the body parts that are used the most frequently. It can
be observed in Figure 6 that wearable sensors are mostly worn on the wrist, with seven
articles mentioning this in the research. In second place is the arm, which is mentioned in
six articles. Moreover, the hand is also one of the common placement areas for wearable
sensors, and five articles were published on this. Then, four articles address sensors located
on the shoulder, shank, and foot of the patient, respectively. Three articles mention the
placement of the sensors on the elbow, thigh, and lower leg, and two articles concern the
knee, back, and head. Only one article mentions the throat, chest, sacrum, trunk, neck,
and left side of the waist. It can be observed from the results that wearable sensors are
more commonly placed on the wrists, hands, legs, and shoulders; therefore, they are less
frequently placed on the throat, chest, sacrum, trunk, neck, and waist. IMUs are most
commonly used for monitoring the motion and acquiring the data of the wrist, leg, and
arm so that motion in these areas can be quantified [81].
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3.5. Rehabilitation Exercise

In the process of disease rehabilitation training, different training actions are adopted
to achieve the effect of assisting the recovery of different diseases in patients. Rehabilitation
training actions are determined by the type of disease and the site requiring rehabilitation.
The analysis of the training movements in the rehabilitation process collected from the
selected papers helps us to understand the research hotspots of disease rehabilitation.
Among them, 19 articles addressed upper-limb movement, accounting for approximately
60% of the total; 13 articles addressed lower-limb movement, accounting for approximately
40%. The studies conducted on upper-limb movement mainly addressed the movements of
hands (fingers, wrists, and palms), arms, shoulders, and other parts; the studies conducted
on lower-limb movement primarily concerned the movements of the thighs, calves, and feet.

Taking strokes as an example, different parts of the brain can cause different degrees of
limb dysfunction, such as hemiplegia, impaired mobility, and a loss of hand function [82].
For information on rehabilitation training following a stroke, refer to Figure 7. Out of all
the papers addressing stroke rehabilitation, hand and arm movements accounted for the
33 percent, which was the highest result, followed by shoulder movements at 20 percent
and leg movements at 13 percent. It can be observed that the research performed on stroke
rehabilitation, based on wearable sensors and machine learning technology, mainly focused
on upper-limb movement; therefore, less research exists on lower-limb movement.
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3.6. Feature Extraction

Feature engineering includes feature construction, extraction, and selection; the gener-
ation of features can be used as the input data for machine learning algorithms. Feature
extraction is the optimization of a subset of features used to extract new features from
the original features as the input [81]. The features are further divided into time-domain
and frequency-domain features. Time-domain features can include data, such as the mean
value, mean absolute deviation, root mean square, and peak value. The frequency-domain
feature can contain data, such as the frequency band and total power between energy and
entropy factors [47]. In this review, feature engineering was addressed and used in 23 of the
selected articles. For different types of diseases, because of the different wearable sensors
used and the different collected data types, the selection of features was also very different.
In an article written on studying the walking gait of patients, the mean and standard
deviation values of all the pressure data received by plantar pressure sensors were used as
features [51]. There are also gait lines, regional pressures, gait phases, accelerations, step
lengths, and joint angles that combine leg and plantar wearable sensor data as features [69].
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In the remaining nine articles that did not mention or use feature engineering, the applied
machine learning methods were neural network algorithms such as ANN, CNN, and NN.
They did not require additional feature engineering. CNNs can self-learn and efficiently
learn representative features obtained from large amounts of data by applying convolution
operations to raw input data [71].

3.7. Machine Learning Methods

The machine learning algorithm is an application of artificial intelligence. It is based
on data-trained algorithms that can automatically learn to continuously improve, make
predictions, or act on data without being explicitly programmed [25,41]. Machine learning
is divided into supervised learning and unsupervised learning behaviors. Supervised
machine learning is a process of using samples of known categories to adjust the parameters
of the classifier to achieve target performance. Unsupervised machine learning mainly
involves discovering methods to solve various problems concerning pattern recognition
from unknowns [83]. The field of application of machine learning is very broad. In the
field of medical rehabilitation, the machine learning algorithm can predict the possibility
of health outcomes by analyzing data and assist medical staff to take effective preventive
measures [84].

Table 3 summarizes the relevant information about machine learning in the selected
32 papers, including the ML algorithm, accuracy, description, and limitation.

Table 3. Machine learning algorithms in the selected papers.

References ML Algorithm Accuracy Description Limitation

[46] KNN/RF/BC/SVM
84.95% (KNN)

88.12% (RF)
85.05% (BC)

97.79% (SVM)

The five-fold cross-validation
method was used to divide the
feature data and action labels
into five groups, four groups
were used to train, and the

remaining group was used to
validate the accuracy.

