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ABSTRACT The human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) 
trimer mediates entry into host cells by binding receptors, CD4 and CCR5/CXCR4, and 
fusing the viral and cell membranes. In infected cells, cleavage of the gp160 Env 
precursor yields the mature Env trimer, with gp120 exterior and gp41 transmembrane 
Env subunits. Env cleavage stabilizes the State-1 conformation, which is the major 
target for broadly neutralizing antibodies, and decreases the spontaneous sampling of 
more open Env conformations that expose epitopes for poorly neutralizing antibodies. 
During HIV-1 entry into cells, CD4 binding drives the metastable Env from a pretrig­
gered (State-1) conformation into more “open,” lower-energy states. Here, we report 
that changes in two dissimilar elements of the HIV-1 Env trimer, namely particular 
gp120 glycans and the gp41 fusion peptide-proximal region (FPPR), can independently 
modulate the stability of State 1. Individual deletion of several gp120 glycans destabi­
lized State 1, whereas removal of a V1 glycan resulted in phenotypes indicative of 
a more stable pretriggered Env conformation. Likewise, some alterations of the gp41 
FPPR decreased the level of spontaneous shedding of gp120 from the Env trimer 
and stabilized the pretriggered State-1 Env conformation. State-1-stabilizing changes 
were additive and could suppress the phenotypes associated with State-1-destabilizing 
alterations in Env. Our results support a model in which multiple protein and carbohy­
drate elements of the HIV-1 Env trimer additively contribute to the stability of the 
pretriggered (State-1) conformation. The Env modifications identified in this study will 
assist efforts to characterize the structure and immunogenicity of the metastable State-1 
conformation.

IMPORTANCE The elicitation of antibodies that neutralize multiple strains of HIV-1 
is an elusive goal that has frustrated the development of an effective vaccine. The 
pretriggered shape of the HIV-1 envelope glycoprotein (Env) spike on the virus surface 
is the major target for such broadly neutralizing antibodies. The “closed” pretriggered 
Env shape resists the binding of most antibodies but is unstable and often assumes 
“open” shapes that elicit ineffective antibodies. We identified particular changes in both 
the protein and the sugar components of the Env trimer that stabilize the pretrig­
gered shape. Combinations of these changes were even more effective at stabilizing 
the pretriggered Env than the individual changes. Stabilizing changes in Env could 
counteract the effect of Env changes that destabilize the pretriggered shape. Locking 
Env in its pretriggered shape will assist efforts to understand the Env spike on the virus 
and to incorporate this shape into vaccines.
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D espite progress, an effective vaccine for human immunodeficiency virus (HIV-1) 
remains an unmet goal (1–5). A critical vaccine immunogen, the HIV-1 envelope 

glycoprotein (Env) trimer, mediates virus entry into cells and is the sole target for 
neutralizing antibodies (3–8). The HIV-1 Env trimer is a Class I viral fusion protein, 
composed of three gp120 and three gp41 subunits, which are non-covalently associated 
(6–8). In the infected cell, Env is synthesized in the rough endoplasmic reticulum, where 
signal peptide cleavage, trimerization, and high-mannose glycan addition occur (9–12). 
The resulting gp160 Env precursor traffics to the cell surface via two pathways (13). In the 
canonical secretory pathway, Env is transported through the Golgi compartment, where 
it is cleaved into gp120 and gp41 subunits and further decorated by complex N-linked 
glycans (9–13). This mature (cleaved) Env trimer is selectively incorporated into budding 
virions. In an alternate pathway, uncleaved gp160 bypasses the Golgi apparatus to reach 
the cell surface, but this immature Env is largely excluded from virions (13).

Based on single-molecule fluorescence resonance energy transfer (smFRET) studies, 
the flexible HIV-1 Env protomers in the virion trimer spontaneously sample at least 
three conformations (States 1–3) (14). During the process of virus entry, the pretriggered 
(State-1) Env sequentially engages the receptors, CD4 and CCR5/CXCR4 (6, 7, 15–17), 
triggering a cascade of conformational changes in the metastable, high-potential-energy 
Env trimer. Initially, CD4 binding transforms the State-1 Env to a default intermediate 
conformation (State 2) and then to the full CD4-bound State 3 (14). Upon binding 
the CCR5 or CXCR4 coreceptor, the State-3 prehairpin intermediate undergoes rearrange­
ments in gp41 (18–20). The hydrophobic fusion peptide at the N-terminus of gp41 is 
translocated close to and inserts into the target cell membrane. Further rearrangements 
of the gp41 ectodomain lead to the formation of an energetically favorable six-helix 
bundle (21–23). This process drives the fusion of the viral and target cell membranes and 
allows virus entry (24, 25).

HIV-1 is a persistent virus and has evolved multiple mechanisms by which Env 
avoids host antibodies: Env diversity among HIV-1 strains, extensive glycosylation, and 
conformational lability (26–30). The vast majority of antibodies elicited against Env 
during natural HIV-1 infection fail to neutralize primary viruses (31–33). These poorly 
neutralizing antibodies (pNAbs) are directed against non-functional Envs: uncleaved 
gp160, which is conformationally flexible; shed gp120 and the resulting gp41 “stumps”; 
and Env trimers that spontaneously sample more open State 2/3 conformations (31–
37). As pNAbs do not efficiently recognize the cleaved pretriggered (State-1) Env, they 
do not inhibit virus infection. After several years of HIV-1 infection, ~10% of infected 
individuals generate broadly neutralizing antibodies (bNAbs) (38–42). Most bNAbs show 
a preference for binding State 1, often by evolving distinctive features that allow them to 
bind glycans and/or access recessed, conserved protein epitopes on the trimer (3–5, 14, 
26–28, 43–46).

A successful HIV-1 vaccine likely needs to elicit bNAbs that recognize the pretrig­
gered (State-1) Env and therefore should include immunogens that closely mimic this 
conformation. Soluble stabilized (sgp140 SOSIP.664) Env trimers have been designed that 
retain known bNAb epitopes (47–50). Structures of these sgp140 SOSIP.664 Env trimers 
complexed with bNAbs have provided detailed information on the targeted epitopes 
(29, 30, 46, 51–56). Although many strategies to stabilize these soluble Env trimers have 
been employed, bNAbs have not been consistently elicited in animals or humans (30, 
57–66). Studies have suggested that differences in conformation and glycosylation exist 
between sgp140 SOSIP.664 Env trimers and the State-1 Env in membranes (47, 67–77), 
which could influence immunogen efficacy.

Efforts to design more accurate mimics of the functional State-1 Env trimer would 
benefit from detailed structural information. Stabilizing and enriching the pretriggered 
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(State-1) conformation of membrane Env trimers could assist efforts to characterize the 
structure of this metastable state and evaluate its immunogenicity. Env changes that 
increase the resistance of membrane HIV-1 Env trimers to denaturation or functional 
inactivation by exposure to heat or cold have been reported (78–90). In several cases, 
these increases in Env trimer stability were associated with decreases in triggerability 
by soluble CD4 (sCD4) or CD4-mimetic compounds (CD4mcs), phenotypes indicative of 
State-1 stabilization (82–93). Some of the Env changes that stabilize the pretriggered 
membrane Env trimer are located near the trimer axis of structurally well-character­
ized sgp140 SOSIP.664 Envs (85–88). However, stabilizing alterations are not always 
interchangeable between membrane Envs and sgp140 SOSIP.664 trimers, possibly due 
to differences in conformation or post-translational modifications between these Envs 
(47, 65, 67–77). Therefore, for the present, efforts to stabilize the pretriggered (State-1) 
conformation of the membrane Env must proceed empirically.

Here, we present evidence that alterations in either the carbohydrate or the protein 
components of the HIV-1 Env trimer can modulate the stability of the pretriggered 
(State-1) Env conformation. We identify changes in specific gp120 glycans (Fig. 1A) 
or amino acid residues in the gp41 FPPR (Fig. 1B) that increase or decrease the 
stability of the pretriggered state. In some cases, the State-1-stabilizing phenotypes 
are additive. These State-1-stabilizing changes in Env can also compensate for Env 
changes that destabilize the pretriggered conformation. Our results provide insights into 
the mechanisms by which the functional HIV-1 Env trimer maintains the pretriggered 
(State-1) conformation, and identify State-1-stabilizing Env changes potentially useful for 
structural and immunogenicity studies.

