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Abstract

Fibroblast growth factors (FGFs) and their receptors (FGFRs) have been extensively investigated 

in solid malignancies, representing an attractive therapeutic target. In breast cancer, especially 

in estrogen receptor positive (ER+) subtype, FGFR signaling aberrations have been reported to 

contribute to proliferation, dedifferentiation, metastasis and drug resistance. However, clinical 

trials evaluating the use of FGFR inhibitors in breast cancer have had disappointing results. The 

different biological properties of distinct FGFR alterations and lack of established patient selection 

criteria, in addition to the early use of non-selective inhibitors, are possible reasons of this failure. 

Herein, we review the current knowledge regarding the role of FGFR signaling in endocrine 

resistance in breast cancer. We will also summarize the results from the clinical development of 

FGFR inhibitors in breast cancer, discussing future challenges to identify the correct cohorts of 

patients to enroll in trials testing FGFR inhibitors.
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Introduction

Breast cancer is the most frequently diagnosed malignant tumor in women, with more than 

250,000 new cases expected each year (Siegel et al., 2020). About 80% of newly diagnosed 

breast cancers are estrogen receptor positive (ER+) (DeSantis et al., 2019) Endocrine 

therapies, such as selective ER modulators (SERMs), selective ER degraders (SERDs) and 

aromatase inhibitors (AIs) represent the mainstay of the treatment of ER+ breast cancer. 

The approvals of targeted therapies, such as cyclin-dependent kinases (CDK) 4/6 inhibitors 

(palbociclib, ribociclib and abemaciclib), anti-HER2 therapies (trastuzumab, pertuzumab, T-

DM1, neratinib, lapatinib, tucatinib, trastuzumab deruxtecan), the phosphoinositide 3-kinase 

(PI3K) α inhibitor alpelisib and the mammalian target of rapamycin (mTOR) inhibitor 

everolimus, administered in combination with antiestrogens, have all improved the outcome 

of ER+ breast cancer patients (Álvarez-Fernández and Malumbres, 2020; André et al., 2019; 
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Baselga et al., 2012; Modi et al., 2020; Murthy et al., 2020; Pernas and Tolaney, 2019). 

However, despite these advances, drug resistance still occurs in a significant fraction of 

patients (Hanker et al., 2020) leading to disease progression and ultimately death.

The oncogenic role of Receptor Tyrosine Kinases (RTKs) in ER+ breast cancer has been 

extensively investigated. Among them, the fibroblast growth factor receptors (FGFRs) 

family, consisting of four highly conserved transmembrane receptors (FGFR1–4) and 

another membrane-associated receptor lacking the intracellular domain (FGFR5, or 

FGFRL1), has been largely studied. FGFRs play various roles in normal physiology 

and development, such as embryogenesis, tissue development, immune surveillance and 

metabolism (Turner and Grose, 2010). FGFR signaling has been shown to be implicated in 

several oncogenic pathways, such as cancer cell proliferation, survival, migration, invasion 

and angiogenesis (Babina and Turner, 2017; Turner and Grose, 2010). More recently, 

various reports demonstrated a role of FGFR signaling in breast cancer biology and 

antiestrogen resistance (Sobhani et al., 2020). Thus, FGFR signaling represents a therapeutic 

target for the development of selective FGFR inhibitors.

This review will focus on genomic and non-genomic alterations that aberrantly activate 

FGFR signaling in breast cancer, particularly ER+ breast tumors. We will also summarize 

the current status of the clinical development of FGFR tyrosine kinase inhibitors (TKIs) in 

breast cancer, discussing their outcome, limitations and possible future directions.

FGFR signaling

Intracellular signal transduction induced by FGFRs follows the same canonical model 

observed for other RTKs. Membrane-bound FGFRs are activated by the binding of ligands 

(fibroblast growth factors, FGFs) to their extracellular domain (Schlessinger et al., 2000) 

(Figure 1). Mammalian FGF family is composed of 18 members that have critical functions 

in embryonic development and in adults, regulating cell proliferation, differentiation and 

migration (Beenken and Mohammadi, 2009). FGFRs have an extracellular domain, where 

ligands bind, a transmembrane domain and an intracellular domain involved in the activation 

of signaling cascades. The extracellular portion has three Immunoglobulin (Ig) like domains 

(D1-D3). FGFRs transcripts also undergo alternative splicing, affecting the composition of 

the D1-D3 domains, to generate different receptor isoforms. FGFs display varied binding 

specificity for different FGFRs isoforms (Beenken and Mohammadi, 2009). FGFs mainly 

act in a paracrine or autocrine fashion and the binding of FGF to FGFRs is mediated by 

heparin sulfate (HS) proteoglycans (HSPGs) which modulate the affinity of the ligand for 

their receptor (Makarenkova et al., 2009). In addition, FGF19, FGF21 and FGF23 act as 

endocrine ligands and require α- or β-Klotho cofactors to bind to FGFRs (Itoh et al., 2015). 

FGF-FGFR binding promotes receptor dimerization and phosphorylation of C-terminal 

tyrosines of the cytoplasmic domain (Eswarakumar et al., 2005). These phosphorylated 

tyrosines dock adaptor proteins which, in turn, activate downstream signaling pathways. 