It can recognize
upper-limb movements. It
cannot identify lower-limb

movements.

[47] SVM/RF/NB/DTW 87.4% to 97.6%

Classification accuracy was
assessed using multiple
assessments, including

10-fold-stratified
cross-validation and 50%
cross-validation (50% for
training, 50% for testing).

Lack of evaluation of a
high number of

individuals with varying
degrees of spinal cord

injuries.

[48] KNN/AB/NN/RF

85.1% (KNN(K = 1))
83.0% (AB)
81.9% (NN)

73.6% (KNN(K = 3))
72.4% (RF)

A voting classification model
was established by combining

three basic classifiers, and a
soft voting algorithm was

used to select the final UPDRS
score.

A larger dataset needs to
be established to reduce
errors and improve the
accuracy of the model.

[49] KNN/SVM/LDA
97.58 ± 3% (SVM)

95.68% (KNN)
92.38% (LDA)

The nine extracted features
were supplied to the LDA,

KNN, and SVM. A five-fold
cross-validation method

divided the feature data and
action labels into five equal
groups. Four groups were

used to train the classifiers and
the other group was used to

verify the accuracy of the
classifiers.

It Is necessary to conduct
actual clinical trials on

patients to further verify
the universality of

detection equipment and
prediction methods in

identifying the abnormal
movement patterns of

patients.

[50] ELM -

Five characteristics were
extracted for each exercise.
Each exercise had 240 data

samples, of which 200 samples
served as the training set and

the remaining 40 samples
served as the test set.

The ceiling effect makes it
difficult for doctors to
accurately assess the

patient’s motor functions.
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Table 3. Cont.

References ML Algorithm Accuracy Description Limitation

[51] SVM/RF/GBC/NN
97.9% (SVM)
97.9% (RF)

97.2% (GBC)
98.6% (NN)

The input features were the
means and standard

deviations of the pressure data
of the sensor, and then the

features were transferred to
the multi-class support vector
machine (SVM) with the radial

basis function (RBF) core as
the classifier.

Only simple-activity
testing was conducted,

lacking complex-activity
detection.

[42] KNN/SVM/DT
99.65% (SVM)
96.27% (KNN)
81.73% (DT)

The optimal feature subset
was selected from the original
features and each feature was

tested independently to
evaluate the combination of
different features using the
10 × 10 cross-validation.

Similar actions are easily
mistaken.

[52] RFR -

Each model trains 90% of the
data and tests the remaining

10% of the data. The
hyperparameters of the

multivariate machine learning
regression were optimized

using grid search and
multivariate Bayesian
optimization methods.

It is not possible to fully
capture the peaks and

troughs of all knee joint
flexions or the magnitude

of internal/external
rotational degrees of

freedom.

[53] DT/SVM/KNN/RF
90.9% (DT)

95.7% (KNN)
97.2% (SVM)

96.4% (RF)

Training used a subset of
high-level features; two

different validation methods
were used to evaluate the
prediction performance.
Ten-fold cross-validation

distributed all labeled data
segments randomly and

evenly across ten sections. The
data contained in the nine
folds were trained and the

remaining data were tested.

Some actions are
misclassified as junk
activities, and similar

activities are easily
confused.

[54] DT/RF/SVM/LDA/MLP

76.6% (DT)
91.8% (RF)

71.8% (SVM)
80.6% (LDA)
82.6% (MLP)

The performance of the
classifier was tested by

leave-one cross-validation.
Each classifier was tested

under four different
conditions to determine an

optimal classifier.

Due to the limited sample
size, it is not guaranteed to

perform well on larger
datasets.

[55] SVM 95.0%

The training data set with the
kernel function was used to

train the SVM model, and the
test data set was input into the

model to check the accuracy.
The model was optimized by
punishing parameter C and
gamma parameter g, which
could test the probability of

misclassifications.

When the cough is not
strong enough, it is

impossible to measure the
amplitude in the signal,

which can lead to an
incorrect judgment.

[56] SVM/ANN 81.20% (SVM)
97.06% (ANN)

Purposeful events were
randomly selected to evaluate

the generalization ability of
the machine learning model,
and then the classifier was

trained using all the
parameters. The ten-fold

cross-validation method was
used to train and test the data.

There is a lack of data on
other fingers and an age

mismatch among
participants in this study.
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Table 3. Cont.

References ML Algorithm Accuracy Description Limitation

[57] SVM/NBC/MLR
73.6% (SVM)
73.6% (NBC)
66.0% (MLR)

Recursive feature elimination
was performed on each model

to study the relationship
between the number of

features and the accuracy, and
to find the optimal feature

selection.