RESULTS

Effect of gp120 V1/V2 insertions on HIV-1 Env conformational state

The introduction of sequence tags into HIV-1 Envs has allowed smFRET labeling and 
monitoring of Env conformational states (14, 76, 95). During the course of our studies of 
Env conformation, we introduced the Q3 tag into HIV-1AD8 gp120 V1 and V2 regions that 
tolerate large insertions in natural HIV-1 variants (96) (Fig. 2A). Compared with the wild-
type (wt) HIV-1AD8 Env, the Q3(V1) and Q3(V2) Envs were processed and incorporated 
into virions efficiently (Fig. 2B). The Q3(V1) and Q3(V2) Envs supported virus infection 
only slightly less efficiently than the wt Env (Table 1).

TABLE 1 Phenotypes of HIV-1AD8 Env variants with V1/V2 insertions

Env Virion Enva Infectivityb Resistance/sensitivity compared to wt AD8 Envc

Cold BNM-III-170 19b 17b

wt AD8 +++ +++ ● ● ● ●

Q3(V1) +++ ++ RR R ● ●

Q3(V2) +++ ++ S S
Q4 +++ ++ RR R
Q6 +++ ++ RR R
Q3 + Q4 +++ ++ RR Slight R
S3 +++ +++ ● ● or slight S
A3 +++ RR
N3 + R
N4 +++ RR
C3 – ND
Q3(V1alt) +++ S S
aThe levels of Env on virus particles produced by transfection of 293T cells were estimated by pelleting and lysing the virus particles, followed by western blot analysis. +++, 
75%–125% wt level; ++, 25%–74% wt level; +, 5%–24% wt level; –, <5% wt level.
bThe infectivity of recombinant viruses pseudotyped by the indicated Env was measured on TZM-bl target cells. +++, 75%–125% wt infectivity; ++, 25%–74% wt infectivity; 
+, 5%–24% wt infectivity; –, <5% wt infectivity.
cThe sensitivity/resistance of recombinant viruses pseudotyped by the indicated Env to cold exposure (0°C), the CD4mc BNM-III-170, and the 19b and 17b pNAbs, relative to 
that of the wt HIV-1AD8, is reported. ●, wt level; R indicates resistance relative to the wt virus; S indicates sensitivity relative to the wt virus. An increase in the number of 
R or S symbols indicates a greater level of resistance or sensitivity, respectively, compared to the wild-type virus level. The values in the table that were not determined are 
designated ND or are left blank. The data shown are representative of results obtained in at least two independent experiments.
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The Q3(V1) and Q3(V2) Envs exhibited opposite phenotypes related to Env conforma­
tional state. The Q3(V1) Env was more resistant to a CD4mc, BNM-III-170, and exposure to 
cold (0°C) temperature than wt Env (Fig. 2C and D; Table 1). Viruses with the Q3(V1) and 
wt Envs were neutralized equivalently by the PGT145 and PGT151 bNAbs and were 
equally resistant to inhibition by the 19b and 17b pNAbs (Table 1 and data not shown). 
Thus, the Q3(V1) Env exhibits phenotypes associated with a relative stabilization of the 
pretriggered (State-1) conformation (87–92). By contrast, the Q3(V2) Env was more 
sensitive than the wt Env to BNM-III-170 and cold, phenotypes indicative of destabiliza­
tion of State 1 (87–92).

As the known HIV-1 alterations that stabilize State 1 are fewer than State-1-destabiliz­
ing Env changes, we sought to understand the basis of the Q3(V1) Env phenotypes. We 
varied the length and specific amino acid residues in the V1 insert (Fig. 2A). With one 
exception, the S3 Env, the Env mutants with various V1 inserts were similar to the Q3(V1) 
Env with respect to resistance to BNM-III-170 and cold (Fig. 2C and D; Table 1). The 
sensitivities of the S3 Env to BNM-III-170 and cold were closer to those of the wt HIV-1AD8 

FIG 1 HIV-1AD8 Env regions altered in this study. Schematic representations of the HIV-1AD8 Env are shown, with gp120 and gp41 subunits designated. The 

proteolytic cleavage site [(508)REKR(511)] between gp120 and gp41 is colored red. The gp120 variable regions (V1–V5) and conserved regions (C1–C5) are 

indicated. The following elements are labeled: SP, signal peptide; FP, fusion peptide; HR1 and HR2, heptad repeat regions 1 and 2; MPER, membrane-proximal 

external region; TM, transmembrane region; CT, cytoplasmic tail. The N-linked glycosylation sites are depicted above the Env diagram. The sequences in V1 

and V2 (A) and the Env region surrounding the gp120-gp41 cleavage site (B) are shown. The HIV-1AD8 Env amino acids are numbered according to standard 

nomenclature, referring to the prototypic HXB2 sequence (94). In A, the N-linked glycosylation sites in the V1/V2 region, several of which are modified in this 

study, are colored purple, and are numbered.
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Env (Fig. 2C and D; Table 1). The V1 insertions exerted minimal effects on virus sensitivity 
to BMS-806 (Fig. 2E).

We noticed that the serine insertions in the S3 Env restored the Asn-X-(Thr/Ser) 
sequon for the Asn 136 glycosylation site that was altered in Q3(V1) and the other V1 
insertion mutants. To test whether the absence of the carbohydrate chain modifying 
Asn 136 resulted in the observed cold- and CD4mc-resistant phenotypes, we studied the 
N136E and the T138A HIV-1AD8 Env mutants, both of which lack this sequon. The faster 
migration of the N136E and T138A gp120 and gp160 bands on SDS-polyacrylamide gels 
relative to that of the corresponding wt HIV-1AD8 Envs (Fig. 3A) indicates that Asn 136 on 
the wt Env is modified by carbohydrate. The N136E and the T138A Env mutants lacking 
the Asn 136 glycan both exhibited cold-resistant phenotypes similar to those of Q3(V1) 
(Fig. 3B). The sensitivity of the N136E and T138A mutants to BNM-III-170 was similar to 
that of the wt HIV-1AD8 Env (Table 2). Thus, the loss of the glycan at Asn 136 in the gp120 

FIG 2 Phenotypes of V1/V2 insertion mutants. (A) The sequences of the HIV-1AD8 V1/V2 insertion mutants are shown. The gp120-gp41 cleavage site is 

designated with a triangle. S, signal peptide; FP, fusion peptide; HR1 and HR2, heptad repeat regions 1 and 2; T, transmembrane region; CT, cytoplasmic tail. The 

Asn 136 and Asn 141 glycosylation sites are shown. (B) Pseudovirus particles were prepared from transfected 293T cells, lysed, and analyzed by western blotting. 

The gp160, gp120, and gp41 Envs and the p24 CA (capsid) and p17 MA (matrix) proteins are shown. (C) The inhibition of the infectivity of recombinant viruses 

pseudotyped by the indicated wild-type (wt) or mutant HIV-1AD8 Envs by the CD4mc BNM-III-170 is shown. (D) Recombinant viruses with wt or mutant Envs were 

incubated at 0°C for up to 2 days (left panel) or 5 days (right panel), and their infectivity on TZM-bl cells was measured. The infectivity relative to a control virus 

not incubated at 0°C is reported. (E) The inhibition of the infectivity of recombinant viruses with the wt or mutant Envs by BMS-806 is shown. In C–E, the means 

and SDs of triplicate measurements are shown. The experiments were repeated with comparable results.
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V1 region results in cold-resistant phenotypes comparable to those associated with the 
V1 insertions.