The main adaptor protein of FGFRs is Fibroblast Growth Factor Receptor Substrate alpha 

(FRS2α) (Gotoh, 2008). Tyrosine phosphorylation of FRS2α promotes the recruitment 

of growth factor receptor-bound 2/son of sevenless (GRB2/SOS) complexes leading to 

activation of RAS/RAF/MEK/MAPK and PI3K/AKT. FGFRs can also induce FRS2α-
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independent activation of phospholipase Cγ (PLCγ). Phosphorylation of tyrosine 766 

in FGFR creates a specific binding site for the SH2 domain of PLCγ, promoting its 

direct recruitment and activation and inducing protein kinase C (PKC) signaling (Peters 

et al., 1992). Finally, phosphorylation of C-terminal residues in FGFRs have been 

shown to directly activate members of Signal Transducer and Activator of Transcription 

(STAT) family, particularly Stat1 and Stat3, promoting their nuclear translocation and 

transcription of downstream target genes (Dudka et al., 2010; Hart et al., 2000). Various 

intracellular mechanisms that negatively regulate FGFR signaling activation have been 

described. The casitas B-lineage lymphoma (Cbl) protein is involved in ubiquitination of 

phosphorylated RTKs and consequent downregulation (Thien and Langdon, 2001). Also, 

Sprouty (SPRY) proteins can prevent Sos-mediated Ras activation (Kramer et al., 1999). 

MAPK phosphatases, such as MKP3 (Zhao and Zhang, 2001), and SEF family proteins 

(Tsang et al., 2002) have also been reported to downregulate FGFR-induced intracellular 

signaling.

In addition to canonical signaling induced by membrane-bound receptors, FGFRs have 

been shown to localize in the nucleus of cells in various tissues. Both clathrin-mediated 

endocytosis (CME) and clathrin-independent endocytosis (CIE) are involved in FGFR 

internalization from the plasma membrane after ligand binding (Figure 2) (Fannon 

and Nugent, 1996; Reilly et al., 2004; Sorokin et al., 1994). Internalization and 

nuclear translocation of FGFRs is mediated by importin-β (Reilly and Maher, 2001). 

‘Retrotranslocation’ to nucleus of newly synthesized full-length FGFR protein from the 

ER/Golgi has also been described (Stachowiak and Stachowiak, 2016). In addition, 

a truncated FGFR1 variant, derived from the proteolytic activity of granzyme B on 

membrane-bound FGFR1, has been detected in breast cancer cell nuclei (Chioni and 

Grose, 2012). The role of nuclear FGFR1 in the context of neuronal development has 

been extensively characterized, demonstrating its direct involvement in promoting gene 

transcription associated with developmental pathways (Stachowiak et al., 2003). Finally, 

there is experimental evidence that FGFR1 and FGFR2 can localize in the nucleus of cancer 

cells, such as in medulloblastoma, breast, pancreatic and prostate cancer (Cerliani et al., 

2011; Coleman et al., 2014; Formisano et al., 2017; Lee et al., 2019). These findings are 

concordant with reports showing that RTKs, such as EGFR, HER2, and insulin receptor 

(INSR), in addition to their signal transduction function as membrane-bound receptors, can 

localize in the nucleus and regulate gene transcription (Chervo et al., 2020; Hancock et al., 

2019; Lo and Hung, 2006).

FGFR alterations in breast cancer

Several genomic alterations occurring at FGFs and/or FGFRs genes have been reported in 

breast cancer, promoting activation of canonical FGFR signaling cascade and nuclear FGFR 

transcriptional activity. These alterations are summarized in Figure 3.

FGFR Amplification

The 8p11–12 locus, where the FGFR1 gene resides, is amplified in about 12% of breast 

cancers. The highest rate is registered among ER+ breast tumors, which display FGFR1 
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amplification in about 15% of cases (Cerami et al., 2012; Gao et al., 2013). FGFR1 
amplification has been described as a strong predictor of poor prognosis in ER+ tumors 

(Elbauomy Elsheikh et al., 2007). Instead, FGFR2 amplification (genomic locus 10q26) 

is rare and found in ~ 2% of all breast cancers, with a slightly higher occurrence in ER 

negative/HER2 negative subtype (~3%) (Cerami et al., 2012). Reis-Filho et al performed 

siRNA FGFR1 studies to reveal that FGFR1 contributes to the survival of ER+/FGFR1-

amplified breast cancer cells (Reis-Filho et al., 2006). However, later studies revealed 

that only tumors with high-level clonal FGFR1/2 amplification show addiction to the 

amplified receptor and exquisite sensitivity to FGFR TKIs (Pearson et al., 2016). Pearson 

et al demonstrated in FGFR2-amplified cancers that FGFR2 hyperactivates RAS/MAPK 

and PI3K signaling, likely through cooperation with other RTKs, such as ERBB3 and 

IGF1R (Kunii et al., 2008; Pearson et al., 2016). As a result, these tumors exhibit high 

dependency on FGFR2 and are also sensitive to FGFR inhibition. The less clear tumor 

dependence on FGFR1 amplification may be attributed to various reasons. First, low-level 

amplification may not translate to FGFR1 protein overexpression (Wynes et al., 2014). 

Second, the 8p11–12 amplicon that includes the FGFR1 locus is generally broad, implying 

the co-amplification of other genes contribute to oncogenesis. For instance, ZNF703, also 

in 8p11–12, has been shown to promote proliferation of human luminal breast cancer cells 

and its overexpression has been associated with a poor outcome in patients with ER+ breast 

cancers (Holland et al., 2011; Reynisdottir et al., 2013).

The rate of FGFR3 and FGFR4 amplification in breast cancer is negligible. The oncogenic 

role of these receptors is generally associated with their overexpression, activating 

mutations or amplification of their ligands. It has been recently demonstrated that FGFR4 

overexpression is significantly higher in the HER2 enriched molecular subtype and may be 

associated with breast cancer dedifferentiation (Garcia-Recio et al., 2020). In this article, 

the authors reported an FGFR4-associated gene expression signature that is enriched in ER+ 

breast cancer metastases (Garcia-Recio et al., 2020).