The evaluation and data
collection are not

synchronized, which may
lead to errors. The dataset

is small and unevenly
distributed, making it

prone to overfitting and
resulting in errors. The

selection of gait features is
not comprehensive.

[58] LR/SVM/AB/RF/DT

SKE:86.05% (LR)
96.70% (SVM)

94.13% (AB)
93.11% (RF)
91.75% (DT)

Each model was evaluated
through a five-step

cross-validation process. To
avoid overfitting, the folds
were generated by dividing

the date set by the patient. In
the classification process, the

data set contained only
duplicates that were correctly

segmented.

Partial actions obtained
the less satisfying results

in the
laboratory dataset.

[59] SVM -

The set of training vectors was
created based on EMG signal

data collected from two
different patients, and then an

SVM was trained, and the
resulting structure could be

stored by significant settings.

The results cannot
represent all individual

diseases.

[60] SVM/DT/RF/KNN/MLP/GP

85.8% (SVM)
74.4% (DT)
82.8% (RF)

92.9% (KNN)
85.8% (MLP)
86.8% (GP)

The data were randomly
divided into two parts,

training and testing, with a
ratio of four to one. The data

were normalized to between 0
and 1 using min–max scaling.
Five cross-validations were

used for each classifier’s
training dataset.

More datasets are needed
to achieve a better

classification performance.

[61] SVM/KNN/NB/ECOC/
DA/DT/ensemble

88.42% (SVM)
80.09% (KNN)
73.04% (NB)

84.34% (ECOC)
81.73% (DA)
82.60% (DT)

85.65% (Ensemble)

The ratio of training to testing
was 4:1, and the test set

accuracy was displayed as the
average accuracy of 10 trials.
In order to achieve the best

result, the linear kernel
function was used.

The placement position of
the armband has a

significant impact on
signal recognition.

[62] SVM/RF/XGBoost/CNN/GRU

65.4% (SVM)
57% (RF)

47.7% (XGBoost)
83.6% (CNN)
79% (GRU)

The classifier was trained and
tested using TD and FD
features. The integrated

approach was built with the
four models with the best
training performance to

evaluate methods that could
improve the performance of

individual models.

Similar movements with
both hands can easily lead

to confusion.

[63] CNN 92.63%

The leave-one session-out
(LOSO) policy was adopted.
The data obtained from one
session were used as the test

dataset, and the data collected
from the remaining three
sessions were used as the

training dataset. This
procedure was repeated four
times until the data for each

session were considered as one
test dataset.

-
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Table 3. Cont.

References ML Algorithm Accuracy Description Limitation

[64] MP-CNN 90.63%

Depending on the number of
layers in the middle path, the
correlation of the output of the

last pooling layer was
captured, and the accuracy

was highest when D-CNN and
S-CNN were combined.

More action data needs to
be collected.

[65] CNN 85.6~100%

Cross-validation was
performed on different input

and sensor data, and the
model with the most accurate

data was determined.

There is some degree of
data loss.

[66] ANN 94%

Flatten layer was used to
convert the image of the

plantar region into a
one-dimensional value

sequence. The sequence was
then used as input data for the
ANN model. Hidden layers to

propagate training
mechanisms.

The data set used is not
comprehensive and the
plantar features are not

detailed.

[67] CNN 97.49%

A feature fusion model
containing nuclei of different
sizes was used. After signal

normalization and conversion
into a fixed format, the inertial
data were divided into three

partitions, which were
composed of three convolution
layers and one flattened layer,

respectively.

When the data
characteristics of two

actions are similar,
classification errors are

prone to occur.

[68] ANN 91%

For ANN training and testing,
a 3:1 ratio was used. The

training and verification errors
were reduced in a certain

number of iterations.

No wrist motion and no
force control.

[69] RF/KNN/SVM/NB
80.07% (RF)

94.20% (KNN)
75.35% (SVM)
82.43% (NB)

A cross-validation approach
was used to evaluate the

predictive performance of the
classification model. The

leave-one-subject-out strategy
was used to divide the data
into training and test sets.

-

[70] RF/CNN Home-Home: 77.1% (RF)
76.6% (CNN)

A validation dataset was
generated by separating 20%
of the continuous portion of
the training dataset obtained

from each participant in a
random location. The results
of the validation dataset were

used to tune the classifier
hyperparameters.

Datasets are small and
unrepresentative.

[71] DCNN 98%

Training, validation, and test
data were randomly divided

into 70%, 15%, and 15%,
respectively. The adaptive

moment estimation method
was used for optimization.
The stop-loss criterion was

applied to the training
progress by evaluating the

validation loss.

Lack of more detailed
analysis of DCNN input
data and gait kinematics

data during rehabilitation
process.
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Table 3. Cont.