Effect of removal of other gp120 N-linked glycans on Env conformation

To evaluate whether the removal of gp120 N-linked glycans other than the Asn 136 
glycan might also influence the conformational state of the functional Env trimer, we 
examined the cold sensitivity of viruses with HIV-1AD8 Envs missing particular glycans in 
the general vicinity of the V1 loop (Fig. 3; Table 2). These Env mutants were processed 
and incorporated into virions efficiently, with the exception of the slowly processed 
N160E mutant and the poorly incorporated N262E and N448E mutants (Fig. 3C). Several 
Env mutants (N295E, N301E, N332T, and N411E) were more sensitive than the wt 
HIV-1AD8 to cold inactivation (Fig. 3D). The most cold-sensitive Env mutant, N301E, was 
also more sensitive than wt Env to inhibition by BNM-III-170 and neutralization by the 
19b pNAb (Fig. 3E and F; Table 2). The T303K Env mutant exhibited phenotypes similar 
to those of the N301E mutant, supporting the conclusion that loss of the N-linked glycan 
at Asn 301 destabilizes the pretriggered (State-1) conformation (Table 2). Our results 
suggest that some gp120 glycans, particularly those modifying Asn 301 and Asn 332, 
contribute to the maintenance of the State-1 Env conformation.

TABLE 2 Phenotypes of HIV-1AD8 Envs with altered sites of N-linked glycosylation

Env Virion Enva Infectivityb Resistance/sensitivity compared to wt AD8 Envc

Cold BNM-III-170 19b

N130E +++ S S
N136E +++ RR ●

T138A +++ RR ●

S143D +++ R ●

S158E – ND ND
N160E d + ●

N262E + + RR RR SS
N295E +++ +++ S ● ●

N301E +++ ++ SS SS S
T303K ++ SS
D325Q +++ R ●

R327Q +++
N332T +++ ++ S S
N406E +++ +++ ● ● ●

N411E +++ ++ S ● ●

N448E + +++ ● ● ●

N136E/D325Q +++ RR R
N130E/T138A +++ R ●

T138A/S143E ++ R S
T138A/S158E – ND ND
Q3(V1)/N301E ++
Q3(V1)/T303K ++
N136E/N301E ●

aThe levels of Env on virus particles produced by transfection of 293T cells were estimated by pelleting and lysing the virus particles, followed by western blot analysis. +++, 
75%–125% wt level; ++, 25%–74% wt level; +, 5%–24% wt level; –, <5% wt level.
bThe infectivity of recombinant viruses pseudotyped by the indicated Env was measured on TZM-bl target cells. +++, 75%–125% wt infectivity; ++, 25%–74% wt infectivity; 
+, 5%–24% wt infectivity; –, <5% wt infectivity.
cThe sensitivity/resistance of recombinant viruses pseudotyped by the indicated Env to cold exposure (0°C), the CD4mc BNM-III-170, and the 19b and 17b pNAbs, relative to 
that of the wt HIV-1AD8, is reported. ●, wt level; R indicates resistance relative to the wt virus; S indicates sensitivity relative to the wt virus. An increase in the number of 
R or S symbols indicates a greater level of resistance or sensitivity, respectively, compared to the wild-type virus level. The values in the table that were not determined are 
designated ND or are left blank. The data shown are representative of results obtained in at least two independent experiments.
dThe virion Envs for the N160E mutant exhibit decreases in the ratio of mature gp120 to uncleaved (gp160) Env.
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Phenotypes of Env combination mutants

We asked whether the State-1-stabilizing phenotype associated with the removal of the 
Asn 136 glycan depended on the presence of other glycans in the vicinity of residue 
136. The identification of candidate glycans is complicated by the lack of a detailed 
State-1 Env structure and by the existence of smFRET data raising the possibility that 
the gp120 V1 region undergoes substantial shifts in position as a result of the transition 
from State 1 to State 2 (14, 76). Cognizant of the potential differences from State 1, 
we evaluated currently available HIV-1 Env trimer structures and identified three gp120 
glycans at Asn 130, Asn 141, and Asn 156 that might be spatially proximal to Asn 136. We 
measured the sensitivity to cold and BNM-III-170 of mutant viruses with these glycans 
removed, individually or in combination with the removal of the Asn 136 glycan (Table 2). 
Viruses with the N130E change, which eliminates the Asn 130 N-linked glycan, infected 
target cells efficiently and were more sensitive to cold and BNM-III-170 than viruses 
with the wt HIV-1AD8 Env. These phenotypes are consistent with mild destabilization 
of State 1. Compared with the wt HIV-1AD8 Env, the N130E/T138A Env mutant was 
more cold resistant but was inhibited by BNM-III-170 equivalently. Thus, the loss of the 
glycan at Asn 136 can stabilize the State-1 conformation even when Asn 130 is not 
glycosylated and can compensate for the mild State 1-destabilizing effects of the loss 
of the Asn 130 glycan. More complex relationships between the Asn 136 and Asn 141 
glycans were observed (Table 2). The S143D change, which results in the loss of Asn 141 
glycosylation, resulted in mild resistance to cold relative to the wt HIV-1AD8 Env. Based 
on the phenotypes of the T138A/S143D mutant, the loss of the Asn 136 glycan exhibited 

FIG 3 Phenotypes of Env glycosylation mutants. (A) The processing and subunit association of the wt and indicated HIV-1AD8 Env mutants in transfected HOS 

cells were evaluated. The two upper panels show the cell lysates, and the lower panel shows the cell supernatants. The upper panel shows the total input Envs 

in the cell lysates. The middle panel shows the Env proteins precipitated by Ni-NTA beads, using the His6 tags at the carboxyl terminus of the gp41 glycoprotein. 

The lower panel shows the gp120 in the cell supernatants, which was precipitated with Galanthus nivalis lectin (GNL)-beads. (B and D) Recombinant viruses with 

the indicated wt or mutant Envs were incubated at 0°C for the indicated times, and their infectivity on TZM-bl cells was measured. The infectivity relative to 

a control virus not incubated at 0°C is reported. (C) Virus particles were prepared from transfected 293T cells, lysed, and analyzed by western blotting. (E and 

F) Recombinant viruses pseudotyped with the indicated wt or mutant Envs were incubated with the indicated concentrations of BNM-III-170 (E) or the 19b pNAb 

(F) for 1 h at 37°C. The virus preparations were then incubated with TZM-bl cells, and the infectivity was measured 48 h later. In B and D–F, the means and SDs of 

triplicate measurements are shown. The experiments were repeated with comparable results.
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little or no State-1-stabilizing effects in the absence of the Asn 141 glycan. Thus, the 
phenotypic effects of glycan removal at Asn 136 can be influenced by the presence or 
absence of the adjacent V1 glycan at Asn 141. The S158E change, which results in the 
removal of the Asn 156 glycan, did not support virus infection and was therefore not 
evaluated further.

During the course of our study of HIV-1 Env variants, we found that compared with 
the wt HIV-1AD8 Env, the D325Q mutant was cold resistant (Fig. 3B). To evaluate whether 
the D325Q change would contribute additively to the cold resistance of Envs lacking 
the glycan at Asn 136, we tested the N136E/D325Q and Q4/D325Q mutants. These 
combination mutants exhibited a level of cold resistance greater than or equal to that 
of either of the parental Env mutants (Fig. 4A; Table 2). Alteration of the nearby Arg 327 
residue did not significantly alter the cold resistance of the Q4 Env (Fig. 4A). The N136E/
D325Q mutant was also more resistant to BNM-III-170 than either the N136E or D325Q 
mutants (Table 2). These results indicate that some of the State-1-stabilizing phenotypes 
associated with the removal of the Asn 136 glycan and the D325Q change are additive.