FGFR activating mutations

In contrast to other tumors, such as urothelial cancer and intrahepatic cholangiocarcinoma 

(ICC), the rate of FGFRs mutations is very low in treatment naïve breast cancer. According 

to Project GENIE, only 413/11,746 (3.5%) breast cancers harbor FGFR1–4 mutations 

(AACR Project GENIE Consortium, 2017). FGFR1 N546K and K656E are the most 

frequent and best characterized. Both mutations are in the tyrosine kinase (TK) domain, 

constitutively activate the receptor, and result in oncogenic transformation (Hart et al., 2000; 

Lew et al., 2009). FGFR1 N546K has been detected in the liver biopsy of a patient with ER+ 

breast cancer progressing on antiestrogens (Mao et al., 2020) and in plasma tumor ctDNA in 

a patient with ER+ breast cancer progressing on endocrine therapy plus CDK4/6 inhibitors 

(Formisano et al., 2019), suggesting its causal role with drug resistance.

FGFR2 mutations occur in less than 1% of treatment naïve breast cancers (Cerami et al., 

2012; Gao et al., 2013). However, acquired FGFR2 mutations have been reported with 

higher frequency in ER+ breast cancer that developed resistance to antiestrogens ± CDK4/6 

inhibitors. Particularly, missense mutations of the TK domain, such as M538I, N549K (or 
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N550K, corresponding to N549K in the canonical FGFR2 isoform), K569E and K660N 

(Formisano et al., 2019; Mao et al., 2020; O’Leary et al., 2018) have been detected. These 

mutations constitutively activate the FGFR kinase and confer transforming potential to it 

(Chen et al., 2007; Hart et al., 2000). The variant of unknown significance (VUS) FGFR2 

V395D has been also identified in one post-progression plasma sample from a patient 

progressing on antiestrogens and CDK4/6 inhibitors (Formisano et al., 2019). In contrast to 

endometrial cancer, where FGFR2 mutations are detected in about 10% of cases (Helsten et 

al., 2016), FGFR2 mutations in the extracellular Ig II and Ig III loops, promoting increased 

ligand-receptor binding or constitutive receptor dimerization (Ibrahimi et al., 2001, 2004; 

Wilkie et al., 2002), have been rarely reported in breast cancer (AACR Project GENIE 

Consortium, 2017).

FGFR3 mutations are also very rare in breast cancer. Instead, FGFR4 mutations can be 

found in around 4% of primary breast cancers. They generally occur in the TK domain, such 

as K535 or E550. Mutations occurring in these residues were previously demonstrated to 

increase autophosphorylation, enhance Stat3 signaling and promote metastatic potential in 

preclinical models of rhabdomyosarcoma (Taylor et al., 2009). Razavi and colleagues found 

significant enrichment of FGFR4 mutations in metastatic biopsies of ER+/HER2−negative 

breast cancer compared to primary tumors (Razavi et al., 2018). These results are concordant 

with recent findings supporting the notion that FGFR4 signaling promotes metastasis in 

breast cancer (Garcia-Recio et al., 2020).

FGFR fusions

FGFR fusions, particularly involving FGFR2 and FGFR3 genes, are relatively frequent in 

glioblastoma, bladder cancer and ICC, but rare in breast cancer. Their detection is important 

as tumors bearing these alterations are exquisitely sensitive to FGFR TKIs. The most 

common FGFR3-fused gene is TACC3, encoding transforming acid coiled-coil containing 

protein 3. TACC3 replaces the final exon in the C-terminal domain of FGFR3, resulting in 

constitutive kinase activity of the fused protein. Several partners, fused to the C-terminus of 

FGFR2 and under control by the FGFR promoter, have been reported, such as BicC family 

RNA binding protein 1 (BICC1), pro coiled-coil domain-containing protein 6 (CCDC6), 

oral-facial-digital syndrome 1 protein (OFD1), Rho-interacting kinase (CIT), cell cycle 

and apoptosis regulator protein 2 (CCAR2). The protein products of these fusions exhibit 

enhanced dimerization and ligand-independent signaling (Parker et al., 2014; Wu et al., 

2013).

More rarely, fusion partners locate at the N-terminal domain of FGFR. These include fusions 

of the prohibitin-containing protein ER lipid raft associated 2 (ERLIN2) with FGFR1 and 

of solute carrier family 45 member 3 (SLC45A3) with FGFR2 (Wu et al., 2013). A unique 

mechanism of activation has been described for the SLC45A3-FGFR2 fusion, where FGFR2 
is regulated by the androgen-regulated promoter of SLC45A3, thereby promoting FGFR2 

overexpression (Wu et al., 2013).
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Oncogenic role of FGF ligands

Tumorigenic properties of FGF ligands have been previously investigated. FGF1, FGF2, 

FGF6, FGF8 and endocrine ligands FGF19 and FGF23 have been reported to be involved 

in tumor initiation and progression in prostate cancer [reviewed in (Corn et al., 2013)]. 

Recent evidence also supports a role of various FGFs in breast cancer. The chromosomal 

locus 11q13, containing FGF3, FGF4, FGF19 and CCND1, is amplified in about 15% of 

breast cancers (Cerami et al., 2012). CCND1 is considered the most important oncogene 

in the amplicon, particularly for ER+ breast tumors. In hepatocellular carcinoma (HCCs), 

11q13 amplification positively correlates with FGF19, which has been shown to promote 

liver carcinogenesis through binding to its receptor, FGFR4, and to predict clinical response 

to the selective FGFR4 inhibitor fisogatinib (Blu-554) (Kim et al., 2019). Mao et al detected 

FGF3 amplification in 17 post-treatment ER+ breast cancer biopsies from women treated 

with antiestrogens. In 4/17 cases, FGF3 amplification was not detected in the corresponding 

pre-treatment biopsy. In 3/4 of these tumors FGF3 copy number gains occurred in the 

absence of CCND1 amplification (Mao et al., 2020).