References ML Algorithm Accuracy Description Limitation

[72] NN -

The Bayesian regularization
algorithm was used to train

the neural network to
minimize the internal

parameters and model errors
and avoid overfitting.

The data set is small and
the system is not a fully

closed loop.

[73] SVM 90.6% (layer 1)
92.7% (layer 2)

10x cross-validation was used
to validate the data. A total of

10 rounds were performed,
with 1 subset of the 10 subjects
selected for each round as the
training data and the other 9

subsets as the test data.

Patient movements cannot
be fully simulated, and the

data are not accurate
enough.

[74] XGBoost 86.4%

The feature data consisted of
vectors representing all zeros

in the elements that
characterized the target

surface EMG signal.

Need to improve silent
speech recognition

algorithm to realize the
translation of silent speech

into personalized
synthetic speech.

[75] K-means
HS: 88% (DOA)

83% (DOG)
SP: 70% (DOA)

66% (DOG)

The clustering was formed
using a sorted list of features;
therefore, a combination of

2–30 features was selected in
turn in each iteration, and

10-fold cross-validations were
performed on the selected
feature vector ten times.

The effects of sensor
fusion and other

attachment positions need
to be observed in larger

sample populations.

[76] RF 93%

The random forest algorithm
was a collection of 10

classification decision trees,
with 90% of the data randomly
selected for building the tree

and 10% for testing the
algorithm.

Test data should include
other activities of daily

living to allow for a more
comprehensive

classification of activities
of daily living.

Abbreviations used in the table: KNN (K-nearest neighbors), RF (random forest), BC (Bayesian classifier), SVM
(support vector machine), DTW (dynamic time warping), NB (naive Bayes), LDA (linear discriminant analysis),
ELM (extreme learning machine), GBC (gradient boosting classifier), DT (decision tree), RFR (random forest
regressors), MLP (multilayer perceptron), ANN (artificial neural network), MLR (multiple linear regression),
LR (logistic regression), AB (adaptive boosting), SKE (seated knee extension), GP (gaussian process), ECOCs
(error correcting output codes), DA (discriminant analysis), MP-CNN (multipath convolutional neural network),
CNN (convolutional neural network), DCNN (deep convolutional neural network), HS (healthy subject), DOA
(data of accelerometer), DOG (data of gyroscope), SP (stroke patients), XGBoost (extreme gradient boosting),
UPDRS (unified Parkinson’s disease rating scale), D-CNN (dynamic convolutional neural network), S-CNN (state
transition probability convolutional neural network). The bold font in the table represents the machine learning
algorithm with the highest accuracy.

We summarized the machine learning algorithms that could be obtained from each
article from the selected 32 documents and created statistics on all types of algorithms;
the results are presented in Figure 8. The most widely used algorithm was SVM, which
was used in 17 articles, accounting for more than 53% of the 32 articles. Followed by RF,
12 articles used this method. Then there was KNN, which was used in eight articles. Seven
articles mentioned using the CNN method. Six articles mentioned using the DT method.
Four articles mentioned using the NB method. ANN and NN, respectively were mentioned
in three articles using this method. MLP, LDA, AB, and XGBoost were each mentioned
in two articles using this method. The remaining 14 machine learning algorithms were
only used in one document. From the abovementioned results, it can be concluded that
SVM is favored by researchers. SVM has the characteristics of relatively easy training data
and high accuracy; however, its shortcomings are also very obvious, such as slow learning
speed and long training time [85].
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4. Discussion

This systematic review included 32 papers based on wearable sensors and machine
learning algorithms used to assess the degree of recovery of patients and assist rehabilitation
training. On the one hand, this review summarized the relevant research results and
determined that wearable sensors and machine learning algorithms can be better applied
in the course of disease rehabilitation, helping doctors to keep abreast of patients’ recovery
status and relieve social medical pressure. On the other hand, for the patients themselves,
the application of wearable sensors facilitated their recovery at home, which could greatly
reduce the factor of psychological burden. Therefore, it is necessary to summarize the
application results of wearable sensors and machine learning algorithms in the field of
disease rehabilitation, explore the limitations of the research, and propose the possibility of
future studies.

We searched and screened papers for our analysis using the IEEE and the Web of
Science core databases. The following section discusses (1) the selection of wearable sensor
types in rehabilitation training; (2) the application of machine learning algorithms; (3) the
analysis of the rehabilitation training process; and (4) the suggestions for future research.