The results above suggest that the loss of the Asn 136 glycan can decrease the mild 
State 1-destabilizing effects of the removal of the adjacent glycan at Asn 130. To evaluate 
whether the State-1-stabilizing phenotypes associated with the removal of the Asn 136 
glycan could compensate for State-1 destabilization resulting from the loss of other 
glycans, we evaluated the phenotypes of mutants with either Q3(V1) or N136E changes 
combined with the destabilizing changes N295E, N301E, N332T, or N411E. In each case, 
the Envs with State-1-destabilizing changes exhibited increased resistance to cold 
inactivation as a result of the Q3(V1) or N136E changes (Fig. 3B and 4B through D; Table 
2). The addition of the Q3(V1) change also rendered the N332T Env more resistant to 
BNM-III-170 (Fig. 4E). These changes individually or in combination minimally affected 
sensitivity to BMS-806 (Fig. 4F). These results indicate that State-1 stabilization resulting 
from V1 changes including the loss of the Asn 136 glycan can reduce the State-1-
destabilizing effects of the removal of other gp120 glycans.

Mechanisms of altered cold sensitivity of Env glycan mutants

The cold inactivation of multimeric protein complexes often results from the damaging 
effects of ice formation in intersubunit or interprotomer interfaces (97–99). We examined 
the effect of the individual and combined Q3(V1) and N332T changes on the integrity of 
Env trimers on the surface of virus particles. After 6 days of incubation on ice, nearly all of 
the gp120 glycoprotein was lost from virus particles with the wt HIV-1AD8 Env (Fig. 5). 
Virus particles with the N332T Env shed gp120 even faster than virus particles with the 
wt HIV-1AD8 Env. By contrast, the Q3(V1) Env on virus particles was relatively stable 
during the 6-day incubation on ice. The stability of the Q3(V1)/N332T Env on virus 
particles incubated at 0°C was similar to that of the wt Env. Thus, the integrity of the viral 
Env trimers correlated with Env functional stability after cold exposure. The results 
indicate that the State-1-stabilizing change in the gp120 V1 region and the State-1-
destabilizing removal of the Asn 332 glycan can exert their phenotypes when combined 
in a single Env.

Phenotypes of HIV-1 Env mutants with changes near the gp120-gp41 cleav­
age site

The flexible gp160 Env precursor samples multiple conformations; proteolytic matura­
tion in the Golgi stabilizes State 1, decreasing the spontaneous exposure of pNAb 
epitopes (34–36, 45, 90, 95). To understand better the contribution of Env cleavage to the 
maintenance of a pretriggered (State-1) Env conformation, we studied the phenotypes of 
a panel of HIV-1AD8 Env mutants with changes in gp120 and gp41 amino acid residues 
near the cleavage site. Although a few gp120 residues were studied, most of the changes 
involved the gp41 fusion peptide, FPPR, and the N-terminal portion of the heptad repeat 
(HR1) region (HR1N; Fig. 1B). As these regions contribute to Env function (100–103), 
which we wished to preserve to allow more thorough evaluation of Env conformational 
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states in viral assays, we employed a conservative mutagenesis strategy. The changes 
introduced were based either on natural polymorphisms in HIV-1 strains or on variants 
selected for efficient replication from populations of mutagenized viruses (96, 104). As 
we anticipated that some of the phenotypes relevant to State-1 stabilization/

FIG 4 Viral phenotypes of Envs with combinations of glycosylation changes. (A–D) Recombinant viruses pseudotyped with the indicated Env variants were 

incubated at 0°C for the period of time shown, and their infectivity on TZM-bl cells was measured. The infectivity relative to a control virus not incubated at 0°C 

is reported. (E and F) Recombinant viruses pseudotyped with the indicated Envs were incubated with BNM-III-170 (E) or BMS-806 (F) for 1 h at 37°C. Viruses were 

then incubated with TZM-bl cells for 48 h, and the infectivity was measured. The means and SDs of triplicate measurements are reported. The experiments were 

repeated with comparable results.

FIG 5 Stability of viral Envs on ice. Virus particles with the indicated Envs were prepared from the supernatants of transfected 293T cells and incubated at 0°C 

for the period of time shown. The viruses were then pelleted, lysed, and analyzed by western blotting (A). The gp120/gp41 ratio (%) on the virus particles at each 

time point relative to that on a control virus not incubated at 0°C is reported (B). The results of a typical experiment are shown. The experiment was repeated 

with comparable results.
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destabilization could be subtle in this panel of conservatively altered Env mutants, the 
phenotypes were evaluated quantitatively in different contexts. Env alterations with 
interesting and consistent phenotypes were studied in combination.

We evaluated the processing and subunit association of the Env mutants in human 
osteosarcoma (HOS) cells, in which gp120-gp41 cleavage is efficient (Fig. 6 and 7). 
Compared with the wt HIV-1AD8 Env, several mutants with changes in the FPPR (I535M, 
T538F, V539I, R542K, L543Q, L543N, L543R, and I548M) exhibited stronger subunit 
association, as measured by the ratio of cell-associated:shed gp120. With the exception 
of the T538F mutant, all of these Env mutants with strong subunit association were 
processed efficiently, in some cases significantly more efficiently than wt Env. We also 
examined the strength of the gp120 association with the Env trimer solubilized in 
NP-40 detergent solutions; in this assay, Ni-NTA beads precipitate the solubilized Env 
by capturing the His6 tags at the gp41 carboxyl terminus (45, 88). When the precipitated 
gp120/gp160 ratio was normalized to the gp120/gp160 ratio in the input lysate, the 
Envs with stronger subunit association in the cell membrane did not generally exhibit 
significant increases in the Ni-NTA precipitation assay relative to wt Env (Fig. 7). Thus, 
some Envs with alterations in the gp41 FPPR exhibit stronger subunit association when 
anchored in the cell membrane, but this phenotype is less evident when the Envs are 
solubilized in detergent. None of the Env mutants with alterations outside the FPPR 
exhibited this interesting combination of phenotypes.

The function of the Env mutants was assessed by evaluating their ability to mediate 
cell-cell fusion and pseudovirus infectivity (Fig. 7). Except for three Env mutants (M530V, 
M530F, and A533R) with severe defects in gp160 processing, all the mutants supported 
some level of cell-cell fusion. The capacity of several Env mutants to fuse cells was 
preserved better than their ability to support virus entry. This relationship has been 
previously observed with HIV-1 Env mutants and indicates that the function of virion 
Envs is more labile than that of the newly synthesized cell-surface Envs (87, 105). Of note, 
several of the Env mutants (I535M, R542K, L543Q, L543N, and L543R) with increases in 
subunit association mediated cell-cell fusion and pseudovirus entry more efficiently than 
the wt Env. These observations imply that the effects of these FPPR changes on Env 
trimer stability apply to functional Envs on the cell surface and virion.

The sensitivity of the Env mutant pseudotypes to inhibition by a CD4mc, BNM-III-170, 
and to incubation at 0°C was examined (Fig. 7). Compared with wt HIV-1AD8, the T514bV, 
G524A, and L543N mutants were significantly more resistant to BNM-III-170. Lower levels 
of resistance to BNM-III-170 were observed for the A526T, S528L, I535M, L543Q, and 
L543R Envs. The R542K mutant was more sensitive to BNM-III-170 than the wt Env. 
Therefore, with the exception of this R542K mutant, all the FPPR Envs with increases in 
subunit association also exhibited a higher level of resistance to the CD4mc. Viruses with 
the wt Env and all of the replication-competent Env mutants in our panel lost more than 
half of their infectivity after 24 h of incubation on ice (Fig. 7). In summary, our screen 
identified functional Env variants with gp41 FPPR changes that exhibit tighter associa­
tion of the Env subunits and decreased triggerability by a CD4mc. This combination of 
phenotypes was not observed for the Env mutants with changes in the gp41 fusion 
peptide.

In addition to the R542K mutant, three other mutants (V513M, G514aT, and S546D) 
exhibited phenotypes indicative of increased triggerability, with increased sensitivity to 
cold inactivation and to inhibition by BNM-III-170 (Fig. 7). These residues are located in 
the fusion peptide (Val 513 and Gly 514a), FPPR (Arg 542), and at the junction of the FPPR 
and HR1 regions of gp41 (Ser 546). Thus, particular changes in Env residues located 
throughout the gp41 N-terminal regions can apparently destabilize State 1.