FGF2 has been reported as one of the major soluble factors in tumor microenvironment 

(TME) of ER+ breast cancers, where it can confer resistance to antiestrogens and 

PI3K/mTOR inhibitors. Indeed, FGF2 stimulation activates MAPK signaling, resulting in 

downregulation of BCL-2-interacting mediator of cell death (Bim) and upregulation of 

Cyclin D1. These events prevent the apoptosis and the proliferative arrest induced by 

antiestrogens and PI3K/mTOR inhibitors (Shee et al., 2018). Further, extracellular-matrix 

bound FGF2 has been shown to induce ligand-independent ERα signaling through MAPK 

activation, also contributing to antiestrogen resistance (DiGiacomo et al., 2021). These 

findings shed light on the crucial role of TME-secreted FGFs in tumorigenesis, tumor 

progression and resistance to antiestrogens in breast cancer.

Nuclear FGFRs

Several reports support a role of nuclear FGFRs in breast cancer. Confocal microscopy 

and immunoprecipitation assays have demonstrated that FGFR2, STAT5 and Progesterone 

Receptor (PR) colocalize as a complex in the nucleus of breast cancer cells (Cerliani 

et al., 2011). Binding of FGFR2 to its nuclear partners is enhanced upon FGF2 and 

Medroxyprogesterone Acetate (MPA) stimulation. The FGFR2/PR/STA5 colocalization was 

also demonstrated in primary breast cancer biopsies from treatment-naïve patients. The 

FGFR2/STAT5/PR complex binds to Progesterone Response Elements (PRE) and Interfon-

γ-activated sequences (GAS), regulating the expression of the genes containing these motifs 

in their regulatory regions (Cerliani et al., 2011).

FGFR1 can localize in the nucleus of breast cancer cells as a truncated peptide or as 

a full-length receptor (Figure 2). Loeb et al previously demonstrated that Asp432 in the 

juxtamembrane domain of FGFR1 is a direct substrate of granzyme B, which induces 

cleavage of the RTK (Loeb et al., 2006). Upon FGF10 stimulation, cleaved FGFR1 can 

accumulate in the nucleus of MCF-7 cells, thus promoting cell migration (Chioni and Grose, 

2012). In addition, the full length receptor has been shown to physically associate with 

ERα in breast cancer cell nuclei, influencing ligand-independent ERα genomic distribution 
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and transcription (Formisano et al., 2017). Using ChIP-Seq and Mass Spectrometry, we 

recently reported that FGFR1 associates with phosphorylated RNA-Polymerase II (Pol II) 

at gene promoters and this binding overlaps with the active transcription histone marks 

H3K27ac and H3K4me3 (Servetto et al., 2021). Integration of ChIP-Seq and RNA-Seq 

results further suggested that FGFR1 has a direct role in transcriptional regulation in breast 

cancer (Servetto et al., 2021).

Many questions about the role of nuclear FGFR1 in breast cancer remain unanswered. 

First, it is not clear whether the translocation of FGFR1 to the nucleus follows and/or 

requires receptor dimerization and activation at the plasma membrane. Second, it is unclear 

whether FGFR1-mediated gene transcription requires receptor’s TK activity. Next, the role 

of FGF ligands and FGFR1-interacting proteins on the modulation of nuclear FGFR1 

activity have not been fully elucidated. Finally, it is unknown whether FGFR1 has a specific 

DNA-binding motif in its amino acid sequence, so that the receptor can directly bind DNA, 

or whether it needs other cofactors mediating the recruitment and tethering to target genomic 

loci.

Role of FGFRs in endocrine resistance

FGFRs overexpression, gene copy number alterations, mutations and fusions have been 

shown to promote antiestrogen resistance in breast cancer. FGFR1 amplification is 

associated with a worse prognosis in ER+ breast cancer patients (Elbauomy Elsheikh et 

al., 2007). Turner et al found significant correlation between FGFR1 gene copy number, 

mRNA expression and protein levels in ER+ breast cancer biopsies and cell lines, with a 

remarkable enrichment of FGFR1 amplification in the Luminal B subtype (Turner et al., 

2010). These authors also demonstrated that siRNA-mediated FGFR1 knockdown in ER+/

FGFR1-amplified breast cancer cells restored sensitivity to tamoxifen (Turner et al., 2010), 

further suggesting a role for FGFR1 in antiestrogen resistance.

Further studies have identified FGFR1 amplification as mechanism of intrinsic resistance 

to antiestrogens. Whole-exome sequencing of 155 ER+/HER2− early breast cancers from 

patients treated with the aromatase inhibitor letrozole for 10–21 days prior surgery, revealed 

that amplification of locus 8p11.12 was associated with high post-treatment Ki67 (Giltnane 

et al., 2017). Interestingly, FGFR1 IHC of paired pre- and post-treatment ER+/FGFR1-

amplified breast cancer biopsies from patients treated with pre-operative letrozole revealed 

an increase in FGFR1 levels in post-treatment samples (Formisano et al., 2017), further 

suggesting that FGFR1 overexpression may represent an adaptive mechanism of escape 

to antiestrogen treatment. These findings were mimicked in vitro, where short-term and 

long-term estradiol deprivation (LTED) resulted in FGFR1 overexpression in ER+/FGFR1-

amplified breast cancer cell lines. In addition to 8p11.12, amplification of 11q13, comprising 

FGF3, FGF4, FGF19 and CCND1 genes correlated with high post-letrozole Ki67 values 

(Formisano et al., 2017; Giltnane et al., 2017). Concordant with these findings, LTED 

also resulted in upregulation of FGF3, FGF4 and FGF19 in ER+ breast cancer cells 

(Formisano et al., 2017). Consistent with these data, in a cohort of 73 patients with ER+ 

metastatic breast cancer and treated with first line endocrine therapy, patients harboring 

FGFR1-amplified tumors (n=20) experienced worse time to progression (TTP) compared to 
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those with non FGFR1-amplified tumors (n=53) (Drago et al., 2019). In the same study, 

patients with FGFR1-amplified tumors and treated with endocrine therapy plus CDK4/6 

inhibitors experienced a worse TTP.