4.1. Wearable Sensor Type Selection

This review determined that wearable sensors are more frequently used for upper-limb
than lower-limb rehabilitation purposes. During the rehabilitation process of stroke patients,
the recovery speed of the upper limbs was slower than that of the lower limbs. During the
recovery process of the upper limbs, certain complications, such as shoulder pain, shoulder–
hand syndrome, and upper-limb flexor spasms often occurred. Therefore, additional studies
in the field are focusing on the upper-limb recovery of stroke patients [86]. He et al. [46] used
a nine-axis sensor, including a three-axis accelerometer and a high-sensitivity three-axis
gyroscope, in order to avoid the “drift phenomenon” caused by the lack of a magnetometer
in the upper-limb rehabilitation evaluation of stroke patients. In this way, more accurate
data can be obtained. If there is a long-term compensatory dependence on certain areas,
such as the limbs and trunk, it affects the patient’s rehabilitation outcomes [87]. Xu et al. [49]
used three different types of sensors, namely force sensor, angular displacement sensor, and
sEMG, to realize the automatic detection of compensatory motion during the rehabilitation
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process of stroke patients. This method not only predicts the movement of the patient’s
limbs, but also restricts the trunk from making relatively large compensatory movements,
improving the safety and effectiveness of the patient during rehabilitation training. In a
study performed on hand rehabilitation training for stroke patients, Yu et al. [50] used two
acceleration sensors and seven bending sensors to monitor the motor functions of the arm,
wrist, and fingers. This study comprehensively covered the upper limbs and provided
a good understanding of the overall recovery of the upper limbs. For the rehabilitation
of stroke patients’ fine hand movements, Chen et al. [42] used gloves integrating both
force and flex sensors. Compared with gloves using biomedical signals, the gloves not
only improved the signal quality, but also did not need to pay attention to the precision of
electrode placement, thereby promoting the recovery of fine motor movements in stroke
patients. Such hand rehabilitation systems can facilitate the development of IoT healthcare
in the field of home rehabilitation. Kim et al. [54] considered patients in remote areas;
therefore, they proposed in their study a wearable device equipped with a minimum
number of IMUs to collect the characteristics of spastic movements, effectively improving
the utilization rate of the device. Shradha et al. [61] improved the wearable device according
to the use conditions of EMG, installed an IMU and EMG in the armband, and did not
require the wearer to shave the hair in the area where the sensor is worn; therefore, it
was more convenient to use. The device can also be designed in the form of a wristband.
Biswas et al. [75] tracked the arm movements of stroke patients around the clock with a
wristband inertial sensor to comprehensively assess the progress of rehabilitation. The
research conducted on the rehabilitation of the lower limbs of stroke patients is often
related to gait research, and gait research requires the cooperation of multiple sensors.
Chen et al. [69] combined the plantar pressure sensor and IMU to obtain stable walking
rehabilitation data through the combination of multi-directional data.

Parkinson’s disease is a common neurodegenerative disorder characterized by tremors,
stiffness, and slowness of movement [88]. For the assessment of upper extremity symptoms
in Parkinson’s disease patients, Huo et al. [48] designed the Parkinson’s diagnostic device
(PDD) system, which can simultaneously assess three main symptoms. The PDD system
is mainly composed of IMU and MMG sensors. Combining MMG signals can effectively
improve the accuracy of symptom classification. For the gait research of Parkinson’s
disease patients, Guo et al. [51] used plantar pressure sensors to efficiently collect patient’s
plantar pressure data, and the selection of low-power sensors can effectively extend the
daily monitoring time. From the perspective of users, Han et al. [57] selected a lighter
IMU, which could reduce the patient’s exercise burden and ensure the completion of
rehabilitation training.

It has become a trend in the research to apply wearable sensors for neck disease detec-
tion and rehabilitation purposes. For oropharyngeal dysphagia, Lee et al. [55] designed
a self-powered IPMC sensor to detect throat muscle movements, which could more accu-
rately identify actions such as coughing and swallowing. An [63] et al. designed a wearable
neck device consisting of four silicone rubber triboelectric sensors and a silicone rubber
collar. This device was highly flexibility, saved energy, and was cost-effective; therefore, it
could be better used in the rehabilitation of neck diseases. Rameau [74] placed sEMGs on
five joint muscles on one side of the face of laryngectomy volunteers who did not undergo
radiotherapy. This method can realize silent speech recognition through surface muscle
signals and help patients who have undergone laryngectomy and patients with impaired
speech functions to perform speech rehabilitation techniques.

Most of the problems targeted by lower limb rehabilitation focus on lower limb
dysfunction caused by spinal cord injuries, and diseases of the knee, hip, and other joints.
In their study, Amir et al. [47] installed accelerometers on both the patient and assistive
devices (crutches, wheelchairs, etc.). The information collected by the sensors placed on the
assistive device presented a unique perspective, which combined the different perspectives
of the patient and assistive device for the motion analysis. In order to relieve the pressure
of patients with knee joint disease during the rehabilitation process, Antonio et al. [58]
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placed an IMU on the patient’s tibia to make the patient feel relaxed, and this was a labor-
saving step employed during the rehabilitation training process. Moreover, Chen et al. [73]
achieved the same effect by using a miniature inertial sensor with a lighter weight. Javier
et al. [71] placed IMUs on the pelvis, thigh, calf, and foot of patients to collect different
signals in the lower-limb gait study of hip joint disease rehabilitation training, so as to
generate a comprehensive dataset for their analysis.