Phenotypes of Env mutants with combinations of changes in the gp41 FPPR

As several individual amino acid changes in the gp41 FPPR resulted in phenotypes that 
potentially reflect modest increases in Env stability, we examined the phenotypes of Envs 
with combinations of these changes (Fig. 8 and 9). We also included the A532V change in 
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these combinations. The processing, subunit association, gp120-trimer association, and 
functional assays were performed in parallel to allow the ranking of the Env mutants. 
Combinations of three Env changes resulted in more pronounced phenotypes than the 
single or double changes, suggesting the additivity of the Env alterations. Notably, the 
combination mutants (A532V/I535M/L543Q, A532V/I535M/L543N, and A532V/I535M/

FIG 6 Effects of HIV-1AD8 Env FPPR changes on processing, subunit association, and gp120-trimer 

association. HOS cells transiently expressing the wt HIV-1AD8 Env and the indicated mutants with 

C-terminal His6 tags were harvested 72 h after transfection. The cells were lysed, and fractions of the 

cell lysates were reserved as Input samples. The remainder of the cell lysates was incubated at room 

temperature for 1.5 h with Ni-NTA beads. The cell supernatants were incubated at room temperature for 

1.5 h with GNL beads. Total cell lysates (Input), Ni-NTA precipitates, and GNL precipitates were western 

blotted with a goat anti-gp120 antibody. HOS cells transfected with the empty pcDNA3.1 vector serve 

as a negative control. The GNL precipitates from the cell supernatants reflect the level of gp120 shed 

from the cell-associated Env and were used to calculate subunit association. The Ni-NTA precipitates from 

the cell lysates measure the relative levels of gp160 and gp120 precipitated in the presence of NP-40 

detergent and were used to calculate gp120-trimer association. The results of a typical experiment are 

shown.
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L543R) with the highest levels of subunit association and BNM-III-170 resistance also 
exhibited the best ability to withstand incubation on ice. Therefore, these functional Envs 
exhibit strong phenotypes indicative of State-1 stabilization (87–92). The A532V/I535M/

FIG 7 Phenotypes of HIV-1AD8 Env variants with changes near the gp120-gp41 cleavage site. Env processing, subunit association, gp120-trimer association, 

cell-cell fusion, and infectivity are shown for each HIV-1AD8 Env mutant, normalized to those values observed for the wt HIV-1AD8 Env. Cold sensitivity represents 

the pseudovirus infectivity after 24 h of incubation at 0°C, relative to that of the untreated virus. The 50% inhibitory concentrations (IC50 values) of the 

CD4-mimetic compound, BNM-III-170, are reported in µM. N/A, not available; ND, not determined. Values are colored according to the key, based on their fold 

increase or decrease compared to those of the wt HIV-1AD8 Env. The results shown are the means and SDs derived from at least two independent experiments.
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L543Q and A532V/I535M/L543N mutants exhibited phenotypes suggestive of nearly 
equivalent degrees of State-1 stabilization; both levels of State-1 stability appeared to be 
greater than that of the A532V/I535M/L543R mutant (Fig. 9 and data not shown). The 
slight decrease in virus infectivity observed for the A532V/I535M/L543Q, A532V/I535M/
L543N, and A532V/I535M/L543R pseudotypes may be a consequence of their lower 
triggerability.

Although the phenotype of the individual A532V Env mutant differed minimally from 
that of wt Env, the inclusion of the A532V change in combination with other FPPR 
changes (A532V/I535M, A532V/I535M/L543Q, and A532V/I535M/L543R) increased Env 
subunit association and virus resistance to cold and BNM-III-170 (Fig. 9). This enhance­
ment of State-1-associated phenotypes supports the inclusion of the A532V change in 
Envs in which FPPR alterations help to stabilize the pretriggered conformation.

The R542K alteration in the FPPR, which individually results in State-1-destabilizing 
phenotypes, was combined with one or more of the FPPR changes with State-1-
stabilizing phenotypes (Fig. 9). Env combination mutants with the R542K change were 
generally more sensitive to cold and BNM-III-170 than their matched counterparts 
without the R542K change. Conversely, the combined State-1-stabilizing changes 
reduced or nullified the R542K phenotypes of increased virus sensitivity to inactivation 
by cold and the CD4mc. Thus, State-1 stability can be positively or negatively adjusted by 
particular FPPR changes in an additive way.

We identified one instance where an individual Env change, R542K, that strengthens 
subunit association did not contribute to this phenotype when combined with other Env 
changes stabilizing subunit association. This contrasts with the additivity of subunit 
association phenotypes observed for FPPR residues 535 and 543.

Effects of FPPR changes in a proviral context

We introduced selected changes in the FPPR into the Env encoded by an infectious 
NL4-3.AD8 Bam provirus (90). Viruses produced transiently by transfection of 293T cells 
with these infectious molecular clones (IMCs) were examined by western blotting. All the 
viruses exhibited efficient Env cleavage; the A532V/I535M/L543Q and A532V/I535M/
L543R combination mutants shed gp120 less than the wt HIV-1AD8 Env or the Env 
mutants with fewer FPPR changes (Fig. 10A, left panels). After a 48 h incubation on ice, 
the combination mutants maintained higher levels of gp120 on the virions compared 
with the wt Env or Envs with individual FPPR changes (Fig. 10A, right panels). The viruses 
with FPPR changes were infectious on TZM-bl cells, and the viruses with the combina­
tions of FPPR changes retained infectivity after 48 h on ice better than the viruses with 
the wt HIV-1AD8 Env (Fig. 10B). The combined FPPR Env mutants were more resistant to 
BNM-III-170 inhibition than wt HIV-1AD8. Minimal differences were seen in the sensitivity 
to antibody neutralization between the FPPR Env mutants and wt HIV-1AD8; the L543Q 
mutant virus was slightly more resistant to the 10E8 MPER bNAb than wt HIV-1AD8. We 
also examined the effects of the A532V/I535M/L543Q changes on the antigenicity of the 
AD8 Bam Env on virus particles. Other than a decrease in the low level of F240 recogni­
tion of gp41 from which gp120 has been shed, the antigenicity of the A532V/I535M/
L543Q Bam Env did not significantly differ from that of the wt AD8 Bam Env (Fig. 10C). 
These results are consistent with stabilization of a pretriggered (State-1) conformation for 
the I535M/L543Q, A532V/I535M/L543Q, and A532V/I535M/L543R Env mutants.

Env mutants with combined State-1-stabilizing changes in the gp120 V1 
glycan and gp41 FPPR

To examine whether the State-1-stabilizing changes in the gp120 V1 glycan and the 
gp41 FPPR could have additive phenotypes, we made and tested the A532V/I535M/
L543Q/N136E/D325Q mutant. Although this combination mutant exhibited relatively 
low infectivity, its resistance to cold and BNM-III-170 was at least as great as that of any of 
the other Env mutants tested in this study (Fig. 9). These results indicate that the State-1-
stabilizing changes in gp120 and gp41 are compatible.

Full-Length Text Journal of Virology

September 2023  Volume 97  Issue 9 10.1128/jvi.00592-23 13

https://doi.org/10.1128/jvi.00592-23


DISCUSSION

Although the pretriggered (State-1) HIV-1 Env conformation is an important target for 
virus entry inhibitors and antibodies, its plasticity and dependence on membrane 
anchorage have created challenges for its detailed characterization (30, 76, 90, 106–108). 
Stabilizing State-1 Env could provide a means to overcome these challenges. Here, we 
show that changes in two dissimilar Env components, gp120 carbohydrates, and the 
gp41 FPPR, can positively or negatively influence the stability of the pretriggered Env 
conformation.