These clinical findings are supported by experimentally data. For example, Several reports 

demonstrated that ectopic overexpression of FGFR1 in ER+ breast cancer cells induces 

resistance to fulvestrant in vitro (Drago et al., 2019; Formisano et al., 2019; Mao et 

al., 2020). An Open Reading Frame (ORF) kinome screen performed in MCF-7 cells, 

evaluating 559 kinases, identified FGFR1 among the 15 candidate genes conferring 

resistance to fulvestrant and also among the 17 candidate genes promoting resistance to 

combination of fulvestrant and the CDK4/6 inhibitor ribociclib (Formisano et al., 2019). 

Concordant with these results, a genome-scale gain of function screen, evaluating 17,255 

ORFs corresponding to 10,135 genes, revealed that genes involved in the FGFR signaling 

pathway significantly contribute to resistance to fulvestrant and the orally bioavailable 

SERD GDC-810 in MCF7 and T47D cells (Mao et al., 2020).

In addition to these findings, FGFR signaling has been associated with resistance to 

combination of antiestrogens with the PI3Kα inhibitor alpelisib or with CDK4/6 inhibitors. 

In a cohort of 26 patients with metastatic ER+ breast cancer treated with letrozole plus 

alpelisib, FGFR1 amplification was associated with absence of clinical benefit (Mayer et 

al., 2017). Constitutive overexpression of FGFR1 in the ER+/PIK3CAmut MCF7 cells 

significantly reduced sensitivity to alpelisb, corroborating the clinical findings (Mayer et 

al., 2017). Next, a subgroup analysis of 212 patients with ER+/HER2− metastatic breast 

cancer treated with letrozole plus ribociclib in the MONALEESA-2 trial revealed that 

8p11.23 amplification (n=10) detected in ctDNA was associated with a worse progression 

free survival (PFS) compared to patients without 8p11.23 amplification (n=202; median 

PFS, 10.61 vs 24.84 months) (Formisano et al., 2019). FGFR1 mRNA levels were further 

investigated by NanoString 230-gene nCounter GX Human Cancer Reference panel in 197 

tumor biopsies from patients enrolled in the MONALEESA-2 trial and treated with letrozole 

plus ribociclib. Notably, high FGFR1 mRNA levels (n=104) were associated with worse 

PFS, compared to to those patients with low FGFR1 mRNA (22.21 months vs not reached) 

(Formisano et al., 2019).

FGFR2 alterations have been also associated with antiestrogen resistance. The FGF7/FGFR2 

axis has been shown to enhance PI3K/AKT-mediated phosphorylation of ERα on Ser118 

and Ser167 and, as a result, confer resistance to tamoxifen in ER+ breast cancer cells 

(Turczyk et al., 2017). WES analysis of paired pre- and post-treatment metastatic tumor 

biopsies or liquid biopsies from 60 ER+ metastatic breast cancer patients treated with 

antiestrogens, revealed the emergence of FGFR2 amplification (3/60) and FGFR2 mutations 

(2/60), with one patient exhibiting both FGFR2 mutation and amplification (Mao et al., 

2020). In this dataset, the rate of FGFR2 genomic alterations (6.7%) was higher than the rate 

in datasets of treatment-naïve ER+ primary breast cancer (less than 2%). Clonal evolution 

analysis revealed that the FGFR2 mutations (M538I and N550K) were acquired in the post-

treatment biopsies. In mechanistic studies, overexpression of wild type or mutant FGFR2 

in ER+ breast cancer cells hyperactivated MAPK signaling and induced cross resistance to 

fulvestrant and palbociclib (Formisano et al., 2019; Mao et al., 2020).
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The only study reporting a role for FGFR3 in endocrine resistance was conducted by 

Tomlinson et al, who investigated FGFR3 expression in 429 ER+ primary breast cancer 

biopsies from patients treated with adjuvant tamoxifen (Tomlinson et al., 2012). FGFR3 

protein levels were higher in patients who experienced disease relapse during the treatment 

with tamoxifen, suggesting that FGFR3 may also be involved in resistance to treatment.

Other studies have reported a high occurrence of FGFR4 alterations in metastatic breast 

cancer, suggesting a potential involvement in endocrine resistance. Levine et al (Levine et 

al., 2019) investigated the rate of FGFR4 mutations in three large datasets of metastatic 

ER+ breast cancers and sequencing data from Foundation Medicine (Lefebvre et al., 

2016; Razavi et al., 2018; Robinson et al., 2017). In all these datasets, FGFR4 mutations 

were significantly enriched in metastatic compared to primary tumors. The same authors 

examined a cohort of 29 matched primary and metastatic biopsies, with the latter 

biospecimens collected at recurrence after endocrine therapy. RNA-Seq analysis of these 

tumor biopsies revealed a significant enrichment of FGFR4 mRNA levels in metastatic 

biopsies (Levine et al., 2019). In line with these data, FGFR4 mRNA and protein levels are 

highly enriched in LTED ER+ breast cancer cells compared to parental cells. In addition, 

Garcia-Recio et al (Garcia-Recio et al., 2020) showed that ectopic overexpression of FGFR4 

in MCF7 and T47D cells promoted higher estrogen-independent growth compared to 

parental cells, also suggesting a potential causal role of FGFR4 in antiestrogen resistance.