According to the statistical results of this review, 11 of the 32 papers used IMUs, which
was the most frequently used sensor. IMU sensors not only have good wearability features
and can be worn on any part of the wrist, arm, shoulder, and leg, but also collect kinematic
parameters, such as body position, acceleration, and speed of motion with higher-accuracy
results [89]. Therefore, they are favored by many researchers.

4.2. Application Analysis of Machine Learning Algorithms

In Section 3, it was observed that the data analysis of the machine learning algorithm
in the process of disease rehabilitation can help predict the disease and help doctors and
patients conduct more scientific and effective rehabilitation training techniques. The use of
different machine learning algorithms enabled the comparison of analysis results based on
the data set, the features extracted as input variables, and the complexity of the different
models employed in the study.

A total of 17 papers used SVM to perform the disease rehabilitation evaluation, rehabil-
itation exercise classification, rehabilitation action recognition, and disease prediction steps.
As a result of their high-accuracy characteristics, SVMs have a wide range of applications,
and the number of SVMs used in the past decade in the field has been high compared to
other ML algorithms [90]. He et al. [46] observed that the accuracy of SVMs was higher
than that of k-nearest neighbor, RF, and Bayesian classifier algorithms for the upper-limb
rehabilitation evaluation of stroke patients. It can be observed that the SVM is better than
other machine learning classifiers for the classification of rehabilitation sports data. Due
to the limited muscle strength available during a rehabilitation exercise, compensatory
exercises inevitably occurred. Xu et al. [49] aimed at the detection of compensatory motion
in rehabilitation exercises, and observed that the automatic compensation detection of SVM
performed better than other algorithms in a normal rehabilitation exercise state. Chen
et al. [34] combined features and used high-quality classification signals in their study, and
observed that the average accuracy of the SVM algorithm was the highest. It is not difficult
to observe that features such as input signals have a greater impact on the accuracy of
machine learning algorithms. Lee et al. [55] proposed an optimized SVM algorithm based
on SVM, which can produce high-accuracy results even when the sample size is small. This
allows the SVM algorithm to cope with more diverse situations. Chen et al. [73] used a
multi-layer support vector machine model capable of online segmentation, first through
learning to extract the features that matched the target motion, and then accurately segment
and classify the motion data online.

Deep learning methods also belong to machine learning methods, and their appli-
cations in the field of disease rehabilitation are gradually increasing in the field. CNN is
an important neural network in the field of deep learning, which can be applied to many
different scenarios and has an excellent learning ability [91]. Chae et al. [65] selected the
CNN algorithm for home rehabilitation exercise detection. CNN has a high accuracy rate
for human activity recognition, and does not require special feature extraction methods, and
its classification is more streamlined than other algorithm steps. Zhu and Yen et al. [64,67]
combined multiple CNN models and compared them with a single model and observed
that the accuracy of the combined model was higher. It can be concluded that combining
CNN models is a method that can effectively improve overall accuracy. An et al. [63]
trained the model by adding data recorded under different conditions, which can also
effectively improve the accuracy of the model. Guo et al. [51] applied the collected data
features to a variety of machine learning algorithms, and the accuracy rates were generally
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similar; however, the accuracy of the neural network model was the highest, indicating
that the amount of information collected by sensors can affect the accuracy of the model.

In addition to SVM and CNN algorithms, there are a variety of machine learning
algorithms applied in the field of disease rehabilitation. Amir et al. [47] studied the two dif-
ferent perspectives of the patient and the mobility aid; therefore, algorithms, such as SVM,
Bayesian, and DT, were used to detect physical activity results. We combined the Bayesian
algorithm with joint classification algorithms, such as DTW, to detect activity patterns
while using assistive devices. Rameau et al. [74] applied training data samples to different
machine learning models, and then used the XGBoost model with the highest accuracy
rate together with validation samples to create a predictive model for language recognition
purposes. Although the abovementioned machine learning algorithms are rarely used in
the research, their advantages are obvious under certain conditions. Therefore, no fixed
machine learning algorithm is always better than other algorithms.

4.3. Rehabilitation

This review aimed to study the application of wearable sensors and machine learning
algorithms in the field of disease rehabilitation. It was necessary to discuss the training
required for various disease rehabilitation techniques.