Our attention was drawn to the gp120 V1 variable loop when the insertion of a Q3 tag 
resulted in a virus that was more resistant to cold and to a CD4mc than the parental 
HIV-1AD8. These phenotypes are an indicator of State-1 stabilization (87–92), prompting 
us to explore the basis of this effect. The relative degree of cold resistance of viruses with 
diverse V1 insertions indicated that the insert length and amino acid sequence exerted 
little effect on the ability of the functional Env to withstand exposure to 0°C. Removal of 
the glycan at Asn 136 explained the observed cold-resistant phenotypes. Although the 
exact position varies among HIV-1 strains, sequons for N-linked glycosylation are nearly 
always present in this stretch of the V1 region (96). In a previous study (86), alterations of 
V1 that included an N136S change were found to increase the temperature of HIV-1 
inactivation, enhance sensitivity to the PGT145 bNAb, which recognizes the trimer apex 
(109), and confer resistance to pNAb neutralization; stabilization of the State-1 Env 
conformation could account for these phenotypes. How might the loss of the Asn 136 
glycan stabilize State 1? This glycan is not resolved in HIV-1AD8 Env cryo-electron 
microscopy (cryo-EM) maps (110), suggesting that the carbohydrate chain is poorly 
ordered and likely exposed to the solvent. Indeed, crystal structures show that the 
trimannosyl core modifying an adjacent residue, Asn 137, in the sgp140 SOSIP.664 trimer 
derived from HIV-1BG505 is located at the periphery of the protomeric arms of the trimer 

FIG 8 Effects of combinations of FPPR changes on HIV-1AD8 Env processing, subunit association, and gp120-trimer association. HOS cells transiently expressing 

the indicated wt and mutant HIV-1AD8 Env variants were processed as described in the Fig. 6 legend. The results of a typical experiment are shown.
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and extends directly away from the trimer axis (51, 53). A similarly positioned, flexible 
Asn 136 glycan extending into the solvent could create stress on the V1/V2 structure and 
destabilize the pretriggered conformation (Fig. 11A). Consistent with a model in which a 
bulky V1 destabilizes State 1, when the Asn 136 glycan was retained, a Q3 insertion in V1 
resulted in increased cold sensitivity [see Q3(V1 alt) in Table 1]. We also found that the 
removal of the glycan modifying the nearby V1 residue Asn 141 slightly reduced cold 

FIG 9 Phenotypes of HIV-1AD8 Env FPPR combination mutants. The phenotypes of Envs with combined changes and selected Env mutants with individual 

amino acid changes in the FPPR were compared to those of the wild-type HIV-1AD8 Env. Values are colored according to the key, based on their fold increase or 

decrease compared to those of the wt HIV-1AD8 Env. The results shown are the means and SDs derived from two independent experiments.
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FIG 10 Analysis of HIV-1AD8 Env FPPR mutants expressed from an infectious HIV-1 proviral clone. 

(A) HEK 293T cells were transfected with plasmids containing an infectious NL4-3 provirus with the envs 

expressing the indicated wild-type (wt) or mutant AD8 Bam Envs. The Bam changes (S752F I756F) restore 

the natural HIV-1AD8 Env sequence near the AD8/HXBc2 junction and reduce the clipping of the gp41 

cytoplasmic tail by the viral protease (90). Seventy-two hours later, the cell supernatants were collected, 

filtered (0.45 µm), and aliquoted. The virus-containing supernatants were incubated on ice for 0 or 48 h, 

after which they were centrifuged at 14,000 × g for 1 h at 4°C. The pellets were resuspended in 1× 

PBS and represent the virion samples. The supernatants were incubated with GNL beads for 1.5 h at 

room temperature; the GNL precipitates represent the shed gp120. Virion and shed gp120 samples were 

western blotted with a goat anti-gp120 antibody. (B) The infectivity of the virions with the indicated 

HIV-1AD8 Env variants without treatment or after 24 and 48 h of incubation on ice was measured on 

TZM-bl cells. The values are normalized to that of the untreated wt AD8 Bam virions. The fold increases 

observed for the Env mutants relative to the values for the wt AD8 Bam virus under the same treatment 

conditions are colored according to the key. The inhibition of virus infectivity after 1 h incubation at 

37°C with the CD4mc, BNM-III-170, or antibodies is reported. The 50% inhibitory concentrations (IC50 

values) are reported in µM for BNM-III-170 and in µg/mL for the antibodies. Note that all the viruses 

were resistant to the 2F5 and 4E10 bNAbs against the gp41 membrane-proximal external region (MPER). 

The results shown are the means and SDs derived from two independent experiments. Inhibition by 

BNM-III-170 is colored according to the key. (C) Purified virus particles were incubated with a panel 

of broadly neutralizing antibodies (bNAbs) and poorly neutralizing antibodies (pNAbs) for 1 h at room 

temperature. The virus-antibody mixture was washed with 1× PBS and centrifuged. The virus-antibody 

pellet was lysed and precipitated with Protein A-agarose beads for 1 h at 4°C. The beads were washed 

three times and western blotted with a goat anti-gp120 antibody and the 4E10 anti-gp41 antibody.
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sensitivity but nullified the State-1-stabilizing effects associated with the loss of the Asn 
136 glycan. By contrast, the State-1-stabilizing phenotypes of Asn 136 glycan removal 
were not dependent on the other nearby V1 glycan at Asn 130. These results are 
consistent with a contribution of a bulky distal V1 structure to the destabilization of the 
State-1 conformation and underscore the unique nature of the Asn 136 glycan in the 
context of the HIV-1AD8 Env.

In contrast to the State-1-stabilizing Asn 136 phenotype, removal of glycans at Asn 
residues 130, 301, and 332 resulted in phenotypes indicative of destabilization of State 1. 
These carbohydrate chains project from V1 and from the base of the gp120 V3 region 
into the interprotomer space between the trimer arms (Fig. 11A). If trimer symmetry is 
important for maintaining a State-1 Env conformation, filling the interprotomer space 
with glycans could help to resist changes in the interprotomer angles leading to trimer 
asymmetry. Furthermore, loss of the Asn 301 and Asn 332 glycans may alter the V3 
conformation, which can disrupt Env trimer integrity (111). Indeed, previous studies have 
shown that the removal of glycans at Asn 301 and Asn 332 increases HIV-1 sensitivity to 
V3-directed pNAbs (111–114) as well as to soluble CD4 and some pNAbs against the 
CD4-binding site (115, 116).

The State-1-destabilizing phenotypes resulting from glycan removal at Asn 130, Asn 
301, or Asn 332 were suppressed by the loss of the glycan at Asn 136. In some cases, 
phenotypes related to stability or instability of the HIV-1 Env pretriggered conformation 
have been shown to be expressed additively even when the Env determinants of the 
phenotypes are located distantly on the Env trimer (88, 89). Here, we observed a similar 
counterbalancing of State-1-stabilizing and -destabilizing phenotypes; in this case, both 
were determined by glycan removal.

As a second line of inquiry, we investigated the contribution of HIV-1 Env proteolytic 
cleavage to Env conformation. We evaluated the phenotypes of HIV-1AD8 Env mutants 
with individual or combined changes in sequences near the cleavage site. As we wished 
to use the resistance of virus infectivity to a CD4mc or to cold exposure as an indicator of 
State-1 stabilization, we employed a conservative mutagenesis strategy, focusing on 
polymorphic changes in natural HIV-1 strains and on Env variants detected in HIV-1 
populations replicating in tissue culture (96, 104).

Despite our conservative strategy, several of the mutants exhibited defects that 
compromised their ability to support cell-cell fusion and virus entry. Changes in the 
highly conserved Met 530 and Ala 533 resulted in severe defects in gp160 processing 
and function, consistent with the predicted role of this region in folding the gp41 
subunit (53, 117). Other mutants (G516V, A525V, A526T, T538F, Q540H, I548A, I548Y, and 
Q550D) showed reductions in cleavage efficiency that correlated with decreases in 
pseudovirus infectivity; cell-cell fusion mediated by these mutants was attenuated to a 
lesser degree, as expected for inefficiently folded Envs with decreases in the stability of 
the functional trimer (105). Finally, changes in residues 546, 548, and 550 at the FPPR-
HR1N junction resulted in Envs that were processed, exhibited good subunit association, 
and mediated cell-cell fusion but were deficient in supporting pseudovirus infection. As 
above, specific deficiencies in the ability to maintain functional virion Env trimers underly 
these phenotypes.