Finally, our recent study proposed a role of nuclear FGFR1 in antiestrogen resistance. In a 

cohort of 155 primary ER+ breast cancer biopsies from patients treated for 10–21 days with 

pre-operative letrozole, nuclear FGFR1 levels, measured by IHC, positively correlated with 

on-letrozole Ki67 values (Servetto et al., 2021). In the same report, MCF-7 cells transduced 

with an FGFR1 expression vector containing a nuclear localization signal (NLS) exhibited 

higher estrogen-independent growth and reduced sensitivity to fulvestrant compared to 

control cells. MCF7 xenografts stably transduced with FGFR1-NLS also showed reduced 

sensitivity to fulvestrant compared to control tumors (Servetto et al., 2021).

Clinical development of FGFR inhibitors in ER+ breast cancer

FGFR targeted therapies mainly consist of small molecules tyrosine kinase inhibitors, 

tailored against the ATP-binding pocket in the FGFR TK domain. These inhibitors can 

be divided in two classes: multi-targeting TKIs, able to bind and inhibit various RTKs, 

and selective TKIs that are specific to the FGFR TK. These inhibitors have been tested in 

preclinical and clinical studies against various cancer types with or without FGFR alterations 

suggestive of oncogene dependence. A summary of clinical trials with FGFR TKIs is shown 

in Table 1.

Multi-targeting TKIs

Dovitinib (TKI258, CHIR-258) is an orally bioavailable small molecule targeting Fms 

related receptor tyrosine kinase 3 (FLT3), KIT, Vascular Endothelial Growth Factor 

Receptors 1–3 (VEGFR1–3), FGFR1, FGFR3, Platelet Derived Growth Factor Receptors 

α-β (PDGFRα-β) and Colony Stimulating Factor Receptor 1 (CSF1R) (Lee et al., 2005). 

It was initially tested in renal cell carcinoma (RCC) without success (Angevin et al., 
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2013; Motzer et al., 2014). Andre et al (André et al., 2013) demonstrated the selective 

antiproliferative effect of dovitinib in FGFR1-amplified and FGFR2-amplified breast cancer 

cell lines compared to cells without FGFR amplification. However, in a cohort of 20 

patients with ER+/FGFR1-amplified breast cancer, the clinical benefit of dovitinib, defined 

as complete response (CR) or partial response (PR) or stable disease (SD) (RECIST criteria) 

≥24 weeks, was observed only in 3/20 (15%) (André et al., 2013). A more recent phase 

II clinical trial tested the combination of dovitinib plus fulvestrant versus placebo plus 

fulvestrant in postmenopausal ER+/HER2− breast cancer patients progressing on prior 

endocrine therapy (Musolino et al., 2017). Patients were randomized based on FGF pathway 

amplification status (defined as at least 6 copies of FGFR1, FGFR2 or FGF3, measured by 

qPCR in a tumor biopsy). In the group with FGF pathway amplification (n=31), dovitinib 

treatment (n=16) improved the median PFS compared to placebo (n=15; median PFS 10.5 vs 

5.5 months, respectively; HR=0.64).

Lucitanib (E-3810) is a small molecule inhibitor active against VEGFR1–3, FGFR1–

3, PDGFRα and CSF1R (Bello et al., 2011). In a phase I/IIa clinical trial testing 

the effect of lucitanib in advanced solid tumors, among breast cancer patients bearing 

FGFR pathway alterations (n=8, FGFR1-amplification; n=4, 11q amplification), 6 patients 

exhibited a partial response and 6 stable disease as best response by RECIST (Soria et al., 

2014). In laboratory studies, single agent lucitanib had very modest activity against ER+/

FGFR1-amplified breast cancer cells/tumors and PDXs (Formisano et al., 2017, 2019) but 

synergized with fulvestrant and CDK4/6 inhibitors (Formisano et al., 2019). Recent results 

of the FINESSE study revealed that lucitanib had modest antitumor activity in patients with 

ER+/FGFR1-amplified tumors, with an overall response rate (ORR) of 19% (Hui et al., 

2020).

Ponatinib and Brivanib are two other multi-targeting TKIs that have shown promising 

antitumor activity in preclinical models of breast cancer, but they have not been tested 

clinically (Patel et al., 2010; Shao et al., 2019).

Selective FGFR TKIs

AZD4547 is an orally bioavailable selective inhibitor of FGFR1–3, with an enzymatic IC50 

<5 nM (Gavine et al., 2012). Pearson et al tested the effect of AZD4547 in 8 patients with 

ER+/FGFR1-amplified breast cancer and 9 patients with FGFR2-amplified gastroesophageal 

cancers. Interestingly, only 1/8 patients with breast cancer and 3/9 patients with gastric 

cancer had a confirmed response to AZD4547 (Pearson et al., 2016). AZD4547 was also 

tested in 48 patients in the NCI-MATCH trial, which enrolled tumors harboring FGFR1 
or FGFR2 amplification (n = 20), FGFR2 or FGFR3 single-nucleotide variants (SNVs) (n 

= 19), and FGFR1 or FGFR3 fusions (n = 9) (Chae et al., 2020). A partial response was 

observed in only 8% of patients, all presenting FGFR1–3 point mutations or fusions. Of 

the 48 enrolled patients, 16 had breast cancer, with FGFR1 amplification (n=11), FGFR2 
amplification (n=2), and FGFR2 mutations (n=3). None of these patients reached PR or SD 

≥6 months as best response. Two clinical trials (NCT01202591 and NCT01791985) have 

evaluated the effect of the combination of endocrine therapy and AZD4547 in metastatic 

ER+ breast cancer but results have not been reported at this time. Results from the SAFIR02 
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trial (NCT02299999), testing the effect of targeted treatment based on the identified 

genomic aberration in breast cancer, may clarify the role of AZD4547 in breast cancers 

harboring FGFR alterations.