According to the research, it can be observed that wearable sensors are most widely
used in the rehabilitation of stroke diseases. The purpose of stroke rehabilitation training is
to improve the patient’s ability to control their muscles, enhance the coordination of muscle
groups, and improve the coordination ability for daily activities and body balance [92].
The most common symptoms of stroke are a limited movement of different parts of the
body and gait disturbance. Patients require long-term intensive rehabilitation training to
help them recover effectively [93]. Different scholars have conducted targeted research on
different parts of the body of stroke patients with limited movement. For example, for the
upper-limb rehabilitation of stroke patients, He et al. [46] used three movements: hand
to lumbar spine, shoulder flexion, and forearm pronation. These three actions effectively
covered the locations of all wearable sensors, which could help them accurately evaluate the
rehabilitation of the upper limbs. Chen et al. [42] conducted research on the fine-grained
training of hand rehabilitation for stroke patients. The purpose of the training was to
improve the coordination functions of single and multiple fingers. During the rehabilitation
training process, Kim et al. [54] arranged rehabilitation trainers to guide the patients to
maintain correct movements and postures and improve the effect of rehabilitation training.
Burns et al. [72] used a full-hand exoskeleton worn on the patient’s hand to assist the patient
in grasping small items in daily life. Lower-extremity training after a stroke affects the
future mobility of patients and is also of great importance. Chen et al. [69] provided visual
feedback to patients during their rehabilitation training based on the gait characteristics
collected by sensors, visualized lower-limb movements, stimulated patients’ awareness
of gait correction autonomously, and effectively improved the quality of rehabilitation
actions. In addition, Xu et al. [49] combined torso restraints with appropriate sensors
for compensatory movements during the rehabilitation of stroke patients. The device
effectively suppresses the compensatory movement that may occur during the rehabilitation
training of the patient, and at the same time detects the movement trend of the patient
during the training process to evaluate the accuracy of their rehabilitation actions.

Patients with spinal cord injuries must experience a long-term rehabilitation phase,
which has a considerable impact on body motor functions [94]. Amir et al. [47] used various
assistive mobility devices to improve the mobility of patients with spinal cord injuries
while collecting information from the assistive devices and wearable sensors placed on the
patient. The method provides ideas for helping researchers and healthcare professionals
analyze the complex movements of patients during their rehabilitation. Guo et al. [51]
aimed at the rehabilitation of Alzheimer’s, Parkinson’s, and other diseases, because the
main rehabilitation training for such diseases lies in daily walking activity; therefore, a
smart insole was used to monitor patients’ everyday walking activity. The design of such
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insoles has good development prospects for the rehabilitation of patients at home and in
the community. Bavan et al. [53] applied five conventional rehabilitation movements for
shoulder rehabilitation: shoulder abduction, shoulder flexion, wall sliding, wall pressing,
and shoulder rotation. Among them, the four movements of shoulder abduction, shoulder
flexion, wall sliding, and wall pressing were performed in a sitting position, the purpose
of which was to reduce the compensatory movements of the other muscles during the
rehabilitation process. Soangra et al. [60] focused on children’s idiopathic toe walking
(ITW), reducing the size of the sensor and wearing it directly on the upper body. Not
only did this not limit the walking rehabilitation movement, but it also helped parents
monitor the child’s walking status in real time and presented abnormal gait occurrence.
Javier et al. [71] used gait training as the basis for hip rehabilitation training, and strictly
required patients to perform rehabilitation training once a day. For the rehabilitation of
knee osteoarthritis, Enrica et al. [76] arranged rehabilitation training for different occasions,
simulating both indoor and outdoor situations, to ensure the authenticity of the patient’s
rehabilitation data.

4.4. Propositions for Future Studies

Based on the analysis of the selected articles, this review summarized some possible
future development directions and some limitations of previous studies.

4.4.1. Participants

In terms of the selection of experimental subjects, the experimental participants pre-
sented in some papers [48,50,53,54,56–58,60,65,69–71,73–75] selected disease patients or a
combination of disease patients and healthy participants for the experimental research.
Another approach [42,46,47,49,51,55,59,62,66–68,72,76] was to recruit disease-simulated
subjects to imitate patients for exercise experiments. There was a certain gap between the
information collected by simulated subjects and the real data of patients, and it was difficult
to guarantee the authenticity and validity of the research results.

4.4.2. Multiple Sensors and Special Patients

From the types of wearable sensors summarized in Table 2, it can be observed that the
simultaneous use of multiple sensors has been a research trend in recent years [42,46,48–
50,53,54,56–58,60,61,65,67–71,73,75,76]. However, sensors worn in different positions on the
body pose a considerable challenge to data integration due to their different sampling
frequencies. A variety of sensors can be combined to monitor the different movement
trajectories of patients and comprehensively evaluate functional rehabilitation and daily-life
activities At present, gait research systems based on pressure sensors are widely used in the
field of rehabilitation training; however, insufficient attention has been paid to special foot-
type rehabilitation research [4,95,96]. Therefore, in future research, special patients with
diseases can be the key research objects. For example, in the gait research of Parkinson’s
disease patients, a new rehabilitation training system can be established for patients with
flat feet.