Most of the Env mutants in the gp41 FP and FPPR retained a detectable level of 
pseudovirus infectivity. This allowed us to evaluate their sensitivity to a CD4mc, BNM-
III-170, and to cold inactivation, two indicators of HIV-1 Env conformational state (87–89). 
Individual changes in HIV-1AD8 FPPR residues Ile 535 and Leu 543, converting them to 
common HIV-1 polymorphic variants, resulted in modest decreases in sensitivity to BNM-
III-170, unusually strong subunit association and good proteolytic processing. These 
individual mutants (I535M, L543Q, L543N, and L543R) resisted cold inactivation only 
slightly better than the wt HIV-1AD8 Env when measured in careful side-by-side assays 
(Fig. 9). Thus, for the individual FPPR mutants, the degree of State-1 stabilization is mild 
at best. However, when introduced in combination, changes in FPPR residues 532, 535, 
and 543 resulted in strong virus resistance to exposure to both cold and a CD4mc, 
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FIG 11 Location of Env changes in current Env structural models. (A) A cryo-EM structure of the AE2.1 variant of the HIV-1AD8 

Env trimer (110) is shown from the perspective of the target cell (left panel) or as a side view, with the viral membrane 

at the top of the figure (right panel). Although the detailed structure of the State-1 conformation of the membrane Env 

trimer is unknown, the structure of the AE2.1 Env trimer, which has been suggested to represent a default intermediate 

(State-2-like) conformation (110), is informative. Specific glycosylated Asn residues studied herein are indicated. Well-defined, 

stable densities in the cryo-EM map allowed modeling of the peptide-proximal glycans at Asn 295, Asn 301, and Asn 332, 

whereas the glycans associated with Asn 130, Asn 136, and Asn 411 were not resolved (110). Removal of the gp120 glycans 

in cyan resulted in State-1-destabilizing phenotypes. Where resolved, these glycans project into the interprotomer spaces of 

the Env trimer. Removal of the Asn 136 glycan (orange) resulted in the phenotypes associated with State-1 stabilization. The 

poorly resolved glycan at Asn 136 presumably projects from the gp120 V1 loop into the solvent. (B) A side view of the AE2.1 

variant of the HIV-1AD8 trimer is shown, with the MPER and viral membrane at the top of the figure. The fusion peptide (FP; 

green), FPPR (blue), and α9 helices (orange) are highlighted. The structures of these regions in all three protomers of the 

asymmetric AE2.1 Env trimer are shown. In the asymmetric AE2.1 Env trimer, two opening angles between the protomers 

are >120°, and one opening angle is <120° (110). The FPPR residues that are implicated in State-1 stabilization are shown as 

blue Corey-Pauling-Koltun (CPK) models. Note that the conformation of the FPPR differs in the two protomers associated with 

the larger opening angles compared with that in the protomer associated with the smaller opening angle. The as-yet-known 

structure of the State-1 Env may hypothetically consist of a symmetric trimer. In such a model, the FPPR could contribute 

to State-1 stabilization and Env trimer symmetry through interactions with the α9 helices and/or MPERs of the adjacent 

protomers. FPPR interactions with α9 or MPER could also potentially influence the conformations of the adjacent HR1N 

regions. The HR1N region is helical in the protomers associated with the larger opening angles, whereas HR1N is a random coil 

in the protomer associated with the smaller opening angle. Thus, variation in the interactions of the FPPR and HR1N regions 

with other Env elements can potentially influence trimer symmetry.
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clearcut signatures of State-1 stabilization (87–89). The A532V change, which exhibited 
minimal evidence of State-1 stabilization on its own, intensified the State-1-associated 
phenotypes of the I535M change. Of interest, some natural HIV-1 variants have Env 
residues at 535 and 543 associated with greater State-1 stability (96), likely contributing 
to some of the variation in Env triggerability among primary virus strains (118–120). We 
also note that alteration of these FPPR residues has been included in efforts to stabilize 
both soluble gp140 SOSIP.664 trimers and membrane Envs (63, 65, 66, 80, 81, 85). 
Apparently, FPPR changes can benefit the integrity of Env trimers in multiple contexts.

The increases in State-1 stabilization and subunit association of the FPPR mutants 
were not recapitulated in the gp120-trimer association assay. This result contrasts with 
increases in gp120-trimer association observed for other State-1-stabilizing Env changes 
(88). Qualitative differences in the mechanisms of State-1 stabilization may account for 
these observations; for example, the phenotypes of the FPPR variants may be more 
dependent on membrane-proximal Env elements that are disrupted by the detergent 
solubilization of Env in the gp120-trimer association assay. Recent cryo-EM structures 
of HIV-1 Env trimers indicate that solubilization may result in the asymmetrical opening 
of the trimer, with allosterically coupled transformations of the gp41 FPPR and HR1N 
regions (110). The proximity of the gp41 FPPR to the cleavage site and its association 
with Env conformational modulation supports the contribution of the FPPR to State-1 
stabilization following Env cleavage. Finally, quantitative differences in the degree to 
which State 1 is stabilized may also account for the distinct outcomes of Env variants in 
the gp120-trimer association assay.

How do FPPR changes modulate the stability of the State-1 Env conformation? In 
available Env trimer structures (51–53, 56, 73, 107), the FPPR is located near the α9 
helix and MPER of the adjacent protomer. Of interest, the FPPR residues (535 and 543) 
implicated in State 1 stabilization exhibit significant differences in orientation among 
the asymmetric protomers of Envs solubilized in styrene-maleic acid lipid nanoparticles 
(110) (Fig. 11B). As these asymmetric Env trimers are thought to represent an early, 
State-2-like conformation, such FPPR movement may reflect changing interactions (e.g., 
with the α9 helix or MPER) involved in the release of State 1 and the promotion of State 2. 
Modulation of Env trimer symmetry may represent a common mechanism whereby FPPR 
and glycan changes influence State 1-to-State 2 transitions. A complete understanding of 
this mechanism will require detailed structures of State-1 Envs.

Our study also identified gp41 changes (R542K and S546D) that increased HIV-1 
sensitivity to cold inactivation and to inhibition by the CD4mc, phenotypes indicative of 
State-1 destabilization (87–92). These results are consistent with the contribution of the 
FPPR to the maintenance of the pretriggered Env conformation, as also suggested by 
recent studies (121, 122). The phenotypes of the R542K Env are noteworthy. Although 
the R542K Env exhibits strong subunit association and increased cell-cell fusion like 
the I535M and Leu 543 mutants, its sensitivity to cold and BNM-III-170 clearly suggest 
a higher triggerability. Thus, the increased subunit association of the membrane Env 
trimer and stabilization of the pretriggered (State-1) Env conformation are separable 
consequences of FPPR modification.

This study provides a set of Env changes that additively contribute to the stabiliza­
tion of the pretriggered (State-1) conformation. Such Env modifications may be useful 
in reducing Env conformational heterogeneity for studies of State-1 structure and 
immunogenicity.

MATERIALS AND METHODS

HIV-1 Env mutants

The wt HIV-1AD8 env cloned in the pSVIIIenv expression plasmid was used as a template 
to construct HIV-1 Env mutants in this study. The signal peptide/N-terminus (residues 
1–33) and the cytoplasmic tail C-terminus (residues 751–856) of this Env are derived 
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from the HIV-1HXBc2 Env (88, 89). Changes were introduced by using the QuikChange 
Lightning site-directed mutagenesis kit (Agilent Technologies). All the Envs contain a 
His6 tag at the carboxyl terminus. For the Env mutants expressed in IMCs, site-directed 
changes were introduced into the pNL4-3.AD8 Bam IMC (90) by using the Q5 high-fidel-
ity DNA polymerase (New England Biolabs) and One Shot Stbl3 chemically competent 
Escherichia coli (Invitrogen), following the manufacturer’s protocols. All the mutations 
were confirmed by DNA sequencing.