Infigratinib (NVP-BGJ398) is an orally available FGFR1–3 TKI, mainly tested in urothelial 

cancer and ICC with FGFR2/3 aberrations (Javle et al., 2018; Nogova et al., 2017). The 

NCT04504331 trial is testing the effect of the combination of infigratinib with tamoxifen 

in patients with ER+ breast cancers harboring FGFR pathway alterations. Results from this 

trial are pending.

Zoligratinib (Debio-1347) is an FGFR1–3 TKI with promising antitumor activity in solid 

cancers with FGFR1–3 genetic alterations (Voss et al., 2019). This agent is currently 

tested in combination with fulvestrant in patients with metastatic ER+ breast cancer 

(NCT03344536).

Erdafitinib (JNJ-42756493, Balversa) is a pan-FGFR kinase inhibitor, recently approved 

for the treatment of patients with metastatic urothelial carcinoma harboring FGFR2/3 
somatic alterations who had progressed on platinum-based chemotherapy (Loriot et al., 

2019). Combination of fulvestrant, palbociclib and erdafitinib has shown relevant antitumor 

activity in ER+/FGFR1-amplified breast cancer cells and PDXs (Formisano et al., 2019). 

These results led to development of the phase Ib clinical trial (NCT03238196), testing the 

effect of the triple ER, CDK4/6 and FGFR blockade in ER+/FGFR-amplified breast cancer. 

Preliminary results of this trial suggests clinical activity of the triplet combination limited to 

tumors with high FGFR1 amplification (Mayer et al., 2021).

Futibatinib (TAS-120) is a third-generation irreversible pan-FGFR inhibitor that binds 

to a highly conserved cysteine in the ATP pocket of FGFR (C492 in the FGFR2-IIIb 

isoform) (Kalyukina et al., 2019). This drug displayed encouraging results in ICC harboring 

FGFR2 fusions, including patients who developed resistance to other FGFR TKIs such as 

NVP-BGJ398 and Debio-1347 (NCT02052778) (Goyal et al., 2019). Futibatinib has strong 

antiproliferative activity against MDA-MB-134 ER+/FGFR1-amplified and MFM-223 ER-/

FGFR2-amplified breast cancer cells (Sootome et al., 2020). TAS-120 is currently tested 

in the phase II FOENIX-MBC2 clinical trial, which enrolls patients with locally advanced/

metastatic breast cancer with FGFR1–2 amplification (NCT04024436). This trial includes 

the addition of fulvestrant in the cohort of ER+ breast cancer patients.

Rogaratinib (Bay 1163877) is a potent pan-FGFR inhibitor that has shown an antitumor 

effect in several preclinical cancer models with FGFR pathway alterations (Grünewald et 

al., 2019). In these studies, sensitivity to rogaratinib has correlated with FGFR mRNA 

expression levels. A phase I dose escalation trial (NCT04483505) is testing the combination 

of rogaratinib, palbociclib and fulvestrant in patients with ER+ breast cancer progressing 

on an aromatase inhibitor plus a CDK4/6 inhibitor, that were positive for FGFR1–3 as 

measured by RNA-scope and/or FISH.

Pemigatinib (INCB054828) is a potent selective FGFR1–3 inhibitor, approved for the 

treatment of patients with unresectable or metastatic ICC harboring FGFR2 fusions or 

rearrangements (Abou-Alfa et al., 2020). FIGHT-101 is a phase 1/2 trial (NCT02393248) 
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testing the effect of pemigatinib in patients with solid tumors harboring genomic alterations 

in FGF ligands or FGFRs.

Challenges in targeting FGFR signaling

The clinical development of FGFR inhibitors in solid malignancies, including breast cancer, 

has been challenging for several reasons. First is the possibility that inadequate criteria 

have been used to select patients for study enrollment. FGFR amplification, by FISH, has 

been generally defined as ratio gene/centromere >2 or copy number >6. However, it has 

been shown that only tumors with high levels of FGFR1/2 amplification may rely on FGFR 

signaling and respond to FGFR TKIs (André et al., 2013; Pearson et al., 2016). Therefore, 

FGFR1 dependence – that would translate to increased sensitivity to FGFR antagonists 

– may be overestimated by the sole evaluation of FGFR1 gene copy number, whereas 

mRNA and protein levels may represent better predictive biomarkers of sensitivity to FGFR 

inhibitors (Malchers et al., 2014; Wynes et al., 2014). Previous studies reported that FGFR1 

overexpression is not enough to induce oncogenic transformation of mammary epithelial 

cells but, instead, enhanced receptor dimerization is required to promote tumorigenesis 

(Welm et al., 2002; Xian et al., 2005). On the other hand, FGFR2 is a dominant oncogene, 

mainly due to its cooperation with other RTKs, such as HER3 and IGF1R (Pearson et al., 

2016). Thus, the identification of FGFR2 amplification may represent a better predictive 

biomarker of sensitivity to FGFR TKIs rather than FGFR1 amplification.

Several studies have shown that FGFR TKIs have clinical efficacy in solid tumors harboring 

FGFR fusions and mutations (Chae et al., 2020; Voss et al., 2019). Although the rate of these 

alterations is negligible in primary breast cancers, their occurrence is higher in metastatic 

samples and in biopsies collected from patients progressing on antiestrogens (Formisano et 

al., 2019; Levine et al., 2019; Mao et al., 2020; Razavi et al., 2018), clearly supporting the 

need of tumor genomic characterization at disease progression.