4.4.3. Robot-Assisted Rehabilitation System

A robot-assisted rehabilitation system is an emerging intelligent rehabilitation training
system in the field. The main function of the robot is to help patients train by simulating
normal activities. It can also be worn on the patient to force them to perform various rehabil-
itation exercises, continuously stimulating their brains, improving the ability of their motor
organs, and achieving an early recovery [97]. Robot-assisted rehabilitation systems mostly
monitor hand extension, flexion, and wrist movements in the field of stroke rehabilitation,
and there are few studies on fine movements, such as finger coordination activities.



Sensors 2023, 23, 7667 25 of 30

4.4.4. Sensor Durability

In the study of joint rehabilitation training such as those on the knee joint, wearing the
sensor at the joint position affects the accuracy of motion detection during the movement
of the joint [98,99]. The durability of the sensor is an issue worthy of consideration in the
research [100]. The repeated bending of the flexible sensor leads to a decrease in durability
of and damage to sensor function. Therefore, how to improve the durability of wearable
sensors for long-term wear is also one of the focuses of the research in the future. In
response to such problems, researchers have proposed that stretchable and flexible sensors
can be placed in joints together to reduce the bending loss of flexible sensors installed in
the joints [72]. Therefore, how to solve the durability problem of wearable sensors in other
ways is also a focus of the research to be conducted in the future.

4.4.5. Virtual Reality

The combination of VR and disease rehabilitation training has become a development
trend in the field. From the perspective of interaction, increasingly more researchers have
proposed that future rehabilitation training can use virtual scenes to improve the interest
and autonomy of patients. At present, some studies in the literature combine VR and sen-
sors to assist patients in effective exercise rehabilitation techniques [101–103]. Combining
virtual reality gaming with a network of wearable sensors to monitor a patient’s recovery
is a promising form of technology. However, the existing research is not comprehensive
and more extensive and in-depth applications are necessary, and specific designs should be
created to be applied to rehabilitation training for different diseases.

4.4.6. Machine Learning Optimization and Deep Learning Methods

Machine learning, including deep learning, is developing very rapidly, and it involves
a wide range of applications [104,105]. For machine learning in the field of disease rehabili-
tation, if a smaller data set is selected, the coverage is reduced and cannot be extended to
more people; therefore, a greater amount of high-quality training data are needed [106].
Classification training cannot be generalized. For specific patients, a machine learning algo-
rithm trained separately should be used for classification purposes, because this can affect
the overall classification effect by adjusting a single specific feature space to maximize the
recognition performance [59]. Some studies report that deep learning methods outperform
classical machine learning algorithms. Model accuracy and generality can be improved by
obtaining larger sample sizes and applying deep learning techniques [107]. Future research
can focus on using novel machine learning techniques, such as CNNs, to bypass tedious
steps, such as feature extraction calculations.

5. Conclusions

This paper reviewed the research of wearable sensors and machine learning algo-
rithms in disease rehabilitation training. It can be observed that using machine learning
algorithms to process data obtained from wearable sensors is helpful for rehabilitation
training for different diseases. Based on the results obtained by this review, it is concluded
that IMUs are the most used sensors during rehabilitation. Most of the sensors used in
disease rehabilitation are non-invasive, and the research on sensors in the field of disease
rehabilitation should also pay more attention to other types of sensors. Machine learning
algorithms such as SVM have a good auxiliary effect on data analysis and prediction in
the process of disease recovery. In order to find the optimal solution, more algorithms
should be used in experiments. In the future, other approaches can be tested to compensate
for our deficiencies and complete a more comprehensive review of wearable sensors and
machine learning algorithms in the field of medical rehabilitation. In the future, with
the development of wearable sensor technology, characteristic data can be collected for
additional diseases, so as to facilitate the understanding of the recovery status of diseases.
At the same time, machine learning algorithms are transforming the field of healthcare.
Smarter machine learning algorithms are being developed to help healthcare professionals
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improve diagnostic accuracy, predict the progression of a patient’s disease, and make
personalized treatment recommendations. Combining the two methods increases the possi-
bility of remote disease diagnosis and home rehabilitation, which may change the shortage
of medical resources at present due to the aging population, to a certain extent. This review
may not have included some relevant papers as the data were only collected from the Web
of Science and IEEE Xplore. In addition, some recent high-quality papers may not have
received enough citations.
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