Antibodies

pNAbs (19b, 17b, and E51) and bNAbs (2F5, 4E10, 10E8.v4, and PGT145) against the HIV-1 
Env were obtained through the NIH HIV Reagent Program, Division of AIDS, NIAID, NIH.

Cell lines

HEK293T, TZM-bl, and HOS cells (ATCC) were cultured in Dulbecco-modified Eagle 
medium supplemented with 10% fetal bovine serum and 100 µg/mL penicillin-strepto­
mycin (Life Technologies). Cf2Th-CD4/CCR5 cells were cultured in the same medium 
supplemented with 400 µg/mL G418.

Env expression

To evaluate Env processing, subunit association, and gp120-trimer association, 3 × 
105 HOS cells were seeded in six-well plates. After 24 h of incubation, they were 
transfected with plasmids encoding His6-tagged Env variants and Tat at a ratio of 8:1, 
using the Lipofectamine 3,000 transfection reagent (Life Technologies) according to 
the manufacturer’s instructions. Seventy-two hours after transfection, the supernatants 
were collected and incubated with Galanthus Nivalis Lectin (GNL)-agarose beads (Vector 
Laboratories) for 1.5 h at room temperature. Beads were washed three times with 
1× phosphate-buffered saline (PBS) containing 0.1% NP-40 and processed for western 
blotting with a goat anti-gp120 antibody (Invitrogen). The cells were lysed in PBS 
buffer containing 1.0% NP-40 and protease inhibitor (Sigma-Aldrich). Clarified lysates 
were harvested and separated into two portions. One portion was used for the “Input” 
sample. The other was incubated with Ni-NTA beads at room temperature for 1.5 h. Then 
the beads were washed, boiled, and analyzed by western blotting with 1:2,500 goat 
anti-gp120 antibody (Invitrogen) and 1:2,500 HRP-conjugated rabbit anti-goat antibody 
(Invitrogen). The intensities of the gp120 and gp160 bands from unsaturated western 
blots were quantified by using ImageJ software. The Env processing index was calculated 
by dividing gp120 by gp160 in the Input samples. The subunit association was calculated 
by dividing gp120 in the Input samples by the gp120 in the GNL precipitates. The 
gp120-trimer association index was calculated by dividing the gp120:gp160 ratio in the 
Ni-NTA precipitates by the gp120:gp160 ratio in the Input samples. The processing, 
subunit association, and gp120-trimer association indices of the Env mutants were 
normalized to those of the wt HIV-1AD8 Env.

Cell-cell fusion assay

For the alpha-complementation assay measuring cell-cell fusion, 2 × 104 COS-1 effector 
cells were seeded in black-and-white 96-well plates and then cotransfected with 
plasmids expressing ⍺-gal, Env variants, and Tat at a 1:1:0.125 ratio, using Effectene 
transfection reagent (Qiagen) following the manufacturer’s protocol. At the same time, 
Cf2Th-CD4/CCR5 cells target cells in 6-well plates were cotransfected with a plasmid 
expressing ω-gal using Effectene transfection reagent. Forty-eight hours after transfec­
tion, target cells were detached and resuspended in medium. The medium was aspirated 
from the effector cells, and target cell suspensions in 50-µL volumes were added to the 
effector cells (one target-cell well provides sufficient cells for 50 effector-cell wells). Plates 
were spun at 500 × g for 3 min and then incubated at 37°C in 5% CO2 for 8 h. Medium 
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was removed, and cells were lysed in Tropix lysis buffer (Thermo Fisher Scientific). The 
β-galactosidase activity in the cell lysates was measured using the Galacto-Star Reaction 
Buffer Diluent with Galacto-Star Substrate (Thermo Fisher Scientific), according to the 
manufacturer’s instruction.

Virus infectivity

To produce pseudoviruses, HEK293T cells were cotransfected with the Env-expressing 
pSVIIIenv plasmid, a Tat-encoding plasmid, and the luciferase-encoding pNL4-3.Luc.R-
E- vector (NIH HIV Reagent Program) at a 1:1:3 ratio using polyethyleneimine (PEI, 
Polysciences). To prepare replication-competent viruses, HEK293T cells were transfected 
with the pNL4-3.Env.Bam IMC plasmid using PEI. The medium was replaced 6–8 h after 
transfection. The cell supernatants containing pseudoviruses or infectious viruses were 
harvested 72 h later and centrifuged (3,500 rpm for 5 min), aliquoted, and either used 
directly to measure pseudovirus and infectious virus infectivity or stored at −80°C until 
use.

To compare the infectivity of the variants, freshly prepared pseudoviruses and 
infectious viruses were serially diluted in 96-well plates and incubated with TZM-bl cells 
in the presence of 20 µg/mL DEAE-dextran. After 48 h of incubation, TZM-bl cells were 
lysed, and the luciferase activity was measured using a luminometer.

Virus sensitivity to cold inactivation

To evaluate virus sensitivity to cold inactivation, pseudoviruses and infectious viruses 
were incubated on ice for different lengths of time, and virus infectivity was subse­
quently measured, as described above.

Virus inhibition/neutralization

The inhibitors to be tested (antibodies, BNM-III-170, or BMS-806) were serially diluted in 
triplicate wells of 96-well plates. Then approximately 100–200 TCID50 (50% tissue culture 
infectious dose) of either pseudoviruses or infectious viruses was added and incuba­
ted at 37°C for 1 h. Subsequently, approximately 2 × 104 TZM-bl cells with 20 µg/mL 
DEAE-dextran in the medium were added to each well, and the mixture was incubated 
at 37°C/5%CO2 for 48 h. Then luciferase activity was measured, as described above. The 
concentrations of antibodies and other inhibitors that inhibit 50% of infection (the IC50 
values) were determined by fitting the data in four-parameter dose-response curves 
using GraphPad Prism 9.

Analysis of Env on virus particles

Approximately 1 mL of the pseudovirus or infectious virus suspension in the superna­
tants of expressing cells was filtered (0.45 µm) and incubated on ice for different periods 
of time. Then the virus suspensions were centrifuged at 14,000 × g for 1 h at 4°C. 
The pelleted virus particles were resuspended in 1× PBS. Equal volumes of the virus 
suspensions were then analyzed by western blotting. Western blots were developed 
with 1:2,500 goat anti-gp120 polyclonal antibody (Invitrogen), 1:2,500 4E10 anti-gp41 
antibody, and 1:5,000 rabbit polyclonal antibody against Gag p55/p24/p17 (Abcam). 
The HRP-conjugated secondary antibodies were 1:2,500 rabbit anti-goat antibody 
(Invitrogen), 1:2,500 goat anti-human antibody (Invitrogen), and 1:5,000 goat anti-rabbit 
antibody (Sigma-Aldrich), respectively. The supernatants containing shed gp120 were 
collected and incubated with GNL-agarose beads for 1.5 h at room temperature. Beads 
were washed three times with 1× PBS/0.1% NP-40 and processed for western blotting 
with a goat anti-gp120 antibody (Invitrogen), as described above.
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Antigenicity of Env on virus particles

HEK293T cells were transfected with the pNL4-3.AD8 Bam IMCs encoding the wt and 
mutant Envs using PEI. Seventy-two hours later, the cell supernatants were collected, 
filtered (0.45 µm), and centrifuged at 100,000 × g for 1 h at 4°C. Virus pellets were 
resuspended in 1× PBS, and 100 µL aliquots were incubated with a panel of antibodies 
at 10 µg/mL concentration for 1 h at room temperature. One milliliter of chilled 1× 
PBS was added, and samples were centrifuged at 14,000 × g for 1 h at 4°C. The pellets 
were lysed in 100 µL chilled 1× PBS/0.5% NP-40/protease inhibitor cocktail. Lysates were 
rotated during incubation with Protein A-agarose beads for 1 h at 4°C and washed with 
chilled 1× PBS/0.1% NP-40 three times. The beads were processed for western blotting. 
To prepare the Input (50%) sample, 25 µL purified virus was mixed with 1 mL chilled 1× 
PBS and centrifuged at 14,000 × g for 1 h at 4°C; the pellet was processed for western 
blotting.
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