The dissection of tumor heterogeneity and changes during tumor evolution also represent 

an important challenge to identify the fraction of patients with advanced disease that would 

respond to FGFR TKIs. It has been shown that tumors with clonal FGFR2 amplification 

are sensitive to FGFR inhibition (Pearson et al., 2016). Also, Mao et al (Mao et al., 

2020) suggested that FGFR genomic aberrations are clonally acquired after treatment with 

antiestrogens, defining a subset of breast cancers highly dependent on FGFR signaling and 

hence sensitive to FGFR inhibition. More studies employing clonal evolutionary analysis, 

based on sequencing of pre- and post-treatment samples, are clearly needed to define the 

clonal evolution of FGFRs aberrations.

Inadequate dosing and drug-induced toxicities have also contributed to lack of clinical 

benefit from multi-kinase and FGFR selective TKIs. For example, hypertension, proteinuria, 

thrombotic microangiopathy, mainly due to VEGFR inhibition, resulted in dose reductions 

or early treatment discontinuation of lucitanib (Soria et al., 2014). More selective 

FGFR inhibitors are also burdened by FGFR inhibition-specific toxicities, such as 

hyperphosphatemia, stomatitis, diarrhea, dry eyes and skin (Loriot et al., 2019).
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Conclusions

The role of FGFR signaling in breast cancer has been well characterized. In the last few 

years, it has become clear that the various FGFR alterations have different biological and 

oncogenic properties. These findings have important implications in the design of future 

clinical trials testing FGFR TKIs. Although FGFR copy number alterations represent the 

most common FGFR genomic alterations in breast cancer, by themselves they may not be 

good predictive biomarkers of sensitivity to FGFR TKIs. Conversely, the use of FGFR 

inhibitors, as monotherapy or in combination with other drugs, may represent a valid 

therapeutic option for patients with breast cancers harboring FGFR mutations and fusions. 

Future studies will help to define the subsets of patients with breast cancer highly dependent 

on FGFR signaling and, hence, worth to be treated with FGFR inhibitors.
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Figure 1. FGFR signaling pathway in breast cancer.
The binding of FGFs to the extracellular domain of FGFR induces dimerization of 

the receptor and phosphorylation of its intracellular C-terminal domain. The C-terminal 

phosphorylated tyrosine residues serve as anchors for adaptor proteins that, in turn, 

activate four distinct signaling cascades: RAS-RAF-MEK-MAPK, PI3K-AKT, JAK-STAT 

and PLCγ. The activation of these pathways ultimately promotes the expression of 

transcriptional profiles associated with cell proliferation, differentiation, migration, drug 

resistance and ERα signaling. TME: tumor microenvironment; HSPG: heparan sulfate 

proteoglycan; FGFs fibroblast growth factors; FGFR: fibroblast growth factor receptor; 

PLCγ: phospholipase Cγ; PIP2: phosphatidylinositol-4,5-biphosphate; DAG: diacylglicerol; 

IP3: inositol triphosphate; PKC: protein kinase C; FRS2α: FGFR substrate 2α; GRB2: 

Servetto et al. Page 20

Biochim Biophys Acta Rev Cancer. Author manuscript; available in PMC 2023 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



growth factor receptor-bound 2; GAB1: GRB2-associated binding protein 1; SOS: son 

of sevenless; PI3K: phosphatidylinositol-4,5-bisphosphate 3-kinase; JAK: janus activated 

kinase; STAT: signal transducer and activator of transcription; ERα: estrogen receptor α.
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Figure 2. Mechanisms of FGFR1 nuclear translocation and nuclear FGFR1 activity in breast 
cancer.
Following FGFs binding, full-length FGFR1 can undergo clathrin-mediated or clathrin 

independent endocytosis. In addition, upon FGFs binding, the intracellular domain of 

FGFR1 can be subjected to the proteolytic activity of granzyme B, which induces cleavage 

of the receptor recognizing the Asp432 residue. Both full-length and cleaved FGFR1 

migrate into the nucleus via Importin β system. Furthermore, newly synthesized FGFR1 can 

be directed into the nucleus via a retrograde transport system involving the ER-associated 

Sec61 translocon and Importin β. In the nucleus, FGFR1 associates with RNA Polymerase 

II in a chromatin-bound complex of coregulators and contributes to regulate the transcription 

of genes associated with endocrine resistance, cell proliferation and migration. FGFs: 

fibroblast growth factors; ER: endoplasmic reticulum; RNA Pol II: RNA polymerase II.
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Figure 3. Mechanisms of FGFR signaling activation in breast cancer.
Various mechanisms contribute to enhanced oncogenic FGFR signaling in breast 

cancer. Gene amplification leads to overexpression of the membrane-bound receptors, 

ultimately enhancing the canonical signaling cascades induced by FGFRs activation. In 

addition, overexpression of nuclear FGFR1 contributes to transcriptional regulation. Gene 

amplification also leads to overexpression of FGF ligands, which in turn hyperactivate the 

FGFR signaling pathway. FGFs may also promote angiogenesis and epithelial-mesenchymal 

transition. Chromosomal rearrangements translate into oncogenic fusions, in which a protein 

partner can be fused at the FGFR C-terminal domain (violet fusion), promoting receptor 

dimerization and consequent activation of intracellular signaling cascades. In addition, 

FGFRs can be under the control of the promoter of a protein fused at the N-terminal 

domain (blue fusion), resulting in a ligand-independent activation. Point mutations can 

occur at both extra- and intracellular FGFRs domains, leading to ligand-independent 

receptor dimerization and/or constitutive activation of the C-terminal kinase domain. TME: 

tumor microenvironment; EMT: epithelial-mesenchymal transition; FGFs: fibroblast growth 

factors.